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An alternative onstrution of B-M and B-T

unitals in desarguesian planes

A. Aguglia

∗
, L. Giuzzi

†
, G. Korhmáros

‡

Abstrat

We present a new onstrution of non-lassial unitals from a lassial

unital U in PG(2, q2). The resulting non-lassial unitals are B-M unitals.

The idea is to �nd a non-standard model Π of PG(2, q2) with the following

three properties:

(i) points of Π are those of PG(2, q2);

(ii) lines of Π are ertain lines and onis of PG(2, q2);

(iii) the points in U form a non-lassial B-M unital in Π.

Our onstrution also works for the B-T unital, provided that onis are

replaed by ertain algebrai urves of higher degree.

Keywords: Hermitian urve; unital; oni.

1 Introdution

A lassial unital U in the Desarguesian plane PG(2, q2) is the set of all absolute
points of a non-degenerate unitary polarity. Up to a projetivity of PG(2, q2), U
onsists of all the q3 + 1 points of the non-degenerate Hermitian urve H with

equation yq + y − xq+1 = 0. The relevant ombinatorial property of U , leading
to important appliations in oding theory, is that U is a two-harater set with

parameters 1 and q + 1, that is, a line in PG(2, q2) meets U in either 1 or q + 1
points. A unital in PG(2, q2) is de�ned by this ombinatorial property, namely it

is a two-harater set of size q3 + 1 with parameters 1 and q + 1.
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The known non-lassial unitals are the B-M unitals due to Buekenhout and

Metz, see [5, 17℄, and the B-T unitals due to Buekenhout, see [5℄. They were

onstruted by an ingenious idea, relying on the Bruk�Bose representation of

PG(2, q2) in PG(4, q) and exploiting properties of spreads and ovoids (in partiular,
quadris). For q odd, an alternative onstrution for speial B-M unitals whih

are the union of q onis sharing a point has been given by Hirshfeld and Sz®nyi

[15℄. Suh B-M unitals are alled H-Sz type B-M unitals.

In this paper, we present a new onstrution for non-H-Sz type B-M unitals.

The key idea, as desribed in Abstrat, is fully realised within PG(2, q2), and it uses
only quadrati transformations. This method also works for B-T unitals, provided

that quadrati transformations are replaed by ertain birational transformations.

Our notation and terminology are standard. For generalities on unitals in

projetive planes the reader is referred to [4, 9, 10℄. Basi fats on rational trans-

formations of projetive planes are found in [14, Setion 3.3℄.

2 A non-standard model of PG(2, q2)

Fix a projetive frame in PG(2, q2) with homogeneous oordinates (x0, x1, x2),
and onsider the a�ne plane AG(2, q2) whose in�nite line ℓ∞ has equation x0 = 0.
Then AG(2, q2) has a�ne oordinates (x, y) where x = x1/x0, y = x2/x0 so that

X∞ = (0, 1, 0) and Y∞ = (0, 0, 1) are the in�nite points of the horizontal and

vertial lines, respetively.

Fix a non-zero element a ∈ GF(q2). For m, d ∈ GF(q2) and a ∈ GF(q2)∗, let
Ca(m, d) denote the parabola of equation y = ax2+mx+d. Consider the inidene
struture Aa = (P,L) whose points are the points of AG(2, q2) and whose lines are

the vertial lines of equation x = k, together with the parabolas Ca(m, d) where
m, d, k range over GF(q2).

Lemma 2.1. For every non-zero a ∈ GF(q2), the inidene struture Aa = (P,L)
is an a�ne plane isomorphi to AG(2, q2).

Proof. The birational transformation ϕ given by

ϕ : (x, y) 7→ (x, y − ax2), (1)

transforms vertial lines into themselves, whereas the generi line y = mx + d is

mapped into the parabola Ca(m, d). Therefore, ϕ determines an isomorphism

Aa ≃ AG(2, q2),

and the assertion is proven.
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Completing Aa with its points at in�nity in the usual way gives a projetive

plane isomorphi to PG(2, q2). Note that the in�nite point Y∞ of the vertial lines

of AG(2, q2) is also the in�nite point of the vertial lines of Aa.

