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Abstract. For a graph G let u(G) denote the cyclomatic number and let v(G) denote the
maximum number of edge-disjoint cycles of G.

We prove that for every k& > 0 there is a finite set P(k) such that every 2-connected
graph G for which u(G) — v(G) = k arises by applying a simple extension rule to a graph
in P (k). Furthermore, we determine P(k) for k < 2 exactly.
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1 Introduction

We consider finite and undirected graphs G = (Vi, Fg) with vertex set Vi and edge set
E¢ which may contain multiple edges but no loops. We use standard terminology [10] and
only recall some basic notions. If an edge e € Eg has the two incident vertices u and v
in Vg, then we write e = uv. The degree dg(u) in G of a vertex u € Vg is the number of
edges e € Eg incident with u. A path in G of length [ > 0 is a sequence vgeivies . . . e
of distinct vertices vy, vy,...,v; € Vi and distinct edges e; = v;_1v; € Eg for 1 <i<[. A
cycle in G of length [ > 2 is a sequence vieqvs . .. euieivy such that viesvs ... e is a path
of length (I —1) and ¢; = vjv; € Eg. The subgraph induced by some set U C V{; is denoted
by G[U]. An ear of G is a path in G of length at least 1 such that all internal vertices have
degree 2 in GG. An ear of G is mazimal, if it is not properly contained in another ear of G.
If P is an ear of G and [ is the set of internal vertices of P, then we say that GG arises from
G' = (Vg \I,Eq\ Ep) by adding the ear P and that G’ arises from G by removing the ear
P. Whitney [10, 13] proved that a graph of order at least 2 is 2-connected if and only if it
has an ear decomposition, i.e. it arises from a chordless cycle by iteratively adding ears. A
graph is a cactus graph, if all of its cycles are edge-disjoint which is equivalent to the fact
that all of its blocks are cycles or edges.
The cyclomatic number of a graph G with xk(G) components is

wG) = |Eg| — |Va| + (G).



A cycle packing C of G of order [ is a set of | edge-disjoint cycles of G. The maximum
order of a cycle packing of G is denoted by

v(QG).

A cycle packing of maximum order is called optimal. For a cycle packing C, the set of edges
contained in some cycle in C is denoted by

Ee.

Our research in the present paper is motivated by the well-known inequality

v(G) < u(G)
which holds for every graph GG. As our main result, we prove that for every fixed k € Ny =
{0,1,2,...} there is a finite set P(k) of graphs such that every 2-connected graph G for
which
w@) —v(G) =k

arises by applying a simple extension rule to one of the graphs in P(k), i.e. there are
essentially only finitely many configurations which cause p(G) and v(G) to deviate by k.
Furthermore, we determine P (k) for k < 2 exactly.

The results which are most related to ours concern the minimum difference p(k) between
the size |E¢| and the order V| of a graph G which forces the existence of k edge-disjoint
cycles, i.e.

p(k) =min{p | v(G) = kV G = (Vg, Eg) with |Eg| — [Va| = p}.

There are several classical results concerning this parameter

0 k=1
4 k=2 6]
p(k) =< 10 k=3 [g]
18 k=4 [1,14]
O (klogk) [6,11,12,14].

Recently, algorithmic aspects of cycle packing problems have received considerable atten-
tion. While the problem to determine optimal cycle packings is APX-hard [3,4,7,9] and
remains NP-hard even when restricted to Eulerian graphs of maximum degree 4 [2], there
are simple approximation algorithms [3,7].

In Section 2 we prove our main result about the finiteness of P(k) and in Section 3 we
determine P (k) for k < 2 exactly.



2 Graphs G with u(G) —v(G) =k

In this section we study the graphs G for which p(G) and v(G) differ by some fixed k. It
is well-known — and easy to see — that the graphs G with u(G) — v(G) = 0 are exactly
the cactus graphs, i.e. their blocks are either edges or arise by possibly subdividing the
edges of a cycle of length 2.

For k € Ny let

G(k)

denote the set of 2-connected graphs G with ;(G) —v(G) = k. In view of the above remark
about cactus graphs, we obtain that G € G(0) if and only if G is a cycle or an edge. The
next lemma implies that in order to characterize the graphs G' with u(G) — v(G) = k, it
suffices to characterize the 2-connected graphs with this property.

