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0 Locally finite graphs with ends: a topological approach.

III. Fundamental group and homology

Reinhard Diestel and Philipp Sprüssel

Abstract

This paper is the last part of a comprehensive survey of a newly emerging
field: a topological approach to the study of locally finite graphs that
crucially incorporates their ends. Topological arcs and circles, which may
pass through ends, assume the role played in finite graphs by paths and
cycles. The first two parts of the survey together provide a suitable entry
point to this field for new readers; they are available in combined form
from the ArXiv [2].

The topological approach indicated above has made it possible to ex-
tend to locally finite graphs many classical theorems of finite graph theory
that do not extend verbatim. While the first part [3] of this survey intro-
duces the theory as such and the second part [4] is devoted to those appli-
cations, this third part looks at the theory from an algebraic-topological
point of view.

The results surveyed here include both a combinatorial description
of the fundamental group of a locally finite graph with ends and the
homology aspects of this space.

1 Introduction

The survey [2] describes a topological framework in which many well-known
theorems about finite graphs that appear to fail for infinite graphs do have a
natural infinite analogue. It has been realised in recent years that many such
theorems, especially about paths and cycles, work in a slightly richer setting:
not in the (locally finite) graph G itself, but in its compactification |G| obtained
by adding its ends.1 In this setting, the traditional cycle space of a graph is
replaced by its topological cycle space. The topological cycle space C = C(G) of
a locally finite graph G is based on (the edge sets of) topological circles in |G|,
homeomorphic images of the unit circle S1, allowing infinite sums as long as they
are thin, that is, every edge appears in only finitely many summands. Since the
topological cycle space C(G) was introduced [5, 6], it has proved surprisingly
successful; see [2, 4] for numerous applications.

Given the success of C for graphs, it seems desirable to recast its definition
in homological terms that make no reference to the one-dimensional character
of |G| (e.g., to circles), to obtain a homology theory for similar but more general
spaces (such as non-compact CW complexes of any dimension) that implements
the ideas and advantages of C more generally. This approach has been pursued

1For a formal definition of |G| see [2].
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in [7, 9, 8]. In this paper we present its main ideas, results and examples. For
simplicity, all our coefficients will be taken from F2.

For such an extendable translation of our combinatorial definition of C into
algebraic terms, simplicial homology is easily seen not to be the right approach:
while |G| is not a simplicial complex, the simplicial homology of G itself (without
ends) yields the classical cycle space Cfin. One way of extending simplicial
homology to more general spaces is Čech homology; and indeed we will show
that its first group applied to |G| is isomorphic to C. But there the usefulness of
Čech homology for graphs ends: since its groups are constructed as limits rather
than directly from chains and cycles, they do not interact with the combinatorial
structure of G in the way we expect and know it from C.

The next candidate for the desired description of C in terms of homology is
singular homology. Indeed, C is built from circles in |G|, and circles are singular
1-cycles that generate the first singular homology group H1(|G|) of |G|, so both
groups are built from similar elements. On the face of it, it is not clear whether
C might in fact be isomorphic, even canonically, to H1(|G|). However, it will
turn out that it is not: in [9] we prove that C is always a natural quotient of
H1(|G|), and this quotient is proper unless G is essentially finite. This may
seem surprising, since C is defined via (thin) infinite sums while all sums in
the definition of H1(|G|) are finite, which suggests that C might be larger than
H1(|G|).

Our approach for the comparison of C and H1(|G|) will be to define a homo-
morphism from Z1(|G|) to the edge space E that counts how often the edges of
G are traversed by the simplices of a 1-cycle z, and maps z to the set of those
edges that are traversed an odd number of times. It will turn out that this
homomorphism vanishes on boundaries and that its image is precisely C. Hence
it defines an epimorphism f : H1(|G|) → C(G). However, we will show that f
is not normally injective. Indeed, there will be loops that traverse every edge
evenly often (even equally often in either direction), but which can be shown
not with some effort to be null-homologous. Thus, C is a genuinely new object,
also from a topological point of view.

For our proof that those loops are not null-homologous we shall need a better
understanding of the fundamental group of |G|. This will enable us to define an
invariant on 1-chains in |G| that can distinguish certain 1-cycles from boundaries
of singular 2-chains, hence completing the proof that f need not be injective.
The fundamental group of a finite graph G is easy to describe: it is the free
group on the (oriented) chords of a spanning tree of G, the edges of G that are
not edges of the spanning tree. For the Freudenthal compactification of infinite
graphs, the situation is different, since a loop in |G| can traverse infinitely many
chords while the elements of a free group are always finite sums of its generators.