For q an odd power of 2, a di�erent, yet similar, onstrution will also be useful

in our investigation. The onstrution depends on some known fats about Galois

�elds of even harateristi. Let ε ∈ GF(q2) \ GF(q) suh that ε2 + ε+ δ = 0, for
some δ ∈ GF(q) \ {1} with Tr (δ) = 1. Here, as usual, Tr stands for the trae

funtion GF(q) → GF(2). Then ε2q+εq+δ = 0. Therefore, (εq+ε)2+(εq+ε) = 0,
whene εq + ε+ 1 = 0. Moreover, if q is an odd power of 2, then

σ : x 7→ x2(e+1)/2

is an automorphism of GF(q).
For any m, d ∈ GF(q2) let D(m, d) denote the plane algebrai urve of equation

y = [((xq+x)ε+x)σ+2+(xq+x)σ+((xq+x)ε+x)(xq+x)]ε+ bxq+1+mx+d (2)

where b is a given element in GF(q2) \GF(q).
Introdue the inidene struture A

′

ε = (P ′,L′) whose points are the points of
AG(2, q2) and whose lines are the vertial lines of equation x = k, together with
the urves D(m, d) where m, d, k range over GF(q2).

Lemma 2.2. The inidene struture A′

ε = (P ′,L′) is an a�ne plane isomorphi

to AG(2, q2).

Proof. The argument in the proof of Lemma 2.1 works also in this ase, provided

that ϕ is replaed by the birational transform γ de�ned by

γ : (x, y) 7→ (x, y+[((xq+x)ε+x)σ+2+(xq+x)σ+((xq+x)ε+x)(xq+x)]ε+bxq+1)

3 The Constrution

Before presenting our onstrution we reall the equations of B-M unitals and B-T

unitals in PG(2, q2).

Proposition 3.1. (Baker and Ebert[3℄, Ebert [7, 9℄). For a, b ∈ GF(q2), the

point�set

Ua,b = {(1, x, ax2 + bxq+1 + r)|x ∈ GF(q2), r ∈ GF(q)} ∪ {Y∞}

is a B-M unital in PG(2, q2) if and only if Ebert's disriminant ondition is satis-

�ed, that is for odd q,
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(i) 4aq+1 + (bq − b)2 is a non�square in GF(q),

and for q even,

(ii) b /∈ GF(q) and Tr (aq+1/(bq + b)2) = 0.

Conversely, every B-M unital has a representation as Ua,b.

Proposition 3.2. With the above notation,

(i) Ua,b is lassial if and only if a = 0;

(ii) Ua,b is a H-Sz type B-M unital if and only a(q+1)/2 ∈ GF(q2) \ GF(q) and

b ∈ GF(q).

Proof. This is a diret orollary of [9, Theorems 1 and 12℄.

Proposition 3.3. Let q = 2e, where e > 1 is an odd integer. In the above notation,

the point�set

Uε = {(1, x, [((xq + x)ε+ x)σ+2 + (xq + x)σ + ((xq + x)ε + x)(xq + x)]ε+ r
| x ∈ GF(q2), r ∈ GF(q)} ∪ {Y∞},

(3)

is a B-T unital in PG(2, q2). Conversely, every B-T unital may be represented as

Uε for some hoie of ε.

Proof. From [8, 9℄, the point�set

Uε = {(1, s+ tε, (sσ+2 + tσ + st)ε+ r|r, s, t ∈ GF(q)} ∪ {Y∞} (4)

is a B-T unital and, onversely, every B-T unital has suh an equation. Let x =
s + tε. Then, t = xq + x and s = x + (xq + x)ε. Substituting t and s in (4) gives

the result.

If b ∈ GF(q2) \GF(q) then, from Proposition 3.2, the point�set

Ub = {(1, x, bxq+1 + r)|x ∈ GF(q2), r ∈ GF(q)} ∪ {Y∞} (5)

is a lassial unital in PG(2, q2). As pointed out in Setion 2, Ub an be regarded

as a point�set in the projetive losure of Aa and, for q even, also as a point�set

of the projetive losure of A′

ε. The question arises whether Ub is still a unital in

these planes. Our main result, stated in the following two theorems, shows that

the answer is positive.

Theorem 3.4. Let a ∈ GF(q2), b ∈ GF(q2) \ GF(q). If (a, b) satis�es Ebert's

disriminant ondition, then Ub is the non�lassial B-M unital U−a,b in the pro-

jetive losure of Aa. Conversely, every non-H-Sz type B-M unital is obtained in

this way.
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Proof. Let P = (ξ, η) an a�ne point in Aa. This point, viewed as an element of

AG(2, q2), has oordinates x = ξ and y = η + aξ2. From (5),

Ub = {(1, ξ,−aξ2 + bξq+1 + r | ξ ∈ GF(q2), r ∈ GF(q)} ∪ {Y∞}. (6)

This shows that Ub and U−a,b oinide in Aa. Sine (−a, b) also satis�es Ebert's

disriminant ondition, U−a,b is a B-M unital in the projetive losure of Aa. By

Proposition 3.2, U−a,b is a non-H-Sz type B-M unital.

