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onstru
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Abstra
t

We present a new 
onstru
tion of non-
lassi
al unitals from a 
lassi
al

unital U in PG(2, q2). The resulting non-
lassi
al unitals are B-M unitals.

The idea is to �nd a non-standard model Π of PG(2, q2) with the following

three properties:

(i) points of Π are those of PG(2, q2);

(ii) lines of Π are 
ertain lines and 
oni
s of PG(2, q2);

(iii) the points in U form a non-
lassi
al B-M unital in Π.

Our 
onstru
tion also works for the B-T unital, provided that 
oni
s are

repla
ed by 
ertain algebrai
 
urves of higher degree.

Keywords: Hermitian 
urve; unital; 
oni
.

1 Introdu
tion

A 
lassi
al unital U in the Desarguesian plane PG(2, q2) is the set of all absolute
points of a non-degenerate unitary polarity. Up to a proje
tivity of PG(2, q2), U

onsists of all the q3 + 1 points of the non-degenerate Hermitian 
urve H with

equation yq + y − xq+1 = 0. The relevant 
ombinatorial property of U , leading
to important appli
ations in 
oding theory, is that U is a two-
hara
ter set with

parameters 1 and q + 1, that is, a line in PG(2, q2) meets U in either 1 or q + 1
points. A unital in PG(2, q2) is de�ned by this 
ombinatorial property, namely it

is a two-
hara
ter set of size q3 + 1 with parameters 1 and q + 1.
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The known non-
lassi
al unitals are the B-M unitals due to Buekenhout and

Metz, see [5, 17℄, and the B-T unitals due to Buekenhout, see [5℄. They were


onstru
ted by an ingenious idea, relying on the Bru
k�Bose representation of

PG(2, q2) in PG(4, q) and exploiting properties of spreads and ovoids (in parti
ular,
quadri
s). For q odd, an alternative 
onstru
tion for spe
ial B-M unitals whi
h

are the union of q 
oni
s sharing a point has been given by Hirs
hfeld and Sz®nyi

[15℄. Su
h B-M unitals are 
alled H-Sz type B-M unitals.

In this paper, we present a new 
onstru
tion for non-H-Sz type B-M unitals.

The key idea, as des
ribed in Abstra
t, is fully realised within PG(2, q2), and it uses
only quadrati
 transformations. This method also works for B-T unitals, provided

that quadrati
 transformations are repla
ed by 
ertain birational transformations.

Our notation and terminology are standard. For generalities on unitals in

proje
tive planes the reader is referred to [4, 9, 10℄. Basi
 fa
ts on rational trans-

formations of proje
tive planes are found in [14, Se
tion 3.3℄.

2 A non-standard model of PG(2, q2)

Fix a proje
tive frame in PG(2, q2) with homogeneous 
oordinates (x0, x1, x2),
and 
onsider the a�ne plane AG(2, q2) whose in�nite line ℓ∞ has equation x0 = 0.
Then AG(2, q2) has a�ne 
oordinates (x, y) where x = x1/x0, y = x2/x0 so that

X∞ = (0, 1, 0) and Y∞ = (0, 0, 1) are the in�nite points of the horizontal and

verti
al lines, respe
tively.

Fix a non-zero element a ∈ GF(q2). For m, d ∈ GF(q2) and a ∈ GF(q2)∗, let
Ca(m, d) denote the parabola of equation y = ax2+mx+d. Consider the in
iden
e
stru
ture Aa = (P,L) whose points are the points of AG(2, q2) and whose lines are

the verti
al lines of equation x = k, together with the parabolas Ca(m, d) where
m, d, k range over GF(q2).

Lemma 2.1. For every non-zero a ∈ GF(q2), the in
iden
e stru
ture Aa = (P,L)
is an a�ne plane isomorphi
 to AG(2, q2).

