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An alternative construction of B-M and B-T
unitals in desarguesian planes

A. Aguglia*, L. Giuzzil G. Korchméros*

Abstract

We present a new construction of non-classical unitals from a classical
unital & in PG(2,¢?). The resulting non-classical unitals are B-M unitals.
The idea is to find a non-standard model IT of PG(2,¢?) with the following
three properties:

(i) points of IT are those of PG(2, ¢?);
(ii) lines of IT are certain lines and conics of PG(2, ¢?);
(iii) the points in U form a non-classical B-M unital in II.

Our construction also works for the B-T unital, provided that conics are
replaced by certain algebraic curves of higher degree.

Keywords: Hermitian curve; unital; conic.

1 Introduction

A classical unital I/ in the Desarguesian plane PG(2, ¢?) is the set of all absolute
points of a non-degenerate unitary polarity. Up to a projectivity of PG(2, ¢?), U
consists of all the ¢3 + 1 points of the non-degenerate Hermitian curve H with
equation y¢ +y — 2971 = 0. The relevant combinatorial property of I/, leading
to important applications in coding theory, is that U is a two-character set with
parameters 1 and ¢ + 1, that is, a line in PG(2, ¢*) meets U in either 1 or ¢ + 1
points. A wunital in PG(2, ¢?) is defined by this combinatorial property, namely it
is a two-character set of size ¢® + 1 with parameters 1 and ¢ + 1.
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The known non-classical unitals are the B-M unitals due to Buekenhout and
Metz, see [5l, 17], and the B-T unitals due to Buekenhout, see [5]. They were
constructed by an ingenious idea, relying on the Bruck-Bose representation of
PG(2,¢%) in PG(4, ¢) and exploiting properties of spreads and ovoids (in particular,
quadrics). For ¢ odd, an alternative construction for special B-M unitals which
are the union of ¢ conics sharing a point has been given by Hirschfeld and Szényi
[15]. Such B-M unitals are called H-Sz type B-M unitals.

In this paper, we present a new construction for non-H-Sz type B-M unitals.
The key idea, as described in Abstract, is fully realised within PG(2, ¢?), and it uses
only quadratic transformations. This method also works for B-T unitals, provided
that quadratic transformations are replaced by certain birational transformations.

Our notation and terminology are standard. For generalities on unitals in
projective planes the reader is referred to [4} 9l 10]. Basic facts on rational trans-
formations of projective planes are found in [14] Section 3.3].

2 A non-standard model of PG(2, q2)

Fix a projective frame in PG(2,¢?) with homogeneous coordinates (zg, 1, s),
and consider the affine plane AG(2, ¢*) whose infinite line /., has equation zq = 0.
Then AG(2,¢*) has affine coordinates (z,y) where x = x1/x¢, y = z2/x0 so that
Xo = (0,1,0) and Y, = (0,0,1) are the infinite points of the horizontal and
vertical lines, respectively.

Fix a non-zero element a € GF(¢?). For m,d € GF(¢?) and a € GF(¢?)*, let
C.(m, d) denote the parabola of equation y = ax?+ma+d. Consider the incidence
structure A, = (P, L) whose points are the points of AG(2, ¢*) and whose lines are
the vertical lines of equation x = k, together with the parabolas C,(m,d) where
m, d, k range over GF(q?).

Lemma 2.1. For every non-zero a € GF(¢?), the incidence structure A, = (P, L)
is an affine plane isomorphic to AG(2,¢?%).

Proof. The birational transformation ¢ given by
28 (x,y)>—> (x,y—axz), (1)

transforms vertical lines into themselves, whereas the generic line y = mx + d is
mapped into the parabola C,(m, d). Therefore, ¢ determines an isomorphism

A, ~ AG(2,q2),

and the assertion is proven. O



Completing 2, with its points at infinity in the usual way gives a projective
plane isomorphic to PG(2, ¢%). Note that the infinite point Y., of the vertical lines
of AG(2,¢?) is also the infinite point of the vertical lines of 2,,.