Lemma 1 Let k € Ny. If G is a graph with u(G) — v(G) = k whose blocks By, By, ..., B,
satisfy B; € G(k;) for 1 <i <1, then k = ki + ko + -+ + ky.

Proof: This follows immediately from the fact that every cycle of G is entirely contained
in some block of G. O

In order to explain the simple extension rule mentioned in the introduction, we need
some more notation.

An [-cycle-path is a cactus with at most 2 endblocks and exactly [ € Ny cycles.

An [-cycle-path-subgraph of a graph G = (Vg, Eg) with attachment vertices u and v
is an induced subgraph H = (Vi, Ey) of G which is an [-cycle-path such that u and
v are two distinct vertices of H for which dg(w) = dy(w) for all w € Vi \ {u,v} and
H +uwv = (Vy, Eg U {uv}) is 2-connected, i.e. only the attachment vertices may have
neighbours outside of Vy and, if H has more than one block, then the attachment vertices
are two non-cutvertices from the two endblocks of H. Note that a 0-cycle-path-subgraph
of G with attachment vertices u and v is an ear of G with endvertices u and v.

A graph H = (Vy, Ey) is said to arise from a graph G = (Viz, Eg) by replacing the edge
e = uwv € Eg with an l-cycle-path, if H has an [-cycle-path-subgraph @ = (Vj, Eg) with
attachment vertices u and v such that (cf. Figure 1)

Ve = Vu\ (Vo \{u,v}) and
Eg = (Bn\ Eqg)U{e}.

Figure 1 Replacing the edge e = uv € Eg with a 4-cycle-path.
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A graph H is said to extend a graph G, if there is an optimal cycle packing C of G such
that H arises from G by replacing every edge e € E¢ with a 0-cycle-path and replacing
every edge e € Fg \ E¢ with an [-cycle-path for some [ € No. A graph H is said to be
reduced, if there is no graph G different from H such that H extends G.

For k € Ny let

P(k)
denote the set of reduced graphs in G(k). Note that P(0) contains exactly two elements,
an edge and a cycle of length 2. It is instructive to verify that for £ > 1 a graph in P(k)

contains neither vertices of degree at most 2 nor [-cycle-path-subgraphs for [ > 2.
The next lemma summarizes some important properties of the above extension notion.

Lemma 2 If Gy € G(k), G, extends Gy, and Gy extends Gy, then
(1) Gi e G(k),
(i) Go extends Gy, and

(iii) every graph in G(k) extends a graph in P(k).

Proof: Let Cy be an optimal cycle packing of G such that G, arises from G by replacing
every edge e € Eg, with an [.-cycle-path L, with [, = 0 for e € F¢,. Let C| denote the set

of the
>

e€Eq,

edge-disjoint cycles contained in the [.-cycle-paths L. for e € Eg,.
Clearly,
1(G1) = p(Go) + [Cy.

Since the set of cycles in GG; which are subdivisions of the cycles in Cy together with
the cycles in C] form a cycle packing of Gy, we obtain v(G1) > v(Gg) + |Cy].

Let C; be an optimal cycle packing of GG such that G5 arises from Gy by replacing every
edge f € Eg, with an hy-cycle-path Hy with hy = 0 for f € E¢, and such that subject to
this condition

C1NCil

is largest possible.

If £} is an arbitrary set of edges which contains exactly one edge from each cycle in
C1, then removing the |C]| edges in E| from G; can delete at most |C]| cycles in Cy, which
implies v(Gy) > v(G1) — |C]].

In view of the above, this implies that

v(Gr) = v(Go) +1Cy (1)

and hence (i).



Furthermore, this implies that every edge contained in a cycle in C] belongs to E¢, and
edges contained in different cycles in C; are contained in different cycles in C;. (Otherwise
there would be a choice for E] such that removing the edges in E] would only delete at
most |C]| — 1 cycles, which implies the contradiction v(Gy) > v(G;) — |Cy| + 1.)

If follows that, if [ > 2 for some e € Eg,, then C; necessarily contains the [, edge-
disjoint cycles contained in the [.-cycle-path L.