Proof. The birational transformation ϕ given by

ϕ : (x, y) 7→ (x, y − ax2), (1)

transforms verti
al lines into themselves, whereas the generi
 line y = mx + d is

mapped into the parabola Ca(m, d). Therefore, ϕ determines an isomorphism

Aa ≃ AG(2, q2),

and the assertion is proven.
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Completing Aa with its points at in�nity in the usual way gives a proje
tive

plane isomorphi
 to PG(2, q2). Note that the in�nite point Y∞ of the verti
al lines

of AG(2, q2) is also the in�nite point of the verti
al lines of Aa.

For q an odd power of 2, a di�erent, yet similar, 
onstru
tion will also be useful

in our investigation. The 
onstru
tion depends on some known fa
ts about Galois

�elds of even 
hara
teristi
. Let ε ∈ GF(q2) \ GF(q) su
h that ε2 + ε+ δ = 0, for
some δ ∈ GF(q) \ {1} with Tr (δ) = 1. Here, as usual, Tr stands for the tra
e

fun
tion GF(q) → GF(2). Then ε2q+εq+δ = 0. Therefore, (εq+ε)2+(εq+ε) = 0,
when
e εq + ε+ 1 = 0. Moreover, if q is an odd power of 2, then

σ : x 7→ x2(e+1)/2

is an automorphism of GF(q).
For any m, d ∈ GF(q2) let D(m, d) denote the plane algebrai
 
urve of equation

y = [((xq+x)ε+x)σ+2+(xq+x)σ+((xq+x)ε+x)(xq+x)]ε+ bxq+1+mx+d (2)

where b is a given element in GF(q2) \GF(q).
Introdu
e the in
iden
e stru
ture A

′

ε = (P ′,L′) whose points are the points of
AG(2, q2) and whose lines are the verti
al lines of equation x = k, together with
the 
urves D(m, d) where m, d, k range over GF(q2).

Lemma 2.2. The in
iden
e stru
ture A′

ε = (P ′,L′) is an a�ne plane isomorphi


to AG(2, q2).

Proof. The argument in the proof of Lemma 2.1 works also in this 
ase, provided

that ϕ is repla
ed by the birational transform γ de�ned by

γ : (x, y) 7→ (x, y+[((xq+x)ε+x)σ+2+(xq+x)σ+((xq+x)ε+x)(xq+x)]ε+bxq+1)

3 The Constru
tion

Before presenting our 
onstru
tion we re
all the equations of B-M unitals and B-T

unitals in PG(2, q2).

Proposition 3.1. (Baker and Ebert[3℄, Ebert [7, 9℄). For a, b ∈ GF(q2), the

point�set

Ua,b = {(1, x, ax2 + bxq+1 + r)|x ∈ GF(q2), r ∈ GF(q)} ∪ {Y∞}

is a B-M unital in PG(2, q2) if and only if Ebert's dis
riminant 
ondition is satis-

�ed, that is for odd q,
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(i) 4aq+1 + (bq − b)2 is a non�square in GF(q),

and for q even,

(ii) b /∈ GF(q) and Tr (aq+1/(bq + b)2) = 0.

Conversely, every B-M unital has a representation as Ua,b.

Proposition 3.2. With the above notation,

(i) Ua,b is 
lassi
al if and only if a = 0;

(ii) Ua,b is a H-Sz type B-M unital if and only a(q+1)/2 ∈ GF(q2) \ GF(q) and

b ∈ GF(q).

Proof. This is a dire
t 
orollary of [9, Theorems 1 and 12℄.

Proposition 3.3. Let q = 2e, where e > 1 is an odd integer. In the above notation,

the point�set

Uε = {(1, x, [((xq + x)ε+ x)σ+2 + (xq + x)σ + ((xq + x)ε + x)(xq + x)]ε+ r
| x ∈ GF(q2), r ∈ GF(q)} ∪ {Y∞},

(3)

is a B-T unital in PG(2, q2). Conversely, every B-T unital may be represented as

Uε for some 
hoi
e of ε.