For ¢ an odd power of 2, a different, yet similar, construction will also be useful
in our investigation. The construction depends on some known facts about Galois
fields of even characteristic. Let € € GF(¢?) \ GF(q) such that e + ¢+ ¢ = 0, for
some § € GF(q) \ {1} with Tr(6) = 1. Here, as usual, Tr stands for the trace
function GF(q) — GF(2). Then %7 +¢7+§ = 0. Therefore, (¢7+¢)?+ (e7+¢) = 0,
whence €7+ ¢ + 1 = 0. Moreover, if ¢ is an odd power of 2, then

(e+1)/2
o x— x?

is an automorphism of GF(q).
For any m, d € GF(q¢?) let D(m, d) denote the plane algebraic curve of equation

y=[((27+2)e+2) "+ (274 2)° + (294 2)e + 1) (29 4+ 2)]e + b2 +ma +d (2)

where b is a given element in GF(¢?) \ GF(q).

Introduce the incidence structure 2. = (P’, L") whose points are the points of
AG(2,¢?) and whose lines are the vertical lines of equation x = k, together with
the curves D(m, d) where m, d, k range over GF(¢?).

Lemma 2.2. The incidence structure AL = (P', L") is an affine plane isomorphic
to AG(2,4?).

Proof. The argument in the proof of Lemma 2.1 works also in this case, provided
that ¢ is replaced by the birational transform ~ defined by

v (2,y) = (@ y (@ 2)e+2)72 4 (294 2) 7 + (27 +2)e +2) (29 + 2) e+ ba ™)
]

3 The Construction

Before presenting our construction we recall the equations of B-M unitals and B-T
unitals in PG(2, ¢%).

Proposition 3.1. (Baker and Ebert[3], Ebert |7, ©]). For a,b € GF(q¢?), the
point-set

Uap = {(1, 2, a2® + bz + 1)|z € GF(¢?),7 € GF(q)} U {Y}

is a B-M unital in PG(2,¢?) if and only if Ebert’s discriminant condition is satis-

fied, that is for odd q,



(i) 4a?t + (b7 — b)? is a non-square in GF(q),
and for q even,

(i) b ¢ GF(q) and Tr (a7 /(b7 + b)?) = 0.
Conversely, every B-M unital has a representation as Ugp.
Proposition 3.2. With the above notation,

(1) Uap is classical if and only if a = 0;

(ii) U,y is a H-Sz type B-M unital if and only al*V/2 € GF(¢%) \ GF(q) and
b e GF(q).

Proof. This is a direct corollary of [9, Theorems 1 and 12]. O

Proposition 3.3. Let g = 2°, where e > 1 is an odd integer. In the above notation,
the point—set

U.={(1,z,[((z9 + 2)e + 2)7 + (29 + 2)7 + ((29 + x)e + x) (29 + x)]e + 7
| z € GF(¢?),r € GF(q)} U{Yx}, "
3

is a B-T unital in PG(2,¢*). Conversely, every B-T unital may be represented as
U. for some choice of €.

Proof. From [8, 9], the point-—set
Us.={(1,8+te, (s°72 +17 + st)e +r|r,s,t € GF(q)} U {Yo} (4)

is a B-T unital and, conversely, every B-T unital has such an equation. Let z =
s+te. Then, t = 274z and s = x + (¢ + x)e. Substituting ¢ and s in (@) gives
the result. O

If b € GF(¢*) \ GF(q) then, from Proposition B2} the point—set
Uy = {(1, 2,02 +r)|z € GF(¢*), 7 € GF(q)} U {Y} (5)

is a classical unital in PG(2, ¢*). As pointed out in Section 2, U, can be regarded
as a point—set in the projective closure of 2, and, for ¢ even, also as a point—set
of the projective closure of 2(_. The question arises whether U, is still a unital in
these planes. Our main result, stated in the following two theorems, shows that
the answer is positive.

Theorem 3.4. Let a € GF(¢?), b € GF(¢*) \ GF(q). If (a,b) satisfies Ebert’s
discriminant condition, then Uy, is the non—classical B-M unital U_,; in the pro-
jective closure of U,. Conversely, every non-H-Sz type B-M unital is obtained in
this way.