Furthermore, if [, = 1 for some e € Eg, and C; does not contain the unique cycle C.
contained in the 1-cycle-path L., then there are exactly two cycles C! and C? in C; which
contain Eg,. Since (Ec; U Ecr) \ E¢, contains the edge set of a cycle C?,

G = (G \{CL, Y u{C., "))
is an optimal cycle packing of Gy such that Es; C E¢, and
ICi NG| > |C NG

which is a contradiction to the choice of C;.

Hence C; C Cy. By (1), the cycles in C; \ C; are the subdivisions of the cycles in an
optimal cycle packing Cj of Go. Clearly, I, > 0 implies e € E¢;. Since hy > 0 for some
f € Eg, \ E¢, implies that f is a bridge of an l.-cycle-path L. with e ¢ Egy, it follows that
G extends Gy, i.e. (ii) holds.

By definition, for every graph H € G(k) there is a graph G € P(k) such that H arises
from G by a finite sequence of extensions. Applying (ii) in an inductive argument implies
that H extends G and (iii) follows. This completes the proof. O

We proceed to our main result.
Theorem 3 The set P(k) is finite for every k € Ny.

Proof: We will prove the result by induction on k.

Since |P(0)| = 2, we may assume that & > 1.

We will argue that every graph in P(k) arises from some graph in P(k — 1) by applying
a subset of a finite set of operations. Since, by induction, P(k — 1) is finite, this clearly
implies that P(k) is finite.

Let H € P(k).

If a graph H~ arises by removing an ear from H, then

y(H) — 1 < v(H") < v(H) and p(H") = p(H) - 1,

ie. H- € G(k—1) or H™ € G(k). Therefore, an ear decomposition of H yields a sequence
of 2-connected graphs
G07G17"'7Gl

such that
° Gl = H7



e (G, arises by adding the ear P, to G;_; for 1 < <,
[ V(Go) = V(Gl) and
o V(Gi_1) =v(G;) —1for 2 <i<lI.

We assume that the sequence is chosen to be shortest possible, i.e. [ is minimum.
Note that Go € G(k — 1) and G; € G(k) for 1 <i <.
By Lemma 2 (iii), Gy extends some graph

GeP(k—-1).

Let
G
be an optimal cycle packing of H = G;.
Since for | > 2 we have v(G,_1) = v(G;) — 1 and removing the ear P, from G; can only
affect one cycle from C;, the ear P, is contained in a unique cycle

Cl EC[

and

Cl,1 = Cl \ {Cl}

is an optimal cycle packing of G;_;. Iterating this argument, we obtain that for i =
L(l—1),(l—=2),...,2, the ear P; is contained in a unique cycle

C’iECZ-QCZ

and that
Cifl = Cl \ {CZ, Clqu, c. ,Cl}

is an optimal cycle packing of GG;_;. Note that this argument does not apply to i = 1,
because v(Gy) = v(Gy).

Since each of the ears in

SZ{PQ,Pg,...,Pl}

is contained in a unique different cycle in C;, no internal vertex of any P; is contained in
any Pjfor 2 <¢ <land 1 <j <[ with¢# j. Since H is reduced and hence has no vertex
of degree 2, this implies that the ears in £ all have length 1, i.e. they are all edges.

Let

P = vpejvieqvy . .. e,

be a maximal ear of (G;. Since (77 is 2-connected and k > 1, the endvertices vy and v, of
P are of degree at least 3. Let

I = {’1}1,1)2, s 77}1”71}

be the set of internal vertices of P.



The next claim is obvious.

Claim A If an ear P; for 2 < i <1 has exactly one endvertex in I, then C; contains either
the edge ey or the edge e.. Therefore, at most two ears in € have exactly one endvertex in

1.
Claim B No ear P; for 2 < i < has its two endvertices in I.

Proof of Claim B: For contradiction, we assume that the index ¢ with 2 < <[ is minimum
such that P; has the endvertices v,, v, € [ for 1 <z <y <r—1. Since v(G;_1) = v(G;)—1,
the cycle C; is formed by P; and the subpath P’ of P between v, and v,. This implies that
no internal vertex of P’ is an endvertex of an ear P; € £\ {P;}. Hence P, is an ear of H
and C; is a 1-cycle-path-subgraph of H.