Proof. From [8, 9℄, the point�set

Uε = {(1, s+ tε, (sσ+2 + tσ + st)ε+ r|r, s, t ∈ GF(q)} ∪ {Y∞} (4)

is a B-T unital and, 
onversely, every B-T unital has su
h an equation. Let x =
s + tε. Then, t = xq + x and s = x + (xq + x)ε. Substituting t and s in (4) gives

the result.

If b ∈ GF(q2) \GF(q) then, from Proposition 3.2, the point�set

Ub = {(1, x, bxq+1 + r)|x ∈ GF(q2), r ∈ GF(q)} ∪ {Y∞} (5)

is a 
lassi
al unital in PG(2, q2). As pointed out in Se
tion 2, Ub 
an be regarded

as a point�set in the proje
tive 
losure of Aa and, for q even, also as a point�set

of the proje
tive 
losure of A′

ε. The question arises whether Ub is still a unital in

these planes. Our main result, stated in the following two theorems, shows that

the answer is positive.

Theorem 3.4. Let a ∈ GF(q2), b ∈ GF(q2) \ GF(q). If (a, b) satis�es Ebert's

dis
riminant 
ondition, then Ub is the non�
lassi
al B-M unital U−a,b in the pro-

je
tive 
losure of Aa. Conversely, every non-H-Sz type B-M unital is obtained in

this way.
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Proof. Let P = (ξ, η) an a�ne point in Aa. This point, viewed as an element of

AG(2, q2), has 
oordinates x = ξ and y = η + aξ2. From (5),

Ub = {(1, ξ,−aξ2 + bξq+1 + r | ξ ∈ GF(q2), r ∈ GF(q)} ∪ {Y∞}. (6)

This shows that Ub and U−a,b 
oin
ide in Aa. Sin
e (−a, b) also satis�es Ebert's

dis
riminant 
ondition, U−a,b is a B-M unital in the proje
tive 
losure of Aa. By

Proposition 3.2, U−a,b is a non-H-Sz type B-M unital.

Theorem 3.5. Let q = 2e, with e > 1 an odd integer. Then Uε is a non�
lassi
al

B-T unital in the proje
tive 
losure of A′

ε.

Proof. We use the same argument as in the pre
eding proof. The point P = (ξ, η)
of A

′

ε, viewed as an element of AG(2, q2), has 
oordinates x = ξ and

y = η + [((ξq + ξ)ε+ ξ)σ+2 + (ξq + ξ)σ + ((ξq + ξ)ε+ ξ)(ξq + ξ)]ε+ bξq+1.

From (5),

Ub = {(1, ξ, [((ξq + ξ)ε+ x)σ+2 + (ξq + ξ)σ + ((ξq + ξ)ε+ ξ)(ξq + ξ)]ε+ r
| ξ ∈ GF(q2), r ∈ GF(q)} ∪ {Y∞}.

By Proposition 3.3 we have that Ub and Uε 
oin
ide in A′

ε and the assertion follows.

3.1 An alternative proof of Theorem 3.4

The above proofs of Theorem 3.4 and 3.5 depend on the expli
it equations for B-M

and B-T unitals, as given in Propositions 3.1 and 3.3. Here we provide a dire
t

proof of Theorem 3.4. Without loss of generality, we assume that q ≥ 3.
Let H be the set of all points in AG(2, q2) of the a�ne Hermitian 
urve C of

equation

yq − y + (b− bq)xq+1 = 0, b 6∈ GF(q), (7)

Then, H∪{Y∞} is a 
lassi
al unital in PG(2, q2). We prove that H∪{Y∞} is also

a unital in the proje
tive 
losure of Aa.

We �rst need the following lemma.

Lemma 3.6. For every m, d ∈ GF(q2), the parabola Ca(m, d) and H have either

1 or q + 1 points in AG(2, q2).

