Technische Universität Ilmenau Institut für Mathematik

Preprint No. M 08/25

Packing edge-disjoint cycles in

 graphs and the cyclomatic numberHarant, Jochen; Rautenbach, Dieter; Regen, Friedrich; Recht, Peter

Packing Edge-Disjoint Cycles in Graphs and the Cyclomatic Number

Jochen Harant ${ }^{1}$, Dieter Rautenbach ${ }^{1,3}$, Friedrich Regen ${ }^{1}$, and Peter Recht ${ }^{2}$
${ }^{1}$ Institut für Mathematik, TU Ilmenau, Postfach 100565, D-98684 Ilmenau, Germany, email: \{ jochen.harant, dieter.rautenbach, friedrich.regen \}@tu-ilmenau.de
${ }^{2}$ Lehrstuhl für Operations Research und Wirtschaftsinformatik, Universität Dortmund, D-44227 Dortmund, Germany, email: peter.recht@tu-dortmund.de
${ }^{3}$ Corresponding author

Abstract

For a graph G let $\mu(G)$ denote the cyclomatic number and let $\nu(G)$ denote the maximum number of edge-disjoint cycles of G.

We prove that for every $k \geq 0$ there is a finite set $\mathcal{P}(k)$ such that every 2-connected graph G for which $\mu(G)-\nu(G)=k$ arises by applying a simple extension rule to a graph in $\mathcal{P}(k)$. Furthermore, we determine $\mathcal{P}(k)$ for $k \leq 2$ exactly.

Keywords. graph; cycle; packing; cyclomatic number

1 Introduction

We consider finite and undirected graphs $G=\left(V_{G}, E_{G}\right)$ with vertex set V_{G} and edge set E_{G} which may contain multiple edges but no loops. We use standard terminology [10] and only recall some basic notions. If an edge $e \in E_{G}$ has the two incident vertices u and v in V_{G}, then we write $e=u v$. The degree $d_{G}(u)$ in G of a vertex $u \in V_{G}$ is the number of edges $e \in E_{G}$ incident with u. A path in G of length $l \geq 0$ is a sequence $v_{0} e_{1} v_{1} e_{2} \ldots e_{l} v_{l}$ of distinct vertices $v_{0}, v_{1}, \ldots, v_{l} \in V_{G}$ and distinct edges $e_{i}=v_{i-1} v_{i} \in E_{G}$ for $1 \leq i \leq l$. A cycle in G of length $l \geq 2$ is a sequence $v_{1} e_{2} v_{2} \ldots e_{l} v_{l} e_{1} v_{1}$ such that $v_{1} e_{2} v_{2} \ldots e_{l} v_{l}$ is a path of length $(l-1)$ and $e_{l}=v_{l} v_{1} \in E_{G}$. The subgraph induced by some set $U \subseteq V_{G}$ is denoted by $G[U]$. An ear of G is a path in G of length at least 1 such that all internal vertices have degree 2 in G. An ear of G is maximal, if it is not properly contained in another ear of G. If P is an ear of G and I is the set of internal vertices of P, then we say that G arises from $G^{\prime}=\left(V_{G} \backslash I, E_{G} \backslash E_{P}\right)$ by adding the ear P and that G^{\prime} arises from G by removing the ear P. Whitney $[10,13]$ proved that a graph of order at least 2 is 2 -connected if and only if it has an ear decomposition, i.e. it arises from a chordless cycle by iteratively adding ears. A graph is a cactus graph, if all of its cycles are edge-disjoint which is equivalent to the fact that all of its blocks are cycles or edges.

The cyclomatic number of a graph G with $\kappa(G)$ components is

$$
\mu(G)=\left|E_{G}\right|-\left|V_{G}\right|+\kappa(G) .
$$

A cycle packing \mathcal{C} of G of order l is a set of l edge-disjoint cycles of G. The maximum order of a cycle packing of G is denoted by

$$
\nu(G)
$$

A cycle packing of maximum order is called optimal. For a cycle packing \mathcal{C}, the set of edges contained in some cycle in \mathcal{C} is denoted by

$$
E_{\mathcal{C}}
$$

Our research in the present paper is motivated by the well-known inequality

$$
\nu(G) \leq \mu(G)
$$

which holds for every graph G. As our main result, we prove that for every fixed $k \in \mathbb{N}_{0}=$ $\{0,1,2, \ldots\}$ there is a finite set $\mathcal{P}(k)$ of graphs such that every 2-connected graph G for which

$$
\mu(G)-\nu(G)=k
$$

arises by applying a simple extension rule to one of the graphs in $\mathcal{P}(k)$, i.e. there are essentially only finitely many configurations which cause $\mu(G)$ and $\nu(G)$ to deviate by k. Furthermore, we determine $\mathcal{P}(k)$ for $k \leq 2$ exactly.

