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Abstract. For a graph G let µ(G) denote the cyclomatic number and let ν(G) denote the
maximum number of edge-disjoint cycles of G.

We prove that for every k ≥ 0 there is a finite set P(k) such that every 2-connected
graph G for which µ(G)− ν(G) = k arises by applying a simple extension rule to a graph
in P(k). Furthermore, we determine P(k) for k ≤ 2 exactly.
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1 Introduction

We consider finite and undirected graphs G = (VG, EG) with vertex set VG and edge set
EG which may contain multiple edges but no loops. We use standard terminology [10] and
only recall some basic notions. If an edge e ∈ EG has the two incident vertices u and v
in VG, then we write e = uv. The degree dG(u) in G of a vertex u ∈ VG is the number of
edges e ∈ EG incident with u. A path in G of length l ≥ 0 is a sequence v0e1v1e2 . . . elvl

of distinct vertices v0, v1, . . . , vl ∈ VG and distinct edges ei = vi−1vi ∈ EG for 1 ≤ i ≤ l. A
cycle in G of length l ≥ 2 is a sequence v1e2v2 . . . elvle1v1 such that v1e2v2 . . . elvl is a path
of length (l−1) and el = vlv1 ∈ EG. The subgraph induced by some set U ⊆ VG is denoted
by G[U ]. An ear of G is a path in G of length at least 1 such that all internal vertices have
degree 2 in G. An ear of G is maximal, if it is not properly contained in another ear of G.
If P is an ear of G and I is the set of internal vertices of P , then we say that G arises from
G′ = (VG \ I, EG \EP ) by adding the ear P and that G′ arises from G by removing the ear
P . Whitney [10,13] proved that a graph of order at least 2 is 2-connected if and only if it
has an ear decomposition, i.e. it arises from a chordless cycle by iteratively adding ears. A
graph is a cactus graph, if all of its cycles are edge-disjoint which is equivalent to the fact
that all of its blocks are cycles or edges.

The cyclomatic number of a graph G with κ(G) components is

µ(G) = |EG| − |VG|+ κ(G).
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A cycle packing C of G of order l is a set of l edge-disjoint cycles of G. The maximum
order of a cycle packing of G is denoted by

ν(G).

A cycle packing of maximum order is called optimal. For a cycle packing C, the set of edges
contained in some cycle in C is denoted by

EC.

Our research in the present paper is motivated by the well-known inequality

ν(G) ≤ µ(G)

which holds for every graph G. As our main result, we prove that for every fixed k ∈ N0 =
{0, 1, 2, . . .} there is a finite set P(k) of graphs such that every 2-connected graph G for
which

µ(G)− ν(G) = k

arises by applying a simple extension rule to one of the graphs in P(k), i.e. there are
essentially only finitely many configurations which cause µ(G) and ν(G) to deviate by k.
Furthermore, we determine P(k) for k ≤ 2 exactly.

The results which are most related to ours concern the minimum difference p(k) between
the size |EG| and the order |VG| of a graph G which forces the existence of k edge-disjoint
cycles, i.e.

p(k) = min {p | ν(G) ≥ k ∀ G = (VG, EG) with |EG| − |VG| ≥ p} .

There are several classical results concerning this parameter

p(k) =


0 , k = 1
4 , k = 2 [6]
10 , k = 3 [8]
18 , k = 4 [1,14]
Θ (k log k) [6, 11, 12,14].

Recently, algorithmic aspects of cycle packing problems have received considerable atten-
tion. While the problem to determine optimal cycle packings is APX-hard [3, 4, 7, 9] and
remains NP-hard even when restricted to Eulerian graphs of maximum degree 4 [2], there
are simple approximation algorithms [3, 7].

In Section 2 we prove our main result about the finiteness of P(k) and in Section 3 we
determine P(k) for k ≤ 2 exactly.
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2 Graphs G with µ(G)− ν(G) = k

In this section we study the graphs G for which µ(G) and ν(G) differ by some fixed k. It
is well-known — and easy to see — that the graphs G with µ(G) − ν(G) = 0 are exactly
the cactus graphs, i.e. their blocks are either edges or arise by possibly subdividing the
edges of a cycle of length 2.

For k ∈ N0 let
G(k)

denote the set of 2-connected graphs G with µ(G)−ν(G) = k. In view of the above remark
about cactus graphs, we obtain that G ∈ G(0) if and only if G is a cycle or an edge. The
next lemma implies that in order to characterize the graphs G with µ(G) − ν(G) = k, it
suffices to characterize the 2-connected graphs with this property.