Proof. The number of solutions (x, y) ∈ GF(q2)×GF(q2) of the system

{

yq − y + (b− bq)xq+1 = 0
y − ax2 −mx− d = 0

(8)
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gives the number of points in 
ommon of H and Ca(m, d). To solve this system,

re
over the value of y from the se
ond equation and substitute it in the �rst. The

result is

aqx2q + (b− bq)xq+1 +mqxq − ax2 −mx+ dq − d = 0. (9)

Consider now GF(q2) as a ve
tor spa
e over GF(q), �x a basis {1, ε} with ε ∈
GF(q2) \ GF(q), and write the elements in GF(q2) as a linear 
ombination with

respe
t to this basis, that is, z = z0 + z1ε, with z ∈ GF(q2) and z0, z1 ∈ GF(q).
Thus, (9) be
omes an equation over GF(q). We investigate separately the even q
and odd q 
ases.

For q even, ε may be 
hosen as in Se
tion 2. With this 
hoi
e of ε, (9) be
omes

(a1+b1)x
2
0+[(a0+a1)+ν(a1+b1)]x

2
1+b1x0x1+m1x0+(m0+m1)x1+d1 = 0. (10)

We shall represent the the solutions (x0, x1) of (10) as points of the a�ne plane

AG(2, q) over GF(q) arising from the ve
tor spa
e GF(q2). In fa
t, (10) turns out

to be the equation of a (possibly degenerate) a�ne 
oni
 Ξ of AG(2, q). A
tually,
Ξ is either an ellipse or is a single point. To prove this, we have to show that it

has no point at in�nity; that is, we need to prove that the points P = (x0, x1, 0)
with

(a1 + b1)x
2
0 + [(a0 + a1) + ν(a1 + b1)]x

2
1 + b1x0x1 = 0, (11)

do not lie in PG(2, q). Obviously, this is the 
ase if and only if (11) admits only

the trivial solution over GF(q). A ne
essary a su�
ient 
ondition for this is

Tr

(

(a1 + b1)[(a0 + a1) + ν(a1 + b1)]

b21

)

= 1. (12)

In our 
ase, (12) holds as it follows dire
tly from Ebert's dis
riminant 
ondition;

see [4, page 83℄. Therefore, Ξ is either an ellipse or it 
onsists of a single point;

hen
e, Ca(m, d) meets H in either 1 or q + 1 points.

For q odd, an analogous argument is used. For this purpose, as in [9℄, 
hoose

a primitive element β of GF(q2) and let ε = β(q+1)/2
. Then, εq = −ε and ε2 is a

primitive element of GF(q). With this 
hoi
e of ε, (9) be
omes

(b1 + a1)ε
2x2

1 + 2a0x0x1 + (a1 − b1)x
2
0 +m0x1 +m1x0 + d1 = 0. (13)

The dis
ussion of the (possibly degenerate) a�ne 
oni
 Ξ of equation (13) may be


arried out exa
tly as in the even order 
ase. The points P = (x0, x1, 0) of Ξ at

in�nity are determined by

(b1 + a1)ε
2x2

1 + 2a0x0x1 + (a1 − b1)x
2
0 = 0,

and this equation has only the trivial solution over GF(q), sin
e Ebert's dis
rimi-

nant 
ondition implies that 4aq + (bq − b)2 is non-square in GF(q).
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Lemma 3.6 together with [13, Theorem 12.16℄ have the following 
orollary.

Theorem 3.7. The point-set H∪{Y∞} is a unital in the proje
tive 
losure of Aa.

To show that H∪{Y∞} is a non-
lassi
al unital in the proje
tive 
losure of A,

we rely on some elementary fa
ts on algebrai
 
urves.

Lemma 3.8. The points of H in Aa lie on the absolutely irredu
ible a�ne plane


urve C′
of equation

ηq − η + (b− bq)ξ + aqξ2q − aξ2 = 0.

Proof. The plane 
urve C′
is absolutely irredu
ible, see [14, Lemma 12.1℄. If P =

(ξ, η) is a point ofH inAa, then P , regarded as a point ofAG(2, q2), has 
oordinates
x, y with x = ξ, y = η + aξ2. Sin
e (x, y) satis�es (7),

(η + aξ2)q − η − aξ2 + (b− bq)ξ = 0

holds. This implies that P = (ξ, η) is a point of C′
.

