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IMPROVED UPPER BOUNDS FOR THE

INFORMATION RATES OF THE SECRET SHARING

SCHEMES INDUCED BY THE VAMOS MATROID

JESSICA RUTH METCALF-BURTON

Abstract. An access structure specifying the qualified sets of
a secret sharing scheme must have information rate less than or
equal to one. The Vamos matroid induces two non-isomorphic
access structures V1 and V6, which were shown by Mart́ı-Farré and
Padró to have information rates of at least 3/4. Beimel, Livne,
and Padró showed that the information rates of V1 and V6 are
bounded above by 10/11 and 9/10 respectively. Here we improve
those upper bounds to 19/21 for V1 and 17/19 for V6.

1. Introduction

Let P be a set of participants, among whom we would like to share
a secret. An access structure Γ on P is the collection of all subsets
of P that are qualified, i.e., allowed to reconstruct the secret. An
access structure Γ is fully determined by its minimal qualified subsets,
which are those qualified sets for which no proper subset is qualified.
Any subset of P not in Γ is called unqualified. We assume that each
participant in P belongs to some minimal qualified subset.
We may think of the secret as belonging to a special participant

called the dealer. Intuitively, a secret sharing scheme for Γ is a way for
the dealer to select a secret and deal out one or more shares to each
participant in such a way that qualified sets are able to reconstruct the
secret by combining their shares, while unqualified sets cannot learn
any information about the secret.
The efficiency of a secret sharing scheme can be measured in terms

of its information rate, a value which indicates the size of participants’
shares relative to the size of the secret. The information rate will always
be between zero and one [2]. Mart́ı-Farré and Padró [4] showed that
any access structure with information rate greater than 2

3
is induced

by a matroid.
It is not yet known how to determine the information rates of the ac-

cess structures induced by a particular matroid. One matroid currently
1
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under consideration is the Vamos matroid, which induces two non-
isomorphic access structures V1 and V6. Each of these access structures
is known to have an information rate of at least 3/4 [4], and Beimel,
Livne, and Padró showed that the information rates of V1 and V6 have
upper bounds of 10/11 and 9/10 respectively [1] (Beimel et. al. refer
to V8 rather than V1, but the two are isomorphic and V1 is notation-
ally more convenient for our purposes). Here we improve those upper
bounds to 19/21 for V1 and 17/19 for V6.

2. Secret Sharing Schemes

We now give a more precise definition of a secret sharing scheme,
following the ideas of Csirmaz [2] and Mart́ı-Farré and Padró [4]. Let
Σ be a collection of random variables consisting of one random variable
S for the secret and, for each participant x ∈ P , a random variable for
the share belonging to x.
For any participant x ∈ P , we use H(x) to denote the Shannon

entropy of the corresponding random variable, and for any nonempty
subset X ⊆ P ∪ {S}, we use H(X) to denote the joint entropy of the
random variables for all elements of X . We use H(X|Y ) to denote
conditional entropy for nonempty sets X, Y ⊆ P ∪{S}. Recall that by
definition H(X|Y ) = H(X ∪ Y )−H(Y ).
We call Σ a (perfect) secret sharing scheme for Γ if it has the follow-

ing properties:

• If X ∈ Γ then H(S|X) = 0, that is, the participants in X are
able to combine their shares to completely determine the value
of the secret.

• If X /∈ Γ then H(S|X) = H(S), that is, the uncertainty about
the secret does not change even when all participants in X pool
their shares.

Given a secret sharing scheme Σ and a participant x ∈ P , the infor-
mation rate of x is defined by

ρ(x) =
H(S)

H(x)
.

The information rate of Σ, ρ(Σ), is the minimum information rate over
all participants in P . For an access structure Γ, the information rate
ρ(Γ) is the supremum of ρ(Σ) over all Σ that are secret sharing schemes
for Γ.
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3. Normalized Entropy

Fix a (perfect) secret sharing scheme Σ. We define the normalized
entropy of a nonempty set X ⊆ P by

h(X) =
H(X)

H(S)

and the conditional normalized entropy of X given Y for nonempty sets
X, Y ⊆ P by

h(X|Y ) =
H(X|Y )

H(S)
.

The entropy function H is nonnegative. We may assume that H(S)
is strictly positive, because if H(S) = 0 then H(S|X) = 0 for every
X ⊆ P , meaning that every set of participants is qualified and there
is nothing left to investigate. Thus the normalized entropy and condi-
tional normalized entropy are well-defined. We observe that the infor-
mation rate for a participant x ∈ P is the reciprocal of the normalized
entropy for that participant:

(1) ρ(x) =
1

h(x)
.