Lemma 1 Let k ∈ N0. If G is a graph with µ(G)− ν(G) = k whose blocks B1, B2, . . . , Bl

satisfy Bi ∈ G(ki) for 1 ≤ i ≤ l, then k = k1 + k2 + · · ·+ kl.

Proof: This follows immediately from the fact that every cycle of G is entirely contained
in some block of G. 2

In order to explain the simple extension rule mentioned in the introduction, we need
some more notation.

An l-cycle-path is a cactus with at most 2 endblocks and exactly l ∈ N0 cycles.
An l-cycle-path-subgraph of a graph G = (VG, EG) with attachment vertices u and v

is an induced subgraph H = (VH , EH) of G which is an l-cycle-path such that u and
v are two distinct vertices of H for which dG(w) = dH(w) for all w ∈ VH \ {u, v} and
H + uv = (VH , EH ∪ {uv}) is 2-connected, i.e. only the attachment vertices may have
neighbours outside of VH and, if H has more than one block, then the attachment vertices
are two non-cutvertices from the two endblocks of H. Note that a 0-cycle-path-subgraph
of G with attachment vertices u and v is an ear of G with endvertices u and v.

A graph H = (VH , EH) is said to arise from a graph G = (VG, EG) by replacing the edge
e = uv ∈ EG with an l-cycle-path, if H has an l-cycle-path-subgraph Q = (VQ, EQ) with
attachment vertices u and v such that (cf. Figure 1)

VG = VH \ (VQ \ {u, v}) and

EG = (EH \ EQ) ∪ {e}.

uu u u
u u�����

HHH ��
�
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PPP u u uu uu
u HH
H

��
�

uu vv

G H

-

Figure 1 Replacing the edge e = uv ∈ EG with a 4-cycle-path.
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A graph H is said to extend a graph G, if there is an optimal cycle packing C of G such
that H arises from G by replacing every edge e ∈ EC with a 0-cycle-path and replacing
every edge e ∈ EG \ EC with an l-cycle-path for some l ∈ N0. A graph H is said to be
reduced, if there is no graph G different from H such that H extends G.

For k ∈ N0 let
P(k)

denote the set of reduced graphs in G(k). Note that P(0) contains exactly two elements,
an edge and a cycle of length 2. It is instructive to verify that for k ≥ 1 a graph in P(k)
contains neither vertices of degree at most 2 nor l-cycle-path-subgraphs for l ≥ 2.

The next lemma summarizes some important properties of the above extension notion.

Lemma 2 If G0 ∈ G(k), G1 extends G0, and G2 extends G1, then

(i) G1 ∈ G(k),

(ii) G2 extends G0, and

(iii) every graph in G(k) extends a graph in P(k).

Proof: Let C0 be an optimal cycle packing of G0 such that G1 arises from G0 by replacing
every edge e ∈ EG0 with an le-cycle-path Le with le = 0 for e ∈ EC0 . Let C ′1 denote the set
of the ∑

e∈EG0

le

edge-disjoint cycles contained in the le-cycle-paths Le for e ∈ EG0 .
Clearly,

µ(G1) = µ(G0) + |C ′1|.

Since the set of cycles in G1 which are subdivisions of the cycles in C0 together with
the cycles in C ′1 form a cycle packing of G1, we obtain ν(G1) ≥ ν(G0) + |C ′1|.

Let C1 be an optimal cycle packing of G1 such that G2 arises from G1 by replacing every
edge f ∈ EG1 with an hf -cycle-path Hf with hf = 0 for f ∈ EC1 and such that subject to
this condition

|C ′1 ∩ C1|

is largest possible.
If E ′1 is an arbitrary set of edges which contains exactly one edge from each cycle in

C ′1, then removing the |C ′1| edges in E ′1 from G1 can delete at most |C ′1| cycles in C1, which
implies ν(G0) ≥ ν(G1)− |C ′1|.

In view of the above, this implies that

ν(G1) = ν(G0) + |C ′1| (1)

and hence (i).
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Furthermore, this implies that every edge contained in a cycle in C ′1 belongs to EC1 and
edges contained in different cycles in C ′1 are contained in different cycles in C1. (Otherwise
there would be a choice for E ′1 such that removing the edges in E ′1 would only delete at
most |C ′1| − 1 cycles, which implies the contradiction ν(G0) ≥ ν(G1)− |C ′1|+ 1.)

If follows that, if le ≥ 2 for some e ∈ EG0 , then C1 necessarily contains the le edge-
disjoint cycles contained in the le-cycle-path Le.