Theorem 3.9. The point-set H ∪ {Y∞} is a non-
lassi
al unital in the proje
tive


losure of Aa.

Proof. Assume, on the 
ontrary, thatH 
oin
ides in Aa with the point�set of a non-

degenerate a�ne Hermitian 
urve D′
. Then, C′

and D′
have at least q3 
ommon

points. Sin
e deg C′ = 2q and degD′ = q+1 and 2q(q+1) < q3, Bézout's theorem,

see [14, Theorem 3.13℄, implies that C′
and D′

share a 
ommon 
omponent. This


ontradi
ts Lemma 3.8.

Finally, we prove that H ∪ {Y∞} is a B-M unital in the proje
tive 
losure of

Aa. Our proof relies on the Ebert-Wantz group-theoreti
 
hara
terization of B-M

unitals of a Desarguesian plane: A unital U of PG(2, q2) is a B-M unital if, and

only if, U is preserved by a linear 
ollineation group of order q3(q−1) whi
h is the

semidire
t produ
t of a subgroup S of order q3 by a subgroup R of order q − 1.
Moreover, S is Abelian if, and only if, U is a H-Sz type B-M unital; see [11℄ and

[9, Theorem 12℄. For more results on the 
ollineation group of a B-M unital, see

[1, 2℄.

Theorem 3.10. In the proje
tive 
losure of Aa, the point-set H∪ {Y∞} is a non-

Sz-H type B-M unital.

Proof. A straightforward 
omputation shows that for any point P = (u, v) ∈ H in

Aa and for any λ ∈ GF(q)∗, the a�nities

αu,v : (ξ, η) → (ξ + u, η − 2auξ + uq(b− bq)ξ + v),
βλ : (ξ, η) → (λξ, λ2η)

(14)
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of Aa preserve H. The group S of the linear 
ollineations αu,v with P = (u, v)
ranging over H is a non-Abelian group of order q3. Write R for the group of the

linear 
ollineations βλ as λ varies GF(q)∗. It turns out that the group G generated

by all these 
ollineations has order q3(q− 1) and is the semidire
t produ
t S ⋊R,
and the assertion follows from the Ebert-Wantz 
hara
terization.

Remark 3.11. Theorem 3.9 may also be proven without using algebrai
 geometry.

The idea is to write the equation of the tangent parabolas Ca(m, d) at the points
of the 
lassi
al unital H ∪ {Y∞} and use Thas' 
hara
terization [19℄ involving the

feet of a point on a unital. If P = (w, z) ∈ H then the unique tangent parabola

to H at P has equation

y = ax2 + (−2aw + (b− bq)wq) x− zq + aw2. (15)

For q odd, Theorem 3.10 
an also be proven repla
ing group theoreti
 arguments

with some geometri
 
hara
terisations results depending on Baer sublines, due to

Casse, O'Keefe, Penttila and Quinn; see [6, 18℄ and [9, Theorem 11℄.

4 Absolutely irredu
ible 
urves 
ontaining all points

of a B-M unital in PG(2, q2)

For a, b ∈ GF(q2) satisfying Ebert's dis
riminant 
ondition, the absolutely irre-

du
ible plane 
urve Γa,b of PG(2, q2) with a�ne equation

yq − y − aqx2q + ax2 + (b− bq)xq+1 = 0. (16)


ontains all points of the unital U−a,b. We prove some properties of Γa,b.

Theorem 4.1. The 
urve Γa,b is birationally equivalent over GF (q2) to a non�

degenerate Hermitian 
urve.

Proof. The birational map (x, y) → (x, y−ax2) transforms Γa,b into the Hermitian


urve C of equation (7).

Theorem 4.2. Γa,b is the unique plane 
urve of minimum degree whi
h 
ontains

all the points of the B-M unital U−a,b in PG(2, q2).