Theorem 3.5. Let q = 2e, with e > 1 an odd integer. Then Uε is a non�lassial

B-T unital in the projetive losure of A′

ε.

Proof. We use the same argument as in the preeding proof. The point P = (ξ, η)
of A

′

ε, viewed as an element of AG(2, q2), has oordinates x = ξ and

y = η + [((ξq + ξ)ε+ ξ)σ+2 + (ξq + ξ)σ + ((ξq + ξ)ε+ ξ)(ξq + ξ)]ε+ bξq+1.

From (5),

Ub = {(1, ξ, [((ξq + ξ)ε+ x)σ+2 + (ξq + ξ)σ + ((ξq + ξ)ε+ ξ)(ξq + ξ)]ε+ r
| ξ ∈ GF(q2), r ∈ GF(q)} ∪ {Y∞}.

By Proposition 3.3 we have that Ub and Uε oinide in A′

ε and the assertion follows.

3.1 An alternative proof of Theorem 3.4

The above proofs of Theorem 3.4 and 3.5 depend on the expliit equations for B-M

and B-T unitals, as given in Propositions 3.1 and 3.3. Here we provide a diret

proof of Theorem 3.4. Without loss of generality, we assume that q ≥ 3.
Let H be the set of all points in AG(2, q2) of the a�ne Hermitian urve C of

equation

yq − y + (b− bq)xq+1 = 0, b 6∈ GF(q), (7)

Then, H∪{Y∞} is a lassial unital in PG(2, q2). We prove that H∪{Y∞} is also

a unital in the projetive losure of Aa.

We �rst need the following lemma.

Lemma 3.6. For every m, d ∈ GF(q2), the parabola Ca(m, d) and H have either

1 or q + 1 points in AG(2, q2).

Proof. The number of solutions (x, y) ∈ GF(q2)×GF(q2) of the system

{

yq − y + (b− bq)xq+1 = 0
y − ax2 −mx− d = 0

(8)
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gives the number of points in ommon of H and Ca(m, d). To solve this system,

reover the value of y from the seond equation and substitute it in the �rst. The

result is

aqx2q + (b− bq)xq+1 +mqxq − ax2 −mx+ dq − d = 0. (9)

Consider now GF(q2) as a vetor spae over GF(q), �x a basis {1, ε} with ε ∈
GF(q2) \ GF(q), and write the elements in GF(q2) as a linear ombination with

respet to this basis, that is, z = z0 + z1ε, with z ∈ GF(q2) and z0, z1 ∈ GF(q).
Thus, (9) beomes an equation over GF(q). We investigate separately the even q
and odd q ases.

For q even, ε may be hosen as in Setion 2. With this hoie of ε, (9) beomes

(a1+b1)x
2
0+[(a0+a1)+ν(a1+b1)]x

2
1+b1x0x1+m1x0+(m0+m1)x1+d1 = 0. (10)

We shall represent the the solutions (x0, x1) of (10) as points of the a�ne plane

AG(2, q) over GF(q) arising from the vetor spae GF(q2). In fat, (10) turns out

to be the equation of a (possibly degenerate) a�ne oni Ξ of AG(2, q). Atually,
Ξ is either an ellipse or is a single point. To prove this, we have to show that it

has no point at in�nity; that is, we need to prove that the points P = (x0, x1, 0)
with

(a1 + b1)x
2
0 + [(a0 + a1) + ν(a1 + b1)]x

2
1 + b1x0x1 = 0, (11)

do not lie in PG(2, q). Obviously, this is the ase if and only if (11) admits only

the trivial solution over GF(q). A neessary a su�ient ondition for this is

Tr

(

(a1 + b1)[(a0 + a1) + ν(a1 + b1)]

b21

)

= 1. (12)

In our ase, (12) holds as it follows diretly from Ebert's disriminant ondition;

see [4, page 83℄. Therefore, Ξ is either an ellipse or it onsists of a single point;

hene, Ca(m, d) meets H in either 1 or q + 1 points.