Proof. Let P = (£,n) an affine point in 2A,. This point, viewed as an element of
AG(2,¢%), has coordinates z = £ and y = n + a&%. From (H),

Uy = {(1,6,—a8 + 0" 47| € € GF(g),r € GF(@)} U {Yac}.  (6)

This shows that U, and U_,; coincide in 2,. Since (—a,b) also satisfies Ebert’s
discriminant condition, U_,; is a B-M unital in the projective closure of %,. By
Proposition [3.2] U_,; is a non-H-Sz type B-M unital. O

Theorem 3.5. Let ¢ = 2°, with e > 1 an odd integer. Then U. is a non—classical
B-T unital in the projective closure of 2.

Proof. We use the same argument as in the preceding proof. The point P = (&, 7)
of AL, viewed as an element of AG(2,¢?), has coordinates z = £ and

y=n+((§"+8e+ 7+ (£ + )7+ (6" + e + (&7 + e + b
From (Bl),

Uy = {(1,&[((€74+ e +a) 2+ (€147 4+ ((£7+ e + &) (1 + e +7
| £ € GF(¢%),r € GF(q)} U{Y}.

By Proposition 3.3 we have that U, and U. coincide in 2. and the assertion follows.
]

3.1 An alternative proof of Theorem [3.4]

The above proofs of Theorem and [3.5depend on the explicit equations for B-M
and B-T unitals, as given in Propositions 3.1 and B3] Here we provide a direct
proof of Theorem Without loss of generality, we assume that ¢ > 3.

Let H be the set of all points in AG(2,4¢?) of the affine Hermitian curve C of
equation

y'—y+ (b—b1)a =0, b & GF(q), (7)

Then, HU{Y,} is a classical unital in PG(2, ¢*). We prove that H U {Y,.} is also
a unital in the projective closure of 2.
We first need the following lemma.

Lemma 3.6. For every m,d € GF(q?), the parabola C,(m,d) and H have either
1 or ¢+ 1 points in AG(2, ¢?).

Proof. The number of solutions (z,y) € GF(¢?) x GF(¢?) of the system

Yy —y+ (b—0)z? =0
y—ar?—mz—d=0
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gives the number of points in common of H and C,(m,d). To solve this system,
recover the value of y from the second equation and substitute it in the first. The
result is

alz® 4 (b — b2 + miz? — ax® —max +d! —d = 0. (9)

Consider now GF(¢?) as a vector space over GF(q), fix a basis {1,e} with ¢ €
GF(¢*) \ GF(q), and write the elements in GF(¢?) as a linear combination with
respect to this basis, that is, z = zy + 216, with 2 € GF(¢?) and 2,2, € GF(q).
Thus, (@) becomes an equation over GF(q). We investigate separately the even ¢
and odd ¢ cases.

For ¢ even, e may be chosen as in Section 2l With this choice of e, (@) becomes

(a1 +b1)x§+[(ao+a1)—|—u(a1 +b1)]l’%+b1$01’1 +m1x0+(mo+m1)x1 —|—d1 =0. (10)

We shall represent the the solutions (xg,z;) of (I0) as points of the affine plane
AG(2, q) over GF(q) arising from the vector space GF(¢?). In fact, (I0) turns out
to be the equation of a (possibly degenerate) affine conic = of AG(2, ¢). Actually,
= is either an ellipse or is a single point. To prove this, we have to show that it
has no point at infinity; that is, we need to prove that the points P = (xg,x1,0)
with

(a1 + bl)l’g + [(CLQ + al) + V(Oq + bl)]ﬂﬁ + bll’ol’l = O, (11)

do not lie in PG(2,q). Obviously, this is the case if and only if (1) admits only
the trivial solution over GF(g). A necessary a sufficient condition for this is

Ty ((a1 + b1)[(ao +§§1) +v(a1 + bl)]) . (1)

In our case, (I2)) holds as it follows directly from Ebert’s discriminant condition;
see [4, page 83]. Therefore, = is either an ellipse or it consists of a single point;
hence, C,(m, d) meets H in either 1 or ¢ + 1 points.