Proof. Let Ψ be (a not ne
essarily absolutely irredu
ible) plane 
urve of PG(2, q2)
of degree d ≤ 2q whi
h 
ontains all points of U−a,b. Obviously, Γa,b and Ψ have

at least q3 + 1 
ommon points. From Bézout's theorem [14, Theorem 3.13℄, Γa,b

is a 
omponent of Ψ. Sin
e deg Γa,b ≥ deg Ψ, this is only possible when they


oin
ide.

8



Remark 4.3. In 1982, Goppa introdu
ed a general 
onstru
tion te
hnique for

linear 
odes from algebrai
 
urves de�ned over a �nite �eld; see [12℄. In the


urrent literature, these 
odes are 
alled algebrai
-geometry.

The parameters of linear 
odes arising from a Hermitian 
urve by Goppa's

method were 
omputed in [16℄. These 
odes turn out to perform very well, when


ompared with Reed-Solomon 
odes of similar length and dimension.

In [9℄, Ebert raised the question whether the parameters of the 
odes arising

from Γa,b by Goppa's 
onstru
tion were 
lose to maximum distan
e separable 
odes.

Sin
e the algebrai
-geometri
 
odes are determined by the fun
tion �elds of

the related algebrai
 
urves and the fun
tion �elds of two birationally equivalent

plane 
urves are isomorphi
, Theorem 4.1 implies that the algebrai
-geometry


odes arising from the Hermitian 
urve C and those arising from the 
urve Γa,b are

the same.

5 B-M unitals and 
ones of PG(3, q2)

We present another way to 
onstru
t a non-
lassi
al B-M unital using a Hermitian


urve and a suitable 
one of PG(3, q2).
Let x0, x1, x2, x3 denote homogeneous 
oordinates in PG(3, q2). Consider the

Hermitian 
urve H = {(1, t, btq+1 + r)|t ∈ GF(q2), r ∈ GF(q)} ∪ {Y∞} and the

map φ : H 7→ PG(3, q2) whi
h transforms the point P (1, t, btq+1+ r) into the point
φ(P ) = (1, t, t2, btq+1 + r) and Y∞ = (0, 0, 1) into φ(Y∞) = (0, 0, 0, 1).

The map φ is inje
tive; thus, the set φ(H) 
onsists of q3 + 1 points lying on

the 
one C represented by x0x2 = x2
1. The point Q(0, 0, 1,−a) does not lie on the


one C; hen
e, the proje
tion ρ from Q to the plane π : x2 = 0 is well de�ned. The
point φ(Y∞) is on π thus we get ρ(0, 0, 0, 1) = (0, 0, 0, 1).

For any (t, r) ∈ GF(q2)×GF(q), set Pt,r = (1, t, btq+1 + r). The line Pt,rQ has

point set

{(1, t, t2 + λ, btq+1 + r − λa)|λ ∈ GF(q2)} ∪ {(0, 0, 0, 1)}

and interse
ts the plane π at ρ(Pt,r) = (1, t, 0, at2 + btq+1 + r). We are going to

show that no 2-se
ant lines of φ(H) pass through Q. Let Pt1,r1(1, t1, t
2
1, bt

q+1
1 + r1)

and Pt2,r2(1, t2, t
2
2, bt

q+1
2 + r2) be two distin
t points of φ(H). The line Pt1,r1Pt2,r2

is the point set

{(λ+ 1, t1 + λt2, t
2
1 + λt22, b(t

q+1
1 + λtq+1

2 ) + r1 + λr2)|λ ∈ GF(q2)} ∪ {Pt2,r2}.

If the point Q were on the line Pt1,r1Pt2,r2 then λ = −1, t1− t2 = 0 and t21− t22 6= 0,
whi
h is impossible. Therefore, |ρ(φ(H))| = q3 + 1 and it is possible to 
hoose

9



homogeneous 
oordinates for the plane π in su
h a way as ρ(φ(H)) turns out to
be the set

{(1, t, at2 + btq+1 + r)|t ∈ GF(q2), r ∈ GF(q)} ∪ {P∞};

that is, ρ(φ(H)) is a non�
lassi
al B-M unital in π.
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