The results which are most related to ours concern the minimum difference $p(k)$ between the size $\left|E_{G}\right|$ and the order $\left|V_{G}\right|$ of a graph G which forces the existence of k edge-disjoint cycles, i.e.

$$
p(k)=\min \left\{p \mid \nu(G) \geq k \forall G=\left(V_{G}, E_{G}\right) \text { with }\left|E_{G}\right|-\left|V_{G}\right| \geq p\right\} .
$$

There are several classical results concerning this parameter

$$
p(k)=\left\{\begin{array}{lll}
0 & , k=1 & \\
4 & , k=2 & {[6]} \\
10 & , k=3 & {[8]} \\
18 & , k=4 & {[1,14]} \\
\Theta(k \log k) & & {[6,11,12,14]}
\end{array}\right.
$$

Recently, algorithmic aspects of cycle packing problems have received considerable attention. While the problem to determine optimal cycle packings is APX-hard $[3,4,7,9]$ and remains NP-hard even when restricted to Eulerian graphs of maximum degree 4 [2], there are simple approximation algorithms $[3,7]$.

In Section 2 we prove our main result about the finiteness of $\mathcal{P}(k)$ and in Section 3 we determine $\mathcal{P}(k)$ for $k \leq 2$ exactly.

2 Graphs G with $\mu(G)-\nu(G)=k$

In this section we study the graphs G for which $\mu(G)$ and $\nu(G)$ differ by some fixed k. It is well-known - and easy to see - that the graphs G with $\mu(G)-\nu(G)=0$ are exactly the cactus graphs, i.e. their blocks are either edges or arise by possibly subdividing the edges of a cycle of length 2 .

For $k \in \mathbb{N}_{0}$ let

$$
\mathcal{G}(k)
$$

denote the set of 2-connected graphs G with $\mu(G)-\nu(G)=k$. In view of the above remark about cactus graphs, we obtain that $G \in \mathcal{G}(0)$ if and only if G is a cycle or an edge. The next lemma implies that in order to characterize the graphs G with $\mu(G)-\nu(G)=k$, it suffices to characterize the 2-connected graphs with this property.

Lemma 1 Let $k \in \mathbb{N}_{0}$. If G is a graph with $\mu(G)-\nu(G)=k$ whose blocks $B_{1}, B_{2}, \ldots, B_{l}$ satisfy $B_{i} \in \mathcal{G}\left(k_{i}\right)$ for $1 \leq i \leq l$, then $k=k_{1}+k_{2}+\cdots+k_{l}$.

Proof: This follows immediately from the fact that every cycle of G is entirely contained in some block of G.

In order to explain the simple extension rule mentioned in the introduction, we need some more notation.

An l-cycle-path is a cactus with at most 2 endblocks and exactly $l \in \mathbb{N}_{0}$ cycles.
An l-cycle-path-subgraph of a graph $G=\left(V_{G}, E_{G}\right)$ with attachment vertices u and v is an induced subgraph $H=\left(V_{H}, E_{H}\right)$ of G which is an l-cycle-path such that u and v are two distinct vertices of H for which $d_{G}(w)=d_{H}(w)$ for all $w \in V_{H} \backslash\{u, v\}$ and $H+u v=\left(V_{H}, E_{H} \cup\{u v\}\right)$ is 2-connected, i.e. only the attachment vertices may have neighbours outside of V_{H} and, if H has more than one block, then the attachment vertices are two non-cutvertices from the two endblocks of H. Note that a 0 -cycle-path-subgraph of G with attachment vertices u and v is an ear of G with endvertices u and v.

A graph $H=\left(V_{H}, E_{H}\right)$ is said to arise from a graph $G=\left(V_{G}, E_{G}\right)$ by replacing the edge $e=u v \in E_{G}$ with an l-cycle-path, if H has an l-cycle-path-subgraph $Q=\left(V_{Q}, E_{Q}\right)$ with attachment vertices u and v such that (cf. Figure 1)

$$
\begin{aligned}
V_{G} & =V_{H} \backslash\left(V_{Q} \backslash\{u, v\}\right) \text { and } \\
E_{G} & =\left(E_{H} \backslash E_{Q}\right) \cup\{e\} .
\end{aligned}
$$

Figure 1 Replacing the edge $e=u v \in E_{G}$ with a 4-cycle-path.