For ¢ odd, an analogous argument is used. For this purpose, as in [9], choose
a primitive element 3 of GF(¢?) and let ¢ = 3@*/2, Then, €9 = —¢ and €2 is a
primitive element of GF(g). With this choice of £, (@) becomes

(bl + (ll)EQl‘% + 2(101‘01‘1 + ((ll — bl)l‘g + moxr1 + mixo + d1 = 0. (13)

The discussion of the (possibly degenerate) affine conic = of equation (I3) may be
carried out exactly as in the even order case. The points P = (xg,x1,0) of = at
infinity are determined by

(bl + 0,1)621'% —+ 2(1,01‘01‘1 + (0,1 — bl)l‘g = O,

and this equation has only the trivial solution over GF(g), since Ebert’s discrimi-
nant condition implies that 4a? + (b — b)? is non-square in GF(q). O
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Lemma together with |13 Theorem 12.16] have the following corollary.
Theorem 3.7. The point-set HU{Y} is a unital in the projective closure of U,.

To show that H U {Y,} is a non-classical unital in the projective closure of 2,
we rely on some elementary facts on algebraic curves.

Lemma 3.8. The points of H in A, lie on the absolutely irreducible affine plane
curve C' of equation

n? —n+ (b—b)E + al€? — al? = 0.

Proof. The plane curve C’ is absolutely irreducible, see [14, Lemma 12.1]. If P =
(&,n) is a point of H in 2, then P, regarded as a point of AG(2, ¢?), has coordinates
x,y with . = &, y = n+ a&? Since (z,y) satisfies (),

(n+ag®) —n—a&+ (b-b)E=0
holds. This implies that P = (£, n) is a point of C'. O]

Theorem 3.9. The point-set HU{Y.} is a non-classical unital in the projective
closure of 2.

Proof. Assume, on the contrary, that H coincides in 2, with the point—set of a non-
degenerate affine Hermitian curve D’. Then, C' and D’ have at least ¢°> common
points. Since degC’ = 2¢q and deg D’ = g+ 1 and 2¢(¢+1) < ¢*, Bézout’s theorem,
see [14, Theorem 3.13|, implies that C' and D’ share a common component. This
contradicts Lemma [3.8 O

Finally, we prove that H U {Y,.} is a B-M unital in the projective closure of
.. Our proof relies on the Ebert-Wantz group-theoretic characterization of B-M
unitals of a Desarguesian plane: A unital U of PG(2,¢?) is a B-M unital if, and
only if, U is preserved by a linear collineation group of order ¢*(¢ — 1) which is the
semidirect product of a subgroup S of order ¢> by a subgroup R of order ¢ — 1.
Moreover, S is Abelian if, and only if, ¢/ is a H-Sz type B-M unital; see [11] and
[9, Theorem 12]. For more results on the collineation group of a B-M unital, see
[ 2.

Theorem 3.10. In the projective closure of 2, the point-set H U{Y} is a non-
Sz-H type B-M unital.

Proof. A straightforward computation shows that for any point P = (u,v) € H in
2, and for any A € GF(q)*, the affinities

e (§m) = (§4u,n— 2aug +ul(b— b7)E 4 v),
ﬁ)\ : (f}n) — ()‘67 Azn)

7
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of 2, preserve . The group S of the linear collineations «,, with P = (u,v)
ranging over H is a non-Abelian group of order ¢®. Write R for the group of the
linear collineations 3 as A varies GF(¢)*. It turns out that the group G generated
by all these collineations has order ¢*(¢ — 1) and is the semidirect product S x R,
and the assertion follows from the Ebert-Wantz characterization. O

Remark 3.11. Theorem 3.9 may also be proven without using algebraic geometry.
The idea is to write the equation of the tangent parabolas C,(m,d) at the points
of the classical unital H U {Y,} and use Thas’ characterization [19] involving the
feet of a point on a unital. If P = (w,z) € H then the unique tangent parabola
to H at P has equation

y = az® + (—2aw + (b — b)w?) x — 29 + aw?. (15)

For ¢ odd, Theorem [BI0 can also be proven replacing group theoretic arguments
with some geometric characterisations results depending on Baer sublines, due to
Casse, O'Keefe, Penttila and Quinn; see [6, 18] and [9, Theorem 11].