Let H' arise from H by removing the ear P;.

If v(H') = v(H), we may choose Gy = H', P, = P; and G| = H contradicting the choice
of the sequence Go, G, . .., G; as shortest possible. Hence v(H') = v(H) — 1. This implies
that H' has an optimal cycle packing not using the edges of P’ and H is not reduced,
which is a contradiction. O

Claim C G, does not contain a 2-cycle-path-subgraph.

Proof of Claim C: For contradiction, we assume that () is a 2-cycle-path-subgraph of G,
with attachment vertices u and v. We may assume that dg(u), dg(v) > 2, i.e. that the 2
cycles C" and C” of @) are the endblocks of Q.

Clearly, for every optimal cycle packing Cj of G, we have Ec U Egn C Egr. This
implies that Ec» U Ecr C Fe, and, by Claims A and B, no ear in £ has an endvertex in
Vo \ {u,v}. Hence @ is also a 2-cycle-path-subgraph of H and H is not reduced, which is
a contradiction. O

Since (7 arises by adding the ear P; to GGy, Claim C implies that GGy does not contain
an s-cycle-path-subgraph for s > 6. Since every s-cycle-path-subgraph for s <5 yields at
most 2 -5+ 6 = 16 maximal ears, this implies that the number of maximal ears of G is at
most 16| E| and hence the number of maximal ears of G is at most 16|E¢g| + 3.

Since H is reduced and hence has no vertex of degree 2, Claim A implies that no
maximal ear of G; has more than 2 internal vertices. This implies that the order |V, | and
size |Eg, | of Gy is bounded in terms of the size |Eg| of G.

Since all ears in £ are edges between vertices of GG7, the number of ears in £& with
different endvertices is bounded in terms of |V, |, i.e. it is bounded in terms of |Eg|.

Furthermore, since the ears in £ all lie in different edge-disjoint cycles, the number of
ears in € which have the same endvertices is bounded by the size |Eg,| of Gy, i.e. it is
bounded in terms of |Fg|.

Altogether, GGy arises from G by applying a subset of a set of operations whose cardi-
nality is bounded in terms of |E¢|, and H arises from G; by applying a subset of a set of
operations whose cardinality is also bounded in terms of |E¢|.
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This completes the proof. O

The reader should note that the proof of Theorem 3 yields a — rather unefficient —
algorithm which for £ > 1 allows to derive P(k) from P(k — 1) and has a running time
which is bounded in terms of |P(k — 1)| and the maximum size of graphs in P(k — 1).
Therefore, for every fixed k, we can — in principle — determine P(k) in finite time.

We finish this section with another algorithmic consequence of Theorem 3.

Let k € Ny be fixed and let G be a fixed graph in P(k).

For a given 2-connected graph H as input, we can decide in polynomial time whether
H extends G. The simplest argument implying this might be to consider all injective
mappings of Vi to Vy and check whether the edges of G can be suitable replaced by
cycle-paths in order to obtain H. This can clearly be done in polynomial time.

Therefore, in view of Lemma 1 and Theorem 3, for a given graph H as input, we can
decide in polynomial time whether u(H) — v(H) = k. Furthermore, in view of the proof
of Lemma 2, we can also efficiently construct an optimal cycle packing of H — even all of
them — in this case.

3 P(1) and P(2)

In this section we illustrate Theorem 3 and determine P (1) and P(2) explicitly.
The following lemma captures a straightforward yet important observation which was
essentially also used by the proof of Theorem 3.

Lemma 4 Let k > 1.

(i) Every graph H € P(k) arises by adding an edge to a graph G such that either v(G) =
v(H) and G extends a graph in P(k — 1), or v(G) = v(H) — 1 and G extends a graph in
P(k).

(ii) Let Q C P(k).

If every graph H in P(k) which arises by adding an edge to a graph G such that either
v(G) = v(H) and G extends a graph in P(k —1), or v(G) = v(H) — 1 and G extends a
graph in Q, also belongs to Q, then Q = P(k).

Proof: (i) Let H € P(k) and let P be the last ear in some ear decomposition of H.

Since H is reduced, P has length 1, i.e. it is an edge. Let G arise by removing P from
H.