A graph H is said to extend a graph G, if there is an optimal cycle packing \mathcal{C} of G such that H arises from G by replacing every edge $e \in E_{\mathcal{C}}$ with a 0 -cycle-path and replacing every edge $e \in E_{G} \backslash E_{\mathcal{C}}$ with an l-cycle-path for some $l \in \mathbb{N}_{0}$. A graph H is said to be reduced, if there is no graph G different from H such that H extends G.

For $k \in \mathbb{N}_{0}$ let

$$
\mathcal{P}(k)
$$

denote the set of reduced graphs in $\mathcal{G}(k)$. Note that $\mathcal{P}(0)$ contains exactly two elements, an edge and a cycle of length 2 . It is instructive to verify that for $k \geq 1$ a graph in $\mathcal{P}(k)$ contains neither vertices of degree at most 2 nor l-cycle-path-subgraphs for $l \geq 2$.

The next lemma summarizes some important properties of the above extension notion.
Lemma 2 If $G_{0} \in \mathcal{G}(k), G_{1}$ extends G_{0}, and G_{2} extends G_{1}, then
(i) $G_{1} \in \mathcal{G}(k)$,
(ii) G_{2} extends G_{0}, and
(iii) every graph in $\mathcal{G}(k)$ extends a graph in $\mathcal{P}(k)$.

Proof: Let \mathcal{C}_{0} be an optimal cycle packing of G_{0} such that G_{1} arises from G_{0} by replacing every edge $e \in E_{G_{0}}$ with an l_{e}-cycle-path L_{e} with $l_{e}=0$ for $e \in E_{\mathcal{C}_{0}}$. Let \mathcal{C}_{1}^{\prime} denote the set of the

$$
\sum_{e \in E_{G_{0}}} l_{e}
$$

edge-disjoint cycles contained in the l_{e}-cycle-paths L_{e} for $e \in E_{G_{0}}$.
Clearly,

$$
\mu\left(G_{1}\right)=\mu\left(G_{0}\right)+\left|\mathcal{C}_{1}^{\prime}\right| .
$$

Since the set of cycles in G_{1} which are subdivisions of the cycles in \mathcal{C}_{0} together with the cycles in \mathcal{C}_{1}^{\prime} form a cycle packing of G_{1}, we obtain $\nu\left(G_{1}\right) \geq \nu\left(G_{0}\right)+\left|\mathcal{C}_{1}^{\prime}\right|$.

Let \mathcal{C}_{1} be an optimal cycle packing of G_{1} such that G_{2} arises from G_{1} by replacing every edge $f \in E_{G_{1}}$ with an h_{f}-cycle-path H_{f} with $h_{f}=0$ for $f \in E_{\mathcal{C}_{1}}$ and such that subject to this condition

$$
\left|\mathcal{C}_{1}^{\prime} \cap \mathcal{C}_{1}\right|
$$

is largest possible.
If E_{1}^{\prime} is an arbitrary set of edges which contains exactly one edge from each cycle in \mathcal{C}_{1}^{\prime}, then removing the $\left|\mathcal{C}_{1}^{\prime}\right|$ edges in E_{1}^{\prime} from G_{1} can delete at most $\left|\mathcal{C}_{1}^{\prime}\right|$ cycles in \mathcal{C}_{1}, which implies $\nu\left(G_{0}\right) \geq \nu\left(G_{1}\right)-\left|\mathcal{C}_{1}^{\prime}\right|$.

In view of the above, this implies that

$$
\begin{equation*}
\nu\left(G_{1}\right)=\nu\left(G_{0}\right)+\left|\mathcal{C}_{1}^{\prime}\right| \tag{1}
\end{equation*}
$$

and hence (i).

Furthermore, this implies that every edge contained in a cycle in \mathcal{C}_{1}^{\prime} belongs to $E_{\mathcal{C}_{1}}$ and edges contained in different cycles in \mathcal{C}_{1}^{\prime} are contained in different cycles in \mathcal{C}_{1}. (Otherwise there would be a choice for E_{1}^{\prime} such that removing the edges in E_{1}^{\prime} would only delete at most $\left|\mathcal{C}_{1}^{\prime}\right|-1$ cycles, which implies the contradiction $\nu\left(G_{0}\right) \geq \nu\left(G_{1}\right)-\left|\mathcal{C}_{1}^{\prime}\right|+1$.)