The normalized entropy is monotone and submodular, as can be
shown by dividing through the appropriate inequalities for the entropy
function by the positive quantity H(S). Some additional useful facts
about h are described in the following lemmas. We assume that X, Y
are nonempty subsets of P . We will frequently omit the symbol for set
union, writing XY for X ∪ Y .

Lemma 1. If X ∈ Γ then h(X) = h(XS).

Proof. From the definitions of (perfect) secret sharing scheme and con-
ditional entropy, if X ∈ Γ then

0 = H(S|X) = H(XS)−H(X).

Dividing through by H(S) and rearranging gives the desired result. �

Lemma 2. If X /∈ Γ then 1 = h(XS)− h(X).

Proof. From the definitions of (perfect) secret sharing scheme and con-
ditional entropy, if X /∈ Γ then

H(S) = H(S|X) = H(XS)−H(X).

Dividing through by H(S) gives the desired result. �

Lemma 3. If X /∈ Γ but XY ∈ Γ then 1 ≤ h(XY )− h(X).
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Proof. Using the monotonicity of h and lemmas 1 and 2,

1 = h(XS)− h(X) ≤ h(XY S)− h(X) = h(XY )− h(X).

�

Lemma 3 says that if X is unqualified and adding the participants in
Y produces a qualified set, then the participants in Y must contribute
at least 1 to the normalized entropy of X . A slight reformulation of
this is the following lemma, which says that if adding a participant r
to an unqualified superset of X produces a qualified set, then r must
contribute at least 1 to the normalized entropy of X .

Lemma 4. If XY /∈ Γ but XY ∪{r} ∈ Γ then 1 ≤ h(X ∪{r})−h(X).

Proof. By lemma 3

1 ≤ h(XY ∪ {r})− h(XY )

and by the submodularity of h

h(X) + h(XY ∪ {r}) ≤ h(XY ) + h(X ∪ {r}).

If we add these inequalities, cancel terms, and rearrange, we get the
desired result. �

Lemma 5. If X ∩ Y /∈ Γ but X, Y ∈ Γ then

h(X ∩ Y ) + h(XY ) + 1 ≤ h(X) + h(Y ).

Proof. By the submodularity of h,

h((X ∩ Y )S) + h(XY S) ≤ h(XS) + h(Y S).

Since X, Y,XY ∈ Γ, adding S to any of these sets does not change
their normalized entropy. However, by lemma 2

h((X ∩ Y )S) = h(X ∩ Y ) + 1.

�

4. Matroids and Secret Sharing Schemes

A matroid M over a finite set Q is a collection I, called the indepen-
dent subsets of Q, such that

• the empty set is independent,
• subsets of independent sets are independent, and
• if X, Y are independent with |X| = |Y |+ 1 there is x ∈ X \ Y
such that Y ∪ {x} is independent.
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Any set that is not independent is dependent. Maximal independent
sets are called bases, and minimal dependent sets are called circuits. A
matroid may also be specified in terms of its bases or circuits. For a
more thorough introduction to matroids we refer the reader to [5].
Given a matroid M over Q, each element x ∈ Q induces an access

structure Γx over the participants Q \ {x}. The minimal qualified sets
of Γx are those subsets Y ⊆ Q\{x} for which Y ∪{x} is a circuit in the
matroid M . Intuitively, if Y ∪ {x} is a circuit then the value of x can
be determined from the elements of Y . More discussion of matroids
and access structures may be found in [4].

5. The Vamos Matroid

We define the Vamos matroid on the set {v1, . . . , v8} as follows. First
define the Vamos pairs A, B, C, and D by A = {v1, v2}, B = {v3, v4},
C = {v5, v6}, and D = {v7, v8}. The Vamos matroid on ABCD is the
matroid whose independent sets are all sets of size less than 5 except
for the sets AB, AC, BC, BD, and CD. Thus the sets AB, AC, BC,
BD, and CD are circuits in the Vamos matroid. Any set of fewer than
4 elements is independent, and any set with more than four elements
is dependent.
In the following discussion when we speak about circuits, indepen-

dent sets, and dependent sets, we mean these terms with respect to the
Vamos matroid.
Because of symmetries there are, up to isomorphism, two access

structures induced by the Vamos matroid. One is the structure V1,
where v1 is the dealer. The other is V6, where v6 is the dealer. For
convenience we shall consider each of V1 and V6 to be an access struc-
ture on eight participants, thinking of the dealer as a participant who
is individually qualified to recover the secret. Recall that the other
minimal qualified sets will be those sets of participants who, with the
inclusion of the dealer, form a circuit in the Vamos matroid. Note that
this means any qualified set which does not contain the dealer must
include at least 3 participants.
As in [1], for a fixed secret sharing scheme Σ on V1 or V6 we define