Furthermore, if le = 1 for some e ∈ EG0 and C1 does not contain the unique cycle Ce

contained in the 1-cycle-path Le, then there are exactly two cycles C ′e and C ′′e in C1 which
contain ECe . Since (EC′

e
∪ EC′′

e
) \ ECe contains the edge set of a cycle C ′′′e ,

C̃1 = (C1 \ {C ′e, C ′′e }) ∪ {Ce, C
′′′
e })

is an optimal cycle packing of G1 such that EC̃1 ⊆ EC1 and

|C ′1 ∩ C̃1| > |C ′1 ∩ C1|

which is a contradiction to the choice of C1.
Hence C ′1 ⊆ C1. By (1), the cycles in C1 \ C ′1 are the subdivisions of the cycles in an

optimal cycle packing C ′0 of G0. Clearly, le > 0 implies e 6∈ EC′
0
. Since hf > 0 for some

f ∈ EG1 \EC1 implies that f is a bridge of an le-cycle-path Le with e 6∈ EC′
0
, it follows that

G2 extends G0, i.e. (ii) holds.
By definition, for every graph H ∈ G(k) there is a graph G ∈ P(k) such that H arises

from G by a finite sequence of extensions. Applying (ii) in an inductive argument implies
that H extends G and (iii) follows. This completes the proof. 2

We proceed to our main result.

Theorem 3 The set P(k) is finite for every k ∈ N0.

Proof: We will prove the result by induction on k.
Since |P(0)| = 2, we may assume that k ≥ 1.
We will argue that every graph in P(k) arises from some graph in P(k−1) by applying

a subset of a finite set of operations. Since, by induction, P(k − 1) is finite, this clearly
implies that P(k) is finite.

Let H ∈ P(k).
If a graph H− arises by removing an ear from H, then

ν(H)− 1 ≤ ν(H−) ≤ ν(H) and µ(H−) = µ(H)− 1,

i.e. H− ∈ G(k− 1) or H− ∈ G(k). Therefore, an ear decomposition of H yields a sequence
of 2-connected graphs

G0, G1, . . . , Gl

such that

• Gl = H,
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• Gi arises by adding the ear Pi to Gi−1 for 1 ≤ i ≤ l,

• ν(G0) = ν(G1) and

• ν(Gi−1) = ν(Gi)− 1 for 2 ≤ i ≤ l.

We assume that the sequence is chosen to be shortest possible, i.e. l is minimum.
Note that G0 ∈ G(k − 1) and Gi ∈ G(k) for 1 ≤ i ≤ l.
By Lemma 2 (iii), G0 extends some graph

G ∈ P(k − 1).

Let
Cl

be an optimal cycle packing of H = Gl.
Since for l ≥ 2 we have ν(Gl−1) = ν(Gl)− 1 and removing the ear Pl from Gl can only

affect one cycle from Cl, the ear Pl is contained in a unique cycle

Cl ∈ Cl

and
Cl−1 := Cl \ {Cl}

is an optimal cycle packing of Gl−1. Iterating this argument, we obtain that for i =
l, (l − 1), (l − 2), . . . , 2, the ear Pi is contained in a unique cycle

Ci ∈ Ci ⊆ Cl

and that
Ci−1 := Cl \ {Ci, Ci+1, . . . , Cl}

is an optimal cycle packing of Gi−1. Note that this argument does not apply to i = 1,
because ν(G0) = ν(G1).

Since each of the ears in
E = {P2, P3, . . . , Pl}

is contained in a unique different cycle in Cl, no internal vertex of any Pi is contained in
any Pj for 2 ≤ i ≤ l and 1 ≤ j ≤ l with i 6= j. Since H is reduced and hence has no vertex
of degree 2, this implies that the ears in E all have length 1, i.e. they are all edges.

Let
P = v0e1v1e2v2 . . . ervr

be a maximal ear of G1. Since G1 is 2-connected and k ≥ 1, the endvertices v0 and vr of
P are of degree at least 3. Let

I = {v1, v2, . . . , vr−1}

be the set of internal vertices of P .
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The next claim is obvious.

Claim A If an ear Pi for 2 ≤ i ≤ l has exactly one endvertex in I, then Ci contains either
the edge e1 or the edge er. Therefore, at most two ears in E have exactly one endvertex in
I.

Claim B No ear Pi for 2 ≤ i ≤ l has its two endvertices in I.

Proof of Claim B: For contradiction, we assume that the index i with 2 ≤ i ≤ l is minimum
such that Pi has the endvertices vx, vy ∈ I for 1 ≤ x < y ≤ r−1. Since ν(Gi−1) = ν(Gi)−1,
the cycle Ci is formed by Pi and the subpath P ′ of P between vx and vy. This implies that
no internal vertex of P ′ is an endvertex of an ear Pj ∈ E \ {Pi}. Hence Pi is an ear of H
and Ci is a 1-cycle-path-subgraph of H.