If follows that, if $l_{e} \geq 2$ for some $e \in E_{G_{0}}$, then \mathcal{C}_{1} necessarily contains the l_{e} edgedisjoint cycles contained in the l_{e}-cycle-path L_{e}.

Furthermore, if $l_{e}=1$ for some $e \in E_{G_{0}}$ and \mathcal{C}_{1} does not contain the unique cycle C_{e} contained in the 1-cycle-path L_{e}, then there are exactly two cycles C_{e}^{\prime} and $C_{e}^{\prime \prime}$ in \mathcal{C}_{1} which contain $E_{C_{e}}$. Since $\left(E_{C_{e}^{\prime}} \cup E_{C_{e}^{\prime \prime}}\right) \backslash E_{C_{e}}$ contains the edge set of a cycle $C_{e}^{\prime \prime \prime}$,

$$
\left.\tilde{\mathcal{C}}_{1}=\left(\mathcal{C}_{1} \backslash\left\{C_{e}^{\prime}, C_{e}^{\prime \prime}\right\}\right) \cup\left\{C_{e}, C_{e}^{\prime \prime \prime}\right\}\right)
$$

is an optimal cycle packing of G_{1} such that $E_{\tilde{\mathcal{C}}_{1}} \subseteq E_{\mathcal{C}_{1}}$ and

$$
\left|\mathcal{C}_{1}^{\prime} \cap \tilde{\mathcal{C}}_{1}\right|>\left|\mathcal{C}_{1}^{\prime} \cap \mathcal{C}_{1}\right|
$$

which is a contradiction to the choice of \mathcal{C}_{1}.
Hence $\mathcal{C}_{1}^{\prime} \subseteq \mathcal{C}_{1}$. By (1), the cycles in $\mathcal{C}_{1} \backslash \mathcal{C}_{1}^{\prime}$ are the subdivisions of the cycles in an optimal cycle packing \mathcal{C}_{0}^{\prime} of G_{0}. Clearly, $l_{e}>0$ implies $e \notin E_{\mathcal{C}_{0}^{\prime}}$. Since $h_{f}>0$ for some $f \in E_{G_{1}} \backslash E_{\mathcal{C}_{1}}$ implies that f is a bridge of an l_{e}-cycle-path L_{e} with $e \notin E_{\mathcal{C}_{0}^{\prime}}$, it follows that G_{2} extends G_{0}, i.e. (ii) holds.

By definition, for every graph $H \in \mathcal{G}(k)$ there is a graph $G \in \mathcal{P}(k)$ such that H arises from G by a finite sequence of extensions. Applying (ii) in an inductive argument implies that H extends G and (iii) follows. This completes the proof.

We proceed to our main result.
Theorem 3 The set $\mathcal{P}(k)$ is finite for every $k \in \mathbb{N}_{0}$.
Proof: We will prove the result by induction on k.
Since $|\mathcal{P}(0)|=2$, we may assume that $k \geq 1$.
We will argue that every graph in $\mathcal{P}(k)$ arises from some graph in $\mathcal{P}(k-1)$ by applying a subset of a finite set of operations. Since, by induction, $\mathcal{P}(k-1)$ is finite, this clearly implies that $\mathcal{P}(k)$ is finite.

Let $H \in \mathcal{P}(k)$.
If a graph H^{-}arises by removing an ear from H, then

$$
\nu(H)-1 \leq \nu\left(H^{-}\right) \leq \nu(H) \text { and } \mu\left(H^{-}\right)=\mu(H)-1,
$$

i.e. $H^{-} \in \mathcal{G}(k-1)$ or $H^{-} \in \mathcal{G}(k)$. Therefore, an ear decomposition of H yields a sequence of 2-connected graphs

$$
G_{0}, G_{1}, \ldots, G_{l}
$$

such that

- $G_{l}=H$,
- G_{i} arises by adding the ear P_{i} to G_{i-1} for $1 \leq i \leq l$,
- $\nu\left(G_{0}\right)=\nu\left(G_{1}\right)$ and
- $\nu\left(G_{i-1}\right)=\nu\left(G_{i}\right)-1$ for $2 \leq i \leq l$.