One of the main aims of this project, therefore, became to develop a combi-
natorial description of the fundamental group of the space |G| for an arbitrary
connected locally finite graph G. In [7] we describe π1(|G|), as for finite G,
in terms of reduced words in the oriented chords of a spanning tree. However,
when G is infinite this does not work with arbitrary spanning trees but only with
topological spanning trees. Moreover, we will have to allow infinite words of any
countable order type, and likewise allow the reduction sequences cancelling ad-
jacent inverse letters to have arbitrary countable order type. However, these
reductions can also be described in terms of word reductions in the free groups
FI on all the finite subsets I of chords, which enables us to embed the group
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F∞ of infinite reduced words as a subgroup in the inverse limit of those FI , and
handle it in this form. On the other hand, mapping a loop in |G| to the sequence
of chords it traverses, and then reducing that sequence (or word), turns out to
be well defined on homotopy classes and hence defines an embedding of π1(|G|)
as a subgroup in F∞.

Having proved that C is usually a proper quotient of H1(|G|), the last aim
of this project then was to define a variant of singular homology that works in
more general spaces, and which for graphs captures precisely C. First steps in
this direction were taken in [9]; it was completed in [8]. Our hope with this
translation was to stimulate further work in two directions. One is that its new
topological guise should make the cycle space accessible to topological methods
that might generate some windfall for the study of graphs. And conversely, that
as the approach that gave rise to C is made accessible for more general spaces—
in particular, for CW complexes of higher dimensions—its proven usefulness for
graphs might find some more general topological analogues.

The key to the definition of C, and to its success, is that it treats ends
differently from other points. To preserve this feature, our new homology theory
is constructed for locally compact Hausdorff spaces X with a fixed Hausdorff
compactification X̂, in which the compacification points play the role of ends.

2 Čech homology

The Čech homology of a space is an alternative to singular homology for spaces
that are not simplicial complexes. For a general spaceX , the nth Čech homology
group Ȟn(X) is the inverse limit of the homology groups of simplicial complexes
induced by open covers of X .2 In the case of X = |G|, one can compute the
groups Ȟn(X) more directly. To do so, fix a normal spanning tree T of G, with
root r say, and denote the subtree of T induced by the first i levels by Ti. Let Gi

be the finite graph obtained from G by contracting each component of G− Ti;
then Ȟn(X) is the inverse limit of the family

(

Hn(Gi),≤
)

i∈N
. Since C(G) is

the inverse limit of the groups H1(Gi), we have

Theorem 2.1 ([9]). For a locally finite graph G we have a canonical isomor-
phism Ȟ1(|G|) ≃ C(G).

Theorem 2.1 shows that one can describe the topological cycle space in
terms of the Čech homology. However, although Ȟ1(|G|) is isomorphic to C(G)
as a group, it does not sufficiently reflect the combinatorial properties of C(G),
its interaction with the combinatorial structure of G. To make this precise,
note that a number of classical results about the cycle space say which circuits
generate it—as do the non-separating chordless circuits in a 3-connected graph,
say. In the Čech homology, however, it is not possible to decide whether a given
homology class in Ȟ1(|G|) corresponds to a circuit. Indeed, the obvious relation
between Ȟ1(|G|) and the combinatorial structure of G is that every homology
class c ∈ Ȟ1(|G|) corresponds to a family (cn) of homology classes in the groups
H1(Gn). One might think that the class c should correspond to a circuit in
|G| if and only if every cn with sufficiently large n corresponds to a circuit in
Gn. But this is not the case: the limit of a sequence of cycle space elements in

2See [9] for a formal definition.
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the Gn can be a circuit even if the elements of the sequence are not circuits in
the Gn.

r

TT

r

cc

Figure 1: The graph G (drawn twice) with a normal spanning tree T and a
circuit c.

Let G be the graph shown in Figure 1. G consists of a ‘wide ladder’ with
three ‘poles’ x11, x

1
2, . . . , x

2
1, x

2
2, . . . , and x31, x

3
2, . . . , and has attached infinitely

many (oridinary) ladders by identifying the first rung of the nth ladder Ln with
the edge x12n−1x

1
2n. It is not hard to prove that T from Figure 1 is a normal

spanning tree of G with root r = x11.

r

V (T4)

v4

0

c4c4

G4

r

V (T10)

c10c10

v10

0

v10

1

G10

Figure 2: The edge sets c4 in G4 and c10 in G10.