Let H ′ arise from H by removing the ear Pi.
If ν(H ′) = ν(H), we may choose G̃0 = H ′, P̃1 = Pi and G̃1 = H contradicting the choice

of the sequence G0, G1, . . . , Gl as shortest possible. Hence ν(H ′) = ν(H)− 1. This implies
that H ′ has an optimal cycle packing not using the edges of P ′ and H is not reduced,
which is a contradiction. 2

Claim C G1 does not contain a 2-cycle-path-subgraph.

Proof of Claim C: For contradiction, we assume that Q is a 2-cycle-path-subgraph of G1

with attachment vertices u and v. We may assume that dQ(u), dQ(v) ≥ 2, i.e. that the 2
cycles C ′ and C ′′ of Q are the endblocks of Q.

Clearly, for every optimal cycle packing C ′1 of G1, we have EC′ ∪ EC′′ ⊆ EC′
1
. This

implies that EC′ ∪ EC′′ ⊆ EC1 and, by Claims A and B, no ear in E has an endvertex in
VQ \ {u, v}. Hence Q is also a 2-cycle-path-subgraph of H and H is not reduced, which is
a contradiction. 2

Since G1 arises by adding the ear P1 to G0, Claim C implies that G0 does not contain
an s-cycle-path-subgraph for s ≥ 6. Since every s-cycle-path-subgraph for s ≤ 5 yields at
most 2 · 5 + 6 = 16 maximal ears, this implies that the number of maximal ears of G0 is at
most 16|EG| and hence the number of maximal ears of G1 is at most 16|EG|+ 3.

Since H is reduced and hence has no vertex of degree 2, Claim A implies that no
maximal ear of G1 has more than 2 internal vertices. This implies that the order |VG1| and
size |EG1| of G1 is bounded in terms of the size |EG| of G.

Since all ears in E are edges between vertices of G1, the number of ears in E with
different endvertices is bounded in terms of |VG1|, i.e. it is bounded in terms of |EG|.

Furthermore, since the ears in E all lie in different edge-disjoint cycles, the number of
ears in E which have the same endvertices is bounded by the size |EG1| of G1, i.e. it is
bounded in terms of |EG|.

Altogether, G1 arises from G by applying a subset of a set of operations whose cardi-
nality is bounded in terms of |EG|, and H arises from G1 by applying a subset of a set of
operations whose cardinality is also bounded in terms of |EG|.
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This completes the proof. 2

The reader should note that the proof of Theorem 3 yields a — rather unefficient —
algorithm which for k ≥ 1 allows to derive P(k) from P(k − 1) and has a running time
which is bounded in terms of |P(k − 1)| and the maximum size of graphs in P(k − 1).
Therefore, for every fixed k, we can — in principle — determine P(k) in finite time.

We finish this section with another algorithmic consequence of Theorem 3.
Let k ∈ N0 be fixed and let G be a fixed graph in P(k).
For a given 2-connected graph H as input, we can decide in polynomial time whether

H extends G. The simplest argument implying this might be to consider all injective
mappings of VG to VH and check whether the edges of G can be suitable replaced by
cycle-paths in order to obtain H. This can clearly be done in polynomial time.

Therefore, in view of Lemma 1 and Theorem 3, for a given graph H as input, we can
decide in polynomial time whether µ(H) − ν(H) = k. Furthermore, in view of the proof
of Lemma 2, we can also efficiently construct an optimal cycle packing of H — even all of
them — in this case.

3 P(1) and P(2)

In this section we illustrate Theorem 3 and determine P(1) and P(2) explicitly.
The following lemma captures a straightforward yet important observation which was

essentially also used by the proof of Theorem 3.

Lemma 4 Let k ≥ 1.

(i) Every graph H ∈ P(k) arises by adding an edge to a graph G such that either ν(G) =
ν(H) and G extends a graph in P(k − 1), or ν(G) = ν(H) − 1 and G extends a graph in
P(k).

(ii) Let Q ⊆ P(k).
If every graph H in P(k) which arises by adding an edge to a graph G such that either

ν(G) = ν(H) and G extends a graph in P(k − 1), or ν(G) = ν(H) − 1 and G extends a
graph in Q, also belongs to Q, then Q = P(k).