We assume that the sequence is chosen to be shortest possible, i.e. l is minimum.
Note that $G_{0} \in \mathcal{G}(k-1)$ and $G_{i} \in \mathcal{G}(k)$ for $1 \leq i \leq l$.
By Lemma 2 (iii), G_{0} extends some graph

$$
G \in \mathcal{P}(k-1)
$$

Let

$$
\mathcal{C}_{l}
$$

be an optimal cycle packing of $H=G_{l}$.
Since for $l \geq 2$ we have $\nu\left(G_{l-1}\right)=\nu\left(G_{l}\right)-1$ and removing the ear P_{l} from G_{l} can only affect one cycle from \mathcal{C}_{l}, the ear P_{l} is contained in a unique cycle

$$
C_{l} \in \mathcal{C}_{l}
$$

and

$$
\mathcal{C}_{l-1}:=\mathcal{C}_{l} \backslash\left\{C_{l}\right\}
$$

is an optimal cycle packing of G_{l-1}. Iterating this argument, we obtain that for $i=$ $l,(l-1),(l-2), \ldots, 2$, the ear P_{i} is contained in a unique cycle

$$
C_{i} \in \mathcal{C}_{i} \subseteq \mathcal{C}_{l}
$$

and that

$$
\mathcal{C}_{i-1}:=\mathcal{C}_{l} \backslash\left\{C_{i}, C_{i+1}, \ldots, C_{l}\right\}
$$

is an optimal cycle packing of G_{i-1}. Note that this argument does not apply to $i=1$, because $\nu\left(G_{0}\right)=\nu\left(G_{1}\right)$.

Since each of the ears in

$$
\mathcal{E}=\left\{P_{2}, P_{3}, \ldots, P_{l}\right\}
$$

is contained in a unique different cycle in \mathcal{C}_{l}, no internal vertex of any P_{i} is contained in any P_{j} for $2 \leq i \leq l$ and $1 \leq j \leq l$ with $i \neq j$. Since H is reduced and hence has no vertex of degree 2 , this implies that the ears in \mathcal{E} all have length 1, i.e. they are all edges.

Let

$$
P=v_{0} e_{1} v_{1} e_{2} v_{2} \ldots e_{r} v_{r}
$$

be a maximal ear of G_{1}. Since G_{1} is 2 -connected and $k \geq 1$, the endvertices v_{0} and v_{r} of P are of degree at least 3. Let

$$
I=\left\{v_{1}, v_{2}, \ldots, v_{r-1}\right\}
$$

be the set of internal vertices of P.

The next claim is obvious.
Claim A If an ear P_{i} for $2 \leq i \leq l$ has exactly one endvertex in I, then C_{i} contains either the edge e_{1} or the edge e_{r}. Therefore, at most two ears in \mathcal{E} have exactly one endvertex in I.

Claim B No ear P_{i} for $2 \leq i \leq l$ has its two endvertices in I.
Proof of Claim B: For contradiction, we assume that the index i with $2 \leq i \leq l$ is minimum such that P_{i} has the endvertices $v_{x}, v_{y} \in I$ for $1 \leq x<y \leq r-1$. Since $\nu\left(G_{i-1}\right)=\nu\left(G_{i}\right)-1$, the cycle C_{i} is formed by P_{i} and the subpath P^{\prime} of P between v_{x} and v_{y}. This implies that no internal vertex of P^{\prime} is an endvertex of an ear $P_{j} \in \mathcal{E} \backslash\left\{P_{i}\right\}$. Hence P_{i} is an ear of H and C_{i} is a 1-cycle-path-subgraph of H.

Let H^{\prime} arise from H by removing the ear P_{i}.
If $\nu\left(H^{\prime}\right)=\nu(H)$, we may choose $\tilde{G}_{0}=H^{\prime}, \tilde{P}_{1}=P_{i}$ and $\tilde{G}_{1}=H$ contradicting the choice of the sequence $G_{0}, G_{1}, \ldots, G_{l}$ as shortest possible. Hence $\nu\left(H^{\prime}\right)=\nu(H)-1$. This implies that H^{\prime} has an optimal cycle packing not using the edges of P^{\prime} and H is not reduced, which is a contradiction.

Claim C G_{1} does not contain a 2-cycle-path-subgraph.
Proof of Claim C: For contradiction, we assume that Q is a 2-cycle-path-subgraph of G_{1} with attachment vertices u and v. We may assume that $d_{Q}(u), d_{Q}(v) \geq 2$, i.e. that the 2 cycles C^{\prime} and $C^{\prime \prime}$ of Q are the endblocks of Q.

Clearly, for every optimal cycle packing \mathcal{C}_{1}^{\prime} of G_{1}, we have $E_{C^{\prime}} \cup E_{C^{\prime \prime}} \subseteq E_{\mathcal{C}_{1}^{\prime}}$. This implies that $E_{C^{\prime}} \cup E_{C^{\prime \prime}} \subseteq E_{\mathcal{C}_{1}}$ and, by Claims A and B , no ear in \mathcal{E} has an endvertex in $V_{Q} \backslash\{u, v\}$. Hence Q is also a 2-cycle-path-subgraph of H and H is not reduced, which is a contradiction.

Since G_{1} arises by adding the ear P_{1} to G_{0}, Claim C implies that G_{0} does not contain an s-cycle-path-subgraph for $s \geq 6$. Since every s-cycle-path-subgraph for $s \leq 5$ yields at most $2 \cdot 5+6=16$ maximal ears, this implies that the number of maximal ears of G_{0} is at most $16\left|E_{G}\right|$ and hence the number of maximal ears of G_{1} is at most $16\left|E_{G}\right|+3$.

Since H is reduced and hence has no vertex of degree 2, Claim A implies that no maximal ear of G_{1} has more than 2 internal vertices. This implies that the order $\left|V_{G_{1}}\right|$ and size $\left|E_{G_{1}}\right|$ of G_{1} is bounded in terms of the size $\left|E_{G}\right|$ of G.

Since all ears in \mathcal{E} are edges between vertices of G_{1}, the number of ears in \mathcal{E} with different endvertices is bounded in terms of $\left|V_{G_{1}}\right|$, i.e. it is bounded in terms of $\left|E_{G}\right|$.

Furthermore, since the ears in \mathcal{E} all lie in different edge-disjoint cycles, the number of ears in \mathcal{E} which have the same endvertices is bounded by the size $\left|E_{G_{1}}\right|$ of G_{1}, i.e. it is bounded in terms of $\left|E_{G}\right|$.

Altogether, G_{1} arises from G by applying a subset of a set of operations whose cardinality is bounded in terms of $\left|E_{G}\right|$, and H arises from G_{1} by applying a subset of a set of operations whose cardinality is also bounded in terms of $\left|E_{G}\right|$.

This completes the proof.
The reader should note that the proof of Theorem 3 yields a - rather unefficient algorithm which for $k \geq 1$ allows to derive $\mathcal{P}(k)$ from $\mathcal{P}(k-1)$ and has a running time which is bounded in terms of $|\mathcal{P}(k-1)|$ and the maximum size of graphs in $\mathcal{P}(k-1)$. Therefore, for every fixed k, we can - in principle - determine $\mathcal{P}(k)$ in finite time.

We finish this section with another algorithmic consequence of Theorem 3.
Let $k \in \mathbb{N}_{0}$ be fixed and let G be a fixed graph in $\mathcal{P}(k)$.
For a given 2-connected graph H as input, we can decide in polynomial time whether H extends G. The simplest argument implying this might be to consider all injective mappings of V_{G} to V_{H} and check whether the edges of G can be suitable replaced by cycle-paths in order to obtain H. This can clearly be done in polynomial time.

Therefore, in view of Lemma 1 and Theorem 3, for a given graph H as input, we can decide in polynomial time whether $\mu(H)-\nu(H)=k$. Furthermore, in view of the proof of Lemma 2, we can also efficiently construct an optimal cycle packing of H - even all of them - in this case.

$3 \quad \mathcal{P}(1)$ and $\mathcal{P}(2)$

In this section we illustrate Theorem 3 and determine $\mathcal{P}(1)$ and $\mathcal{P}(2)$ explicitly.
The following lemma captures a straightforward yet important observation which was essentially also used by the proof of Theorem 3 .

Lemma 4 Let $k \geq 1$.
(i) Every graph $H \in \mathcal{P}(k)$ arises by adding an edge to a graph G such that either $\nu(G)=$ $\nu(H)$ and G extends a graph in $\mathcal{P}(k-1)$, or $\nu(G)=\nu(H)-1$ and G extends a graph in $\mathcal{P}(k)$.
(ii) Let $\mathcal{Q} \subseteq \mathcal{P}(k)$.