The edge set c from Figure 1 is a circuit, but each edge set cn it induces on
a contracted graph Gn with n = 6k+4 is not a circuit (Figure 2). Indeed, each
G6k+4 consists of G[V (T6k+4)], for each i with 1 ≤ i ≤ k a vertex v6k+4

i corre-
sponding to a contracted tail of the ladder Li, and a vertex v6k+4

0 corresponding
to the contracted tail of the wide ladder and all ladders Lj with j > k. The
edge set c6k+4 is not a circuit since it has degree 4 at v6k+4

0 . Therefore, c is a
circuit although it is the limit of the non-circuits c6k+4.

One can easily manipulate the example so that no cn with n large enough
is a circuit by attaching copies H1, . . . , H5 of G to G by connecting the vertices
of the first rung of the wide ladder in Hi to some suitable vertices of Li.
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3 Singular homology

A more subtle approach than Čech homology, which has been pursued in [9], is
to see to what extent C(G) can be captured by the singular homology of |G|.
After all, C(G) was defined via (the edge sets of) circles in |G|, which are just
injective singular loops. Can we extend this correspondence between injective
loops and circuits to one between H1(|G|) (singular) and C(G)?

There are two things to notice about H1(|G|). The first is that we can
subdivide a 1-simplex (or concatenate two 1-simplices into one by the inverse
procedure) by adding a boundary. Indeed, if σ : [0, 1] → |G| is a path in |G|
from x to y, say, and z is a point on that path, there are paths σ′ from x to z
and σ′′ from z to y such that σ′+σ′′−σ is the boundary of a singular 2-simplex
‘squeezed’ on to the image of σ. The second fact to notice is that inverse paths
cancel in pairs: if σ+ is an x–y path in |G|, and σ− an y–x path with the same
image as σ+, then [σ+ + σ−] = 0 ∈ H1.

3 These two facts together imply that
every homology class in H1 is represented by a single loop: given any 1-cycle, we
first add pairs of inverse paths between the endpoints of its simplices to make its
image connected in the right way, and then use Euler’s theorem to concatenate
the 1-simplices of the resulting chain into a single loop σ. Moreover, we may
assume that this loop is based at a vertex.

To establish the desired correspondence betweenH1(|G|) and C(G), we would
like to assign to a homology class in H1(|G|), represented by a single loop σ, an
edge set f([σ]) ∈ C(G). Intuitively, we do this by counting for each edge e of
G how often σ traverses it entirely (which, since the domain of σ is compact,
is a finite number of times), and let f([σ]) be the set of those edges e for
which this number is odd. Using the usual tools of homology theory, one can
make this precise in such a way that f is clearly a well defined homomorphism
H1(|G|)→ E(G),4 and whose image is easily seen to be C(G). What is not clear
at once is whether f is 1–1 and onto.

Surprisingly, f is indeed surjective—and this is not even hard to show. In-
deed, let an edge set D ∈ C(G) be given. Our task is to find a loop σ that
traverses every edge in D an odd number of times, and every other edge of G
an even number of times. As a first approximation, we let σ0 be a path that
traverses every edge of some fixed normal spanning tree of G exactly twice, once
in each direction; see [2, Sec. 3.3] for how to construct such a loop. Moreover,
we construct σ0 in such a way that it pauses at every vertex v—more precisely,
so that σ−1

0 (v) is a union of finitely many closed intervals at least one of which
is non-trivial. Next, we write D as a thin sum D =

∑

i Ci of circuits; such a
representation of D exists by definition of C(G). For each of these Ci we pick a
vertex vi ∈ Ci, noting that no vertex of G gets picked infinitely often, because
it has only finitely many incident edges and the Ci form a thin family. Finally,
we turn σ0 into the desired loop σ by expanding the pause at each vertex v to a
loop going once round every Ci with v = vi. It is not hard to show that σ is con-
tinuous [9], and clearly it traverses every edge of G the desired number of times.

3To see that this sum is a boundary, subtract the constant 1-simplex σ with value x: there
is an obvious singular 2-simplex of which σ+ + σ− − σ is the boundary. Subtracting σ is
allowed, since σ = σ + σ − σ, too, is a boundary: of the constant 2-simplex with value x.