Proof: (i) Let H ∈ P(k) and let P be the last ear in some ear decomposition of H.
Since H is reduced, P has length 1, i.e. it is an edge. Let G arise by removing P from

H.
Clearly, µ(G) = µ(H)− 1 while ν(G) = ν(H) or ν(G) = ν(H)− 1.
By the definition of P(k), ν(G) = ν(H) implies that G extends a graph in P(k − 1)

and ν(G) = ν(H)− 1 implies that G extends a graph in P(k).

(ii) Let H ∈ P(k).
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Iteratively deleting edges as in (i) and reducing the constructed graphs, we obtain a
sequence G0, G1, . . . , Gl such that G0 ∈ P(k − 1), Gi ∈ P(k) for 1 ≤ i ≤ l, Gi contains an
edge ei such that Gi − ei extends Gi−1 for 1 ≤ i ≤ l and Gl = H.

Since Gi−1 has less edges than Gi for 1 ≤ i ≤ l, the sequence is finite.
Inductively applying the hypothesis, we obtain that Gi ∈ Q for 1 ≤ i ≤ l, i.e. H ∈ Q

which implies Q = P(k). 2

Note that Lemma 4 (ii) yields a criterion to check whether some subset Q of P(k) already
contains all of P(k). Therefore, the proofs of the following two results reduce to tedious yet
straightforward case analysis. The following result is in fact equivalent to a result in [5].

Theorem 5 P(1) = {K3
2} where K3

2 is the unique graph with two vertices and three parallel
edges (cf. Figure 2).

Proof: It is easy to verify that K3
2 ∈ P(1).

Note that the only graphs extending graphs in P(0) are cycle-paths. This easily implies
that, if H ∈ P(1) arises by adding an edge to a graph G with ν(G) = ν(H) such that G
extends a graph in P(0), then H = K3

2 .
Furthermore, if H ∈ P(1) arises by adding an edge to a graph G with ν(G) = ν(H)−1

and G extends K3
2 , then H extends K3

2 . Since H is reduced, we obtain H = K3
2 .

By Lemma 4 (ii), the proof is complete. 2

u u
Figure 2 P(1) = {K3

2}.

We say that the graphs which arise from one of the two graphs G1 or G2 in Figure 3 by
contracting a subset of the edges indicated by dashed lines are generated from G1 or G2,
respectively.

u

u
u u

u

u
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�
�
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@
@ u2 v2

G1

u1 v1

v3u3

u u u

u u uu1 v1 w1

u2 v2 w2

G2

Figure 3 The graphs G1, G2 ∈ P(2).

Theorem 6 P(2) consists of K4 and all graphs which are generated from G1 or G2.
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Proof: It is easy to verify that K4 and all graphs which are generated from G1 or G2 belong
to P(2).

Let H ∈ P(2).
We consider different cases.

Case 1 H arises by adding an edge uv to a graph G with ν(G) = ν(H) = 1 such that G
extends K3

2 .

In this case G is a subdivision of K3
2 .

Since ν(H) = 1, the vertices u and v are not contained in a common maximal ear of
G. This implies that H = K4.

Case 2 H arises by adding an edge uv to a graph G with ν(G) = ν(H) ≥ 2 such that G
extends K3

2 .

In this case G has a unique optimal cycle packing C.
If dG(u) = dG(v) = 2 and u and v lie on a maximal ear contained in a cycle in C, then

H = G2.
If dG(u) = dG(v) = 2 and u and v lie in different maximal ears contained in one cycle

in C, then H extends K4. Since H 6= K4, H is not reduced which is a contradiction.
If dG(u) = dG(v) = 2 and u and v lie in different cycles in C, then H is generated from

G1.
If dG(u) ≥ 3, dG(v) = 2 and v lies in a cycle in C, then H extends K4. Since H 6= K4,

H is not reduced which is a contradiction.
In all remaining subcases, H is generated from G2.

Case 3 H arises by adding an edge uv to a graph G with ν(G) = ν(H) − 1 such that G
extends K4.

Let v1, v2, v3, v4 denote the vertices of K4. We may assume that G arises by replacing the
edges vivj with li,j-cycle-paths Qi,j.

Since H is reduced and ν(G) = ν(H)− 1, the vertices u and v are not both contained
in one of the cycle-paths Qi,j and we obtain that H is generated from G1.

Case 4 H arises by adding an edge uv to a graph G with ν(G) = ν(H) − 1 such that G
extends a graph generated from G1.

It is easy to verify that ν(G) = ν(H)− 1 implies that H is generated from G1.

Case 5 H arises by adding an edge uv to a graph G with ν(G) = ν(H) − 1 such that G
extends a graph generated from G2.

It is easy to verify that ν(G) = ν(H)− 1 implies that H is generated from K4 or G2.

By Lemma 4 (ii), the proof is complete. 2
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