Clearly, u(G) = u(H) — 1 while v(G) = v(H) or v(G) =v(H) — 1.

By the definition of P(k), v(G) = v(H) implies that G extends a graph in P(k — 1)
and v(G) = v(H) — 1 implies that G extends a graph in P(k).

(ii) Let H € P(k).



Iteratively deleting edges as in (i) and reducing the constructed graphs, we obtain a
sequence Go, Gy, ...,G; such that Gy € P(k — 1), G; € P(k) for 1 <i <, G; contains an
edge e; such that G; — ¢; extends G;_; for 1 <i <[ and G; = H.

Since G;_1 has less edges than G; for 1 <4 <[, the sequence is finite.

Inductively applying the hypothesis, we obtain that G; € Q for 1 <i <[, i.e. H € Q
which implies Q@ = P(k). O

Note that Lemma 4 (ii) yields a criterion to check whether some subset Q of P(k) already
contains all of P(k). Therefore, the proofs of the following two results reduce to tedious yet
straightforward case analysis. The following result is in fact equivalent to a result in [5].

Theorem 5 P(1) = {K3} where Kj is the unique graph with two vertices and three parallel
edges (cf. Figure 2).

Proof: Tt is easy to verify that K3 € P(1).

Note that the only graphs extending graphs in P(0) are cycle-paths. This easily implies
that, if H € P(1) arises by adding an edge to a graph G with v(G) = v(H) such that G
extends a graph in P(0), then H = Kj.

Furthermore, if H € P(1) arises by adding an edge to a graph G with v(G) = v(H) —1
and G extends K3, then H extends K3. Since H is reduced, we obtain H = K3.

By Lemma 4 (ii), the proof is complete. O

<

Figure 2 P(1) = {K3}.

We say that the graphs which arise from one of the two graphs G or G5 in Figure 3 by
contracting a subset of the edges indicated by dashed lines are generated from G; or G,
respectively.

Gl GQ

Figure 3 The graphs G, Gy € P(2).

Theorem 6 P(2) consists of K4 and all graphs which are generated from Gy or Gs.



Proof: 1t is easy to verify that K, and all graphs which are generated from G or G5 belong
to P(2).

Let H € P(2).

We consider different cases.

Case 1 H arises by adding an edge uwv to a graph G with v(G) = v(H) = 1 such that G
extends K3.

In this case G is a subdivision of K3.
Since v(H) = 1, the vertices u and v are not contained in a common maximal ear of
G. This implies that H = Kj.

Case 2 H arises by adding an edge uv to a graph G with v(G) = v(H) > 2 such that G
extends K.

In this case GG has a unique optimal cycle packing C.

If dg(u) = dg(v) = 2 and u and v lie on a maximal ear contained in a cycle in C, then
H = GQ.

If dg(u) = dg(v) = 2 and u and v lie in different maximal ears contained in one cycle
in C, then H extends K. Since H # K,, H is not reduced which is a contradiction.

If dg(u) = dg(v) = 2 and u and v lie in different cycles in C, then H is generated from
Gl.
If dg(u) > 3, dg(v) = 2 and v lies in a cycle in C, then H extends K. Since H # Ky,
H is not reduced which is a contradiction.

In all remaining subcases, H is generated from Gb.

Case 3 H arises by adding an edge uv to a graph G with v(G) = v(H) — 1 such that G
extends K.

Let vy, v9, v3,v4 denote the vertices of K;. We may assume that G arises by replacing the
edges v;v; with [; j-cycle-paths Q; ;.
Since H is reduced and v(G) = v(H) — 1, the vertices u and v are not both contained

in one of the cycle-paths @); ; and we obtain that H is generated from G.

Case 4 H arises by adding an edge uv to a graph G with v(G) = v(H) — 1 such that G
extends a graph generated from G.

It is easy to verify that v(G) = v(H) — 1 implies that H is generated from G.

Case 5 H arises by adding an edge uv to a graph G with v(G) = v(H) — 1 such that G
extends a graph generated from Gb.

It is easy to verify that v(G) = v(H) — 1 implies that H is generated from K4 or Gs.

By Lemma 4 (ii), the proof is complete. O
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