4 Absolutely irreducible curves containing all points
of a B-M unital in PG(2, ¢°)

For a,b € GF(¢?) satisfying Ebert’s discriminant condition, the absolutely irre-
ducible plane curve T, of PG(2, ¢?) with affine equation

y! —y — a2’ + ax® + (b — b?)24t = 0. (16)
contains all points of the unital U_,;. We prove some properties of I'y ;.

Theorem 4.1. The curve Uy is birationally equivalent over GF(q¢?) to a non—
degenerate Hermitian curve.

Proof. The birational map (z,y) — (z,y —az?) transforms I, ;, into the Hermitian
curve C of equation (). O

Theorem 4.2. '} is the unique plane curve of minimum degree which contains
all the points of the B-M unital U_,;, in PG(2,¢?).

Proof. Let ¥ be (a not necessarily absolutely irreducible) plane curve of PG(2, ¢?)
of degree d < 2q which contains all points of U_,;. Obviously, I',, and ¥ have
at least ¢*> + 1 common points. From Bézout’s theorem [14, Theorem 3.13], T,
is a component of W. Since deg I'y;, > deg W, this is only possible when they
coincide. O



Remark 4.3. In 1982, Goppa introduced a general construction technique for
linear codes from algebraic curves defined over a finite field; see [12]. In the
current literature, these codes are called algebraic-geometry.

The parameters of linear codes arising from a Hermitian curve by Goppa’s
method were computed in [I6]. These codes turn out to perform very well, when
compared with Reed-Solomon codes of similar length and dimension.

In [9], Ebert raised the question whether the parameters of the codes arising
from Iy, by Goppa’s construction were close to maximum distance separable codes.

Since the algebraic-geometric codes are determined by the function fields of
the related algebraic curves and the function fields of two birationally equivalent
plane curves are isomorphic, Theorem K.1] implies that the algebraic-geometry
codes arising from the Hermitian curve C and those arising from the curve I', ;, are
the same.

5 B-M unitals and cones of PG(3, ¢*)

We present another way to construct a non-classical B-M unital using a Hermitian
curve and a suitable cone of PG(3, ¢?).

Let xg, 71, 72, v3 denote homogeneous coordinates in PG(3,¢?). Consider the
Hermitian curve H = {(1,¢, 0t + r)|t € GF(¢?*),r € GF(q)} U {Y,} and the
map ¢ : H — PG(3, ¢*) which transforms the point P(1,¢,bt9" +r) into the point
&(P) = (1,t,42, 0t +r) and Y, = (0,0, 1) into ¢(Ys) = (0,0,0,1).

The map ¢ is injective; thus, the set ¢(H) consists of ¢> + 1 points lying on
the cone € represented by zgzo = 22. The point Q(0,0, 1, —a) does not lie on the
cone €; hence, the projection p from @) to the plane 7 : x5 = 0 is well defined. The
point ¢(Yy) is on 7 thus we get p(0,0,0,1) = (0,0,0, 1).

For any (t,7) € GF(¢?) x GF(q), set P, = (1,¢,bt7™! +r). The line P,,Q has
point set

{(1,t, £ + X\, bt +r — Xa)|A € GF(¢*)} U {(0,0,0,1)}

and intersects the plane 7 at p(P;,) = (1,t,0,at? + bt +r). We are going to
show that no 2-secant lines of ¢(H) pass through Q. Let Py, . (1,1, 23, bt7" +1y)
and P, ,,(1,ty, 13, bt3™ + 75) be two distinct points of ¢(H). The line Py, ., Py, .,
is the point set

{1t 4 Mo, 82+ M2 DT + M 471 + M)A € GF(¢P)} U{Poyy )

If the point @ were on the line P, ., By, , then A = —1, t; —t5 = 0 and 3 — 3 # 0,
which is impossible. Therefore, |p(¢(H))| = ¢* + 1 and it is possible to choose



homogeneous coordinates for the plane 7 in such a way as p(¢(H)) turns out to
be the set

{(1,t,at®> + bt + )|t € GF(¢?),r € GF(q)} U {Ps};

that is, p(¢(H)) is a non—classical B-M unital in 7.
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