For q odd, an analogous argument is used. For this purpose, as in [9℄, hoose

a primitive element β of GF(q2) and let ε = β(q+1)/2
. Then, εq = −ε and ε2 is a

primitive element of GF(q). With this hoie of ε, (9) beomes

(b1 + a1)ε
2x2

1 + 2a0x0x1 + (a1 − b1)x
2
0 +m0x1 +m1x0 + d1 = 0. (13)

The disussion of the (possibly degenerate) a�ne oni Ξ of equation (13) may be

arried out exatly as in the even order ase. The points P = (x0, x1, 0) of Ξ at

in�nity are determined by

(b1 + a1)ε
2x2

1 + 2a0x0x1 + (a1 − b1)x
2
0 = 0,

and this equation has only the trivial solution over GF(q), sine Ebert's disrimi-

nant ondition implies that 4aq + (bq − b)2 is non-square in GF(q).
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Lemma 3.6 together with [13, Theorem 12.16℄ have the following orollary.

Theorem 3.7. The point-set H∪{Y∞} is a unital in the projetive losure of Aa.

To show that H∪{Y∞} is a non-lassial unital in the projetive losure of A,

we rely on some elementary fats on algebrai urves.

Lemma 3.8. The points of H in Aa lie on the absolutely irreduible a�ne plane

urve C′
of equation

ηq − η + (b− bq)ξ + aqξ2q − aξ2 = 0.

Proof. The plane urve C′
is absolutely irreduible, see [14, Lemma 12.1℄. If P =

(ξ, η) is a point ofH inAa, then P , regarded as a point ofAG(2, q2), has oordinates
x, y with x = ξ, y = η + aξ2. Sine (x, y) satis�es (7),

(η + aξ2)q − η − aξ2 + (b− bq)ξ = 0

holds. This implies that P = (ξ, η) is a point of C′
.

Theorem 3.9. The point-set H ∪ {Y∞} is a non-lassial unital in the projetive

losure of Aa.

Proof. Assume, on the ontrary, thatH oinides in Aa with the point�set of a non-

degenerate a�ne Hermitian urve D′
. Then, C′

and D′
have at least q3 ommon

points. Sine deg C′ = 2q and degD′ = q+1 and 2q(q+1) < q3, Bézout's theorem,

see [14, Theorem 3.13℄, implies that C′
and D′

share a ommon omponent. This

ontradits Lemma 3.8.

Finally, we prove that H ∪ {Y∞} is a B-M unital in the projetive losure of

Aa. Our proof relies on the Ebert-Wantz group-theoreti haraterization of B-M

unitals of a Desarguesian plane: A unital U of PG(2, q2) is a B-M unital if, and

only if, U is preserved by a linear ollineation group of order q3(q−1) whih is the

semidiret produt of a subgroup S of order q3 by a subgroup R of order q − 1.
Moreover, S is Abelian if, and only if, U is a H-Sz type B-M unital; see [11℄ and

[9, Theorem 12℄. For more results on the ollineation group of a B-M unital, see

[1, 2℄.

Theorem 3.10. In the projetive losure of Aa, the point-set H∪ {Y∞} is a non-

Sz-H type B-M unital.

Proof. A straightforward omputation shows that for any point P = (u, v) ∈ H in

Aa and for any λ ∈ GF(q)∗, the a�nities

αu,v : (ξ, η) → (ξ + u, η − 2auξ + uq(b− bq)ξ + v),
βλ : (ξ, η) → (λξ, λ2η)

(14)
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of Aa preserve H. The group S of the linear ollineations αu,v with P = (u, v)
ranging over H is a non-Abelian group of order q3. Write R for the group of the

linear ollineations βλ as λ varies GF(q)∗. It turns out that the group G generated

by all these ollineations has order q3(q− 1) and is the semidiret produt S ⋊R,
and the assertion follows from the Ebert-Wantz haraterization.

Remark 3.11. Theorem 3.9 may also be proven without using algebrai geometry.

The idea is to write the equation of the tangent parabolas Ca(m, d) at the points
of the lassial unital H ∪ {Y∞} and use Thas' haraterization [19℄ involving the

feet of a point on a unital. If P = (w, z) ∈ H then the unique tangent parabola

to H at P has equation

y = ax2 + (−2aw + (b− bq)wq) x− zq + aw2. (15)

For q odd, Theorem 3.10 an also be proven replaing group theoreti arguments

with some geometri haraterisations results depending on Baer sublines, due to

Casse, O'Keefe, Penttila and Quinn; see [6, 18℄ and [9, Theorem 11℄.