4For each edge e, let fe : |G| → S1 be a map wrapping e once round S1 and mapping all
of |G| \ e̊ to one point of S1. Let π denote the group isomorphism H1(S1) → F2. Given
h ∈ H1(|G|), let f(h) := { e | (π ◦ (fe)∗)(h) = 1 ∈ F2 }. See [9] for details.
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Equally surprisingly, perhaps, f is usually not injective (see below). In
summary, therefore, the topological cycle space C(G) of G is related to the first
singular homology group of G as follows:

Theorem 3.1 ([9]). The map f : H1(|G|) → E(G) is a group homomorphism
onto C(G), which has a non-trivial kernel if and only if G contains infinitely
many (finite) circuits.

An example of a non-null-homologous loop in |G| whose homology class maps
to the empty edge set ∅ ∈ C(G) is easy to describe. Let G be the one-way infinite
ladder L (with its end on the right), and define a loop ρ in L, as follows. We
start at time 0 at the top-left vertex, v0 say, and begin by going round the first
square of G in a clockwise direction. This takes us back to v0. We then move
along the horizontal edge incident with v0, to its right neighbour v1. From here,
we go round the second square in a clockwise direction, back to v1 and on to its
right neighbour v2. We repeat this move until we reach the end ω of G on the
right, say at time 1

2 ∈ [0, 1]. So far, we have traversed the first vertical edge and
every bottom horizontal edge once (in the direction towards v0), every other
vertical edge twice (once in each direction), and every top horizontal edge twice
in the direction towards the end. From there, we now use the remaining half of
our time to go round the infinite circle formed by the first vertical edge and all
the horizontal edges one and a half times, in such a way that we end at time 1
back at v0 and have traversed every edge of L equally often in each direction.
Clearly, f maps (the homology class of) this loop ρ to 0 ∈ C(L).

ω

ρv0 v1 v2 v3 v4

Figure 3: The loop ρ is not null-homologous, but f([ρ]) = ∅.

The loop ρ is indeed not null-homologous [9], but it seems non-trivial to show
this. To see why this is hard, let us compare ρ to a loop winding round a finite
ladder in a similar fashion, traversing every edge once in each direction. Such
a loop σ is still not null-homotopic, but it is null-homologous. To see this, we
subdivide it into single edges: we find a finite collection of 1-simplices σi, four for
every edge on the topp and two for every other edge, such that [σ] =

[
∑

i σi
]

and
every σi just traverses its edge. Next, we pair up these σi into cancelling pairs:
if σi and σj traverse the same edge e (in opposite directions), then [σi+σj ] = 0.
Hence [σ] =

[
∑

i σi
]

= 0, as claimed. But we cannot imitate this proof for ρ and
the infinite ladder, because homology classes in H1(|G|) are still finite chains:
we cannot add infinitely many boundaries to subdivide ρ infinitely often.

As it happened, the proof of the seemingly simple fact that ρ is not null-
homologous took a detour via the solution of a much more fundamental problem:
the problem of understanding the fundamental group of |L|, or more generally,
of |G| for a locally finite graph G. In order to distinguish ρ from boundaries,
we looked for a numerical invariant Λ of 1-chains that was non-zero on ρ but
both linear and additive (so that Λ(σ1σ2) = Λ(σ1 + σ2) = Λ(σ1) + Λ(σ2) for
concatenations of 1-simplices σ1, σ2) and invariant under homotopies (so that
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Λ(σ1σ2) = Λ(σ) when σ ∼ σ1σ2). Then, given a 2-simplex τ with boundary
∂τ = σ1+σ2−σ, we would have Λ(∂τ) = Λ(σ1σ2)−Λ(σ) = 0, so Λ would vanish
on all boundaries but not on ρ. We did not quite find such an invariant Λ, but
a collection of similar invariants which, together, can distinguish loops like ρ
from boundaries.

4 The fundamental group of |G|

In this section we will sketch the combinatorial description of π1(|G|) given in [7].
Our description involves infinite words and their reductions in a ‘continuous’
setting, and embedding the group they form as a subgroup of a limit of finitely
generated free groups.

Let G be a locally finite connected graph, fixed throughout this section, and
let T be a topological spanning tree of |G|. When G is finite, then π1(|G|) =
π1(G) is the free group F on the set {e0, . . . , en} of chords of any fixed span-
ning tree. The standard description of F is given in terms of reduced words