λ =

(

max
1≤i≤8

h(Pi)

)

− 1

so that for each participant

(2) h(vi) ≤ 1 + λ.
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We note that by equation (1) the information rate of the scheme will
then be

(3) ρ(Σ) = min
1≤i≤8

1

h(Pi)
=

1

1 + λ
.

Lemma 6. Let X, Y be distinct Vamos pairs with XY a circuit. If the
dealer is a member of Y , then

(i) h(Y |X) ≤ 1 + λ
(ii) h(X|Y ) ≤ 1 + 2λ.

Proof. Let Y = {s, t} where s is the dealer, and let X = {p, q}.

(i) Since XY is a circuit containing the dealer, X ∪ {t} is a qualified
set. Thus by lemma 1, the submodularity of h, and equation (2),

h(Y |X) = h({t}|X) ≤ h({t}) ≤ 1 + λ.

(ii) The set {p, t} is unqualified, as it is a set of size 2 that does not
include the dealer. The set X∪{t} is qualified. Thus by lemma 5,

h({p, t}) + h(XY ) + 1 ≤ h({p} ∪ Y ) + h(X ∪ {t}).

Subtracting h(Y ) from both sides, rearranging, and using equa-
tion (2) gives us

h(X|Y ) ≤ h({p}|Y ) + h({q}|{p, t})− 1

≤ h({p}) + h({q})− 1

≤ 2(1 + λ)− 1

= 1 + 2λ.

�

Lemma 7. Let X, Y be distinct Vamos pairs with XY a circuit. If
neither X nor Y contains the dealer, then

h(Y |X) ≤ 1 + 3λ.

Proof. Let Y = {p, q}. Take r to be one of the two participants that is
neither in XY nor in the Vamos pair of the dealer. Then we will have
X ∪ {r} /∈ Γ, since adding the dealer to these three elements does not
produce a circuit. We will have X ∪{p, r}, X∪{q, r} ∈ Γ, since each of
these is an independent set with four participants. Then by lemma 5
we have

h(X ∪ {r}) + h(XY ∪ {r}) + 1 ≤ h(X ∪ {p, r}) + h(X ∪ {q, r}).

Since XY /∈ Γ, by lemma 3 we have

h(XY ) + 1 ≤ h(XY ∪ {r}).
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We get the following from the submodularity of h:

h(X ∪ {p}) ≤ h(X) + h({p})

h(X ∪ {p, r}) ≤ h(X ∪ {p}) + h({r})

h(X ∪ {q, r}) ≤ h(X ∪ {r}) + h({q}).

Finally, from equation (2),

h({p}) ≤ 1 + λ

h({q}) ≤ 1 + λ

h({r}) ≤ 1 + λ.

Adding the inequalities above, canceling terms, and writing as condi-
tional entropy gives us the bound specified. �

Lemma 8. Let X, Y be distinct Vamos pairs with XY independent. If
the dealer is not a member of X, then

2 ≤ h(Y |X).

Proof. Case 1: Assume that the dealer is not a member of Y .
Let Y = {p, q}. Since XY is qualified but X ∪ {p}, X ∪ {q} are not,

by lemma 3 we get the inequalities

1 ≤h(XY )− h(X ∪ {p})

1 ≤h(XY )− h(X ∪ {q}).

By the submodularity of h,

h(XY ) + h(X) ≤ h(X ∪ {p}) + h(X ∪ {q}).

Adding the above three inequalities, canceling terms, and rearranging
gives the desired result.
Case 2: Assume that Y = {s, t} where s is the dealer. Since XY is

independent, X ∪ {t} is unqualified. Thus by lemma 2

1 ≤ h(XY )− h(X ∪ {t}).

Let r be any participant not in XY . Then X ∪ {r} is also unqualified.
Since X ∪ {t, r} is qualified, lemma 4 tells us that

1 ≤ h(X ∪ {t})− h(X).