4 Absolutely irreduible urves ontaining all points

of a B-M unital in PG(2, q2)

For a, b ∈ GF(q2) satisfying Ebert's disriminant ondition, the absolutely irre-

duible plane urve Γa,b of PG(2, q2) with a�ne equation

yq − y − aqx2q + ax2 + (b− bq)xq+1 = 0. (16)

ontains all points of the unital U−a,b. We prove some properties of Γa,b.

Theorem 4.1. The urve Γa,b is birationally equivalent over GF (q2) to a non�

degenerate Hermitian urve.

Proof. The birational map (x, y) → (x, y−ax2) transforms Γa,b into the Hermitian

urve C of equation (7).

Theorem 4.2. Γa,b is the unique plane urve of minimum degree whih ontains

all the points of the B-M unital U−a,b in PG(2, q2).

Proof. Let Ψ be (a not neessarily absolutely irreduible) plane urve of PG(2, q2)
of degree d ≤ 2q whih ontains all points of U−a,b. Obviously, Γa,b and Ψ have

at least q3 + 1 ommon points. From Bézout's theorem [14, Theorem 3.13℄, Γa,b

is a omponent of Ψ. Sine deg Γa,b ≥ deg Ψ, this is only possible when they

oinide.
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Remark 4.3. In 1982, Goppa introdued a general onstrution tehnique for

linear odes from algebrai urves de�ned over a �nite �eld; see [12℄. In the

urrent literature, these odes are alled algebrai-geometry.

The parameters of linear odes arising from a Hermitian urve by Goppa's

method were omputed in [16℄. These odes turn out to perform very well, when

ompared with Reed-Solomon odes of similar length and dimension.

In [9℄, Ebert raised the question whether the parameters of the odes arising

from Γa,b by Goppa's onstrution were lose to maximum distane separable odes.

Sine the algebrai-geometri odes are determined by the funtion �elds of

the related algebrai urves and the funtion �elds of two birationally equivalent

plane urves are isomorphi, Theorem 4.1 implies that the algebrai-geometry

odes arising from the Hermitian urve C and those arising from the urve Γa,b are

the same.

5 B-M unitals and ones of PG(3, q2)

We present another way to onstrut a non-lassial B-M unital using a Hermitian

urve and a suitable one of PG(3, q2).
Let x0, x1, x2, x3 denote homogeneous oordinates in PG(3, q2). Consider the

Hermitian urve H = {(1, t, btq+1 + r)|t ∈ GF(q2), r ∈ GF(q)} ∪ {Y∞} and the

map φ : H 7→ PG(3, q2) whih transforms the point P (1, t, btq+1+ r) into the point
φ(P ) = (1, t, t2, btq+1 + r) and Y∞ = (0, 0, 1) into φ(Y∞) = (0, 0, 0, 1).

The map φ is injetive; thus, the set φ(H) onsists of q3 + 1 points lying on

the one C represented by x0x2 = x2
1. The point Q(0, 0, 1,−a) does not lie on the

one C; hene, the projetion ρ from Q to the plane π : x2 = 0 is well de�ned. The
point φ(Y∞) is on π thus we get ρ(0, 0, 0, 1) = (0, 0, 0, 1).

For any (t, r) ∈ GF(q2)×GF(q), set Pt,r = (1, t, btq+1 + r). The line Pt,rQ has

point set

{(1, t, t2 + λ, btq+1 + r − λa)|λ ∈ GF(q2)} ∪ {(0, 0, 0, 1)}

and intersets the plane π at ρ(Pt,r) = (1, t, 0, at2 + btq+1 + r). We are going to

show that no 2-seant lines of φ(H) pass through Q. Let Pt1,r1(1, t1, t
2
1, bt

q+1
1 + r1)

and Pt2,r2(1, t2, t
2
2, bt

q+1
2 + r2) be two distint points of φ(H). The line Pt1,r1Pt2,r2

is the point set

{(λ+ 1, t1 + λt2, t
2
1 + λt22, b(t

q+1
1 + λtq+1

2 ) + r1 + λr2)|λ ∈ GF(q2)} ∪ {Pt2,r2}.

If the point Q were on the line Pt1,r1Pt2,r2 then λ = −1, t1− t2 = 0 and t21− t22 6= 0,
whih is impossible. Therefore, |ρ(φ(H))| = q3 + 1 and it is possible to hoose
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homogeneous oordinates for the plane π in suh a way as ρ(φ(H)) turns out to
be the set

{(1, t, at2 + btq+1 + r)|t ∈ GF(q2), r ∈ GF(q)} ∪ {P∞};

that is, ρ(φ(H)) is a non�lassial B-M unital in π.
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