If every graph H in $\mathcal{P}(k)$ which arises by adding an edge to a graph G such that either $\nu(G)=\nu(H)$ and G extends a graph in $\mathcal{P}(k-1)$, or $\nu(G)=\nu(H)-1$ and G extends a graph in \mathcal{Q}, also belongs to \mathcal{Q}, then $\mathcal{Q}=\mathcal{P}(k)$.

Proof: (i) Let $H \in \mathcal{P}(k)$ and let P be the last ear in some ear decomposition of H.
Since H is reduced, P has length 1, i.e. it is an edge. Let G arise by removing P from H.

Clearly, $\mu(G)=\mu(H)-1$ while $\nu(G)=\nu(H)$ or $\nu(G)=\nu(H)-1$.
By the definition of $\mathcal{P}(k), \nu(G)=\nu(H)$ implies that G extends a graph in $\mathcal{P}(k-1)$ and $\nu(G)=\nu(H)-1$ implies that G extends a graph in $\mathcal{P}(k)$.
(ii) Let $H \in \mathcal{P}(k)$.

Iteratively deleting edges as in (i) and reducing the constructed graphs, we obtain a sequence $G_{0}, G_{1}, \ldots, G_{l}$ such that $G_{0} \in \mathcal{P}(k-1), G_{i} \in \mathcal{P}(k)$ for $1 \leq i \leq l, G_{i}$ contains an edge e_{i} such that $G_{i}-e_{i}$ extends G_{i-1} for $1 \leq i \leq l$ and $G_{l}=H$.

Since G_{i-1} has less edges than G_{i} for $1 \leq i \leq l$, the sequence is finite.
Inductively applying the hypothesis, we obtain that $G_{i} \in \mathcal{Q}$ for $1 \leq i \leq l$, i.e. $H \in \mathcal{Q}$ which implies $\mathcal{Q}=\mathcal{P}(k)$.

Note that Lemma 4 (ii) yields a criterion to check whether some subset \mathcal{Q} of $\mathcal{P}(k)$ already contains all of $\mathcal{P}(k)$. Therefore, the proofs of the following two results reduce to tedious yet straightforward case analysis. The following result is in fact equivalent to a result in [5].

Theorem $5 \mathcal{P}(1)=\left\{K_{2}^{3}\right\}$ where K_{2}^{3} is the unique graph with two vertices and three parallel edges (cf. Figure 2).

Proof: It is easy to verify that $K_{2}^{3} \in \mathcal{P}(1)$.
Note that the only graphs extending graphs in $\mathcal{P}(0)$ are cycle-paths. This easily implies that, if $H \in \mathcal{P}(1)$ arises by adding an edge to a graph G with $\nu(G)=\nu(H)$ such that G extends a graph in $\mathcal{P}(0)$, then $H=K_{2}^{3}$.

Furthermore, if $H \in \mathcal{P}(1)$ arises by adding an edge to a graph G with $\nu(G)=\nu(H)-1$ and G extends K_{2}^{3}, then H extends K_{2}^{3}. Since H is reduced, we obtain $H=K_{2}^{3}$.

By Lemma 4 (ii), the proof is complete.

Figure $2 \mathcal{P}(1)=\left\{K_{2}^{3}\right\}$.
We say that the graphs which arise from one of the two graphs G_{1} or G_{2} in Figure 3 by contracting a subset of the edges indicated by dashed lines are generated from G_{1} or G_{2}, respectively.

Figure 3 The graphs $G_{1}, G_{2} \in \mathcal{P}(2)$.
Theorem $6 \mathcal{P}(2)$ consists of K_{4} and all graphs which are generated from G_{1} or G_{2}.

Proof: It is easy to verify that K_{4} and all graphs which are generated from G_{1} or G_{2} belong to $\mathcal{P}(2)$.

Let $H \in \mathcal{P}(2)$.
We consider different cases.
Case $1 H$ arises by adding an edge uv to a graph G with $\nu(G)=\nu(H)=1$ such that G extends K_{2}^{3}.

In this case G is a subdivision of K_{2}^{3}.
Since $\nu(H)=1$, the vertices u and v are not contained in a common maximal ear of G. This implies that $H=K_{4}$.

Case $2 H$ arises by adding an edge uv to a graph G with $\nu(G)=\nu(H) \geq 2$ such that G extends K_{2}^{3}.

In this case G has a unique optimal cycle packing \mathcal{C}.
If $d_{G}(u)=d_{G}(v)=2$ and u and v lie on a maximal ear contained in a cycle in \mathcal{C}, then $H=G_{2}$.

If $d_{G}(u)=d_{G}(v)=2$ and u and v lie in different maximal ears contained in one cycle in \mathcal{C}, then H extends K_{4}. Since $H \neq K_{4}, H$ is not reduced which is a contradiction.

If $d_{G}(u)=d_{G}(v)=2$ and u and v lie in different cycles in \mathcal{C}, then H is generated from G_{1}.

If $d_{G}(u) \geq 3, d_{G}(v)=2$ and v lies in a cycle in \mathcal{C}, then H extends K_{4}. Since $H \neq K_{4}$, H is not reduced which is a contradiction.

In all remaining subcases, H is generated from G_{2}.
Case $3 H$ arises by adding an edge uv to a graph G with $\nu(G)=\nu(H)-1$ such that G extends K_{4}.

Let $v_{1}, v_{2}, v_{3}, v_{4}$ denote the vertices of K_{4}. We may assume that G arises by replacing the edges $v_{i} v_{j}$ with $l_{i, j}$-cycle-paths $Q_{i, j}$.

Since H is reduced and $\nu(G)=\nu(H)-1$, the vertices u and v are not both contained in one of the cycle-paths $Q_{i, j}$ and we obtain that H is generated from G_{1}.

Case $4 H$ arises by adding an edge uv to a graph G with $\nu(G)=\nu(H)-1$ such that G extends a graph generated from G_{1}.

It is easy to verify that $\nu(G)=\nu(H)-1$ implies that H is generated from G_{1}.
Case $5 H$ arises by adding an edge uv to a graph G with $\nu(G)=\nu(H)-1$ such that G extends a graph generated from G_{2}.

It is easy to verify that $\nu(G)=\nu(H)-1$ implies that H is generated from K_{4} or G_{2}.
By Lemma 4 (ii), the proof is complete.

References

[1] B. Bollobás, Extremal graph theory, L. M. S. Monographs. 11. London - New York San Francisco: Academic Press. XX, 488 p. (1978).
[2] A. Caprara, Sorting Permutations by Reversals and Eulerian Cycle Decompositions, SIAM J. Discrete Math. 12 (1999), 91-110.
[3] A. Caprara, A. Panconesi, and R. Rizzi, Packing cycles in undirected graphs, J. Algorithms 48 (2003), 239-256.
[4] A. Caprara and R. Rizzi, Packing triangles in bounded degree graphs, Inf. Process. Lett. 84 (2002), 175-180.
[5] J. Degenhardt and P. Recht, On a relation between the cycle packing number and the cyclomatic number of a graph, manuscript (2008).
[6] P. Erdős and L. Pósa, On the maximal number of disjoint circuits of a graph. Publ. Math. Debrecen 9 (1962), 3-12.
[7] M. Krivelevich, Z. Nutov, M.R. Salavatipour, J. Yuster, and R. Yuster, Approximation algorithms and hardness results for cycle packing problems, ACM Trans. Algorithms $\mathbf{3}$ (2007), Article No. 48.
[8] J.W. Moon, On edge-disjoint cycles in a graph. Can. Math. Bull. 7 (1964), 519-523.
[9] D. Rautenbach and F. Regen, On packing shortest cycles in graphs, manuscript (2008).
[10] A. Schrijver, Combinatorial Optimization Polyhedra and Efficiency, Springer-Verlag Berlin Heidelberg 2004.
[11] M. Simonovits, A new proof and generalizations of a theorem of Erdős and Posa on graphs without $k+1$ independent circuits, Acta Math. Acad. Sci. Hung. 18 (1967), 191-206.
[12] H. Walther and H.-J. Voss, Über Kreise in Graphen, Berlin: VEB Deutscher Verlag der Wissenschaften. 271 S. m. 99 Abb. (1974).
[13] H. Whitney, Non-separable and planar graphs, Trans. Amer. Math. Soc. 34 (1932), 339-362.
[14] H.-J. Voss, Über die Taillenweite in Graphen, die genau k knotenunabhängige Kreise enthalten, und über die Anzahl der Knotenpunkte, die in solchen Graphen alle Kreise repräsentieren, Dissertationsschrift TH Ilmenau 1966.