Adding the above two inequalities gives the desired result. �

Although the previous lemma is stated in general terms, it will only
apply to the Vamos pairs A and D, as any other two distinct Vamos
pairs are dependent.
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6. New Bounds For Lambda

In [1] Beimel, Livne, and Padró found by looking at the Zhang-Yeung
non-Shannon inequality [6] that when v6 is the dealer, 1/9 ≤ λ, and
when v1 is the dealer, 1/10 ≤ λ. Here we improve those bounds by
looking at other non-Shannon inequalities from [3].

Theorem 9. If the dealer is a member of C, then 2/17 ≤ λ.

Proof. We use Dougherty, Freiling, and Zeger’s inequality (i) from [3],
which may be written

0 ≤− 3h(A)− 5h(B)− 3h(C) + 8h(AB)(DFZi)

+ 6h(AC)− 2h(AD) + 6h(BC) + 2h(BD)

+ 2h(CD)− 9h(ABC)− 2h(BCD).

Since A,AB,BD /∈ Γ and ABC,BCD,AD ∈ Γ, from lemmas 3, 4, and
8 we obtain the following inequalities, which we add to (DFZi) with
the indicated multiplicities:

9[1 ≤ h(ABC)− h(AB)]

2[1 ≤ h(BCD)− h(BD)]

2[2 ≤ h(AD)− h(A)]

1 ≤ h(AB)− h(A).

After canceling terms, the sum of inequalities yields

16 ≤ −6h(A)− 5h(B)− 3h(C) + 6h(AC) + 6h(BC) + 2h(CD).

Rearranging, we obtain

16 ≤ 6[h(AC)− h(A)] + 5[h(BC)− h(B)]

+[h(BC)− h(C)] + 2[h(CD)− h(C)]

which may be further rewritten as

16 ≤ 6h(C|A) + 5h(C|B) + h(B|C) + 2h(D|C).

Replacing each conditional normalized entropy by its upper bound from
lemma 6, we get

16 ≤ 6(1 + λ) + 5(1 + λ) + (1 + 2λ) + 2(1 + 2λ).

This simplifies to

16 ≤ 14 + 17λ

and we conclude that 2/17 ≤ λ. �

Theorem 10. If the dealer is a member of A, then 2/19 ≤ λ.
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Proof. We begin with inequality (iv) from [3], which is

0 ≤− h(A)− 5h(B)− 5h(C) + 6h(AB)(DFZiv)

+ 6h(AC)− 2h(AD) + 8h(BC) + 2h(BD)

+ 2h(CD)− 9h(ABC)− 2h(BCD).

To this we add four inequalities (with indicated multiplicities) to
cancel out the terms with h(AD), h(ABC), and h(BCD).
Since AD ∈ Γ but D /∈ Γ, by lemma 8

2[2 ≤ h(AD)− h(D)].

Since ABC,BCD ∈ Γ and BC,CD /∈ Γ, by lemma 3

9[1 ≤h(ABC)− h(BC)]

2[1 ≤h(BCD)− h(CD)].

Finally, since C combined with either participant in D will still be
an unqualified set, by lemma 4 we have

1 ≤ h(BC)− h(C).

After adding the above inequalities to (DFZiv), simplifying, and can-
celing terms we are left with

16 ≤ −h(A)− 5h(B)− 6h(C)− 2h(D) + 6h(AB)

+6h(AC) + 2h(BD)

which can be rearranged into

16 ≤ 5h(A|B) + h(B|A) + 6h(A|C) + 2h(B|D).

Using the bounds found in lemmas 6 and 7, we have

16 ≤ 5(1 + λ) + (1 + 2λ) + 6(1 + λ) + 2(1 + 3λ)

and we conclude that 2/19 ≤ λ.
�

The method of canceling terms used here was generalized and applied
to the other inequalities in [3], after appropriate permutations of letters
in the other inequalities. However, only bounds for λ weaker than those
shown here were obtained.
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7. Conclusion

By theorem 9 and equation (3), for any secret sharing scheme Σ on
V6 we have

ρ(Σ) =
1

1 + λ
≤

17

19
and thus by the definition of information rate for an access structure,

ρ(V6) ≤
17

19
.

Similarly, by theorem 10 and equation (3),

ρ(V1) ≤
19

21
.

These are improvements to the best previously known upper bounds
for the information rates of the access structures induced by the Vamos
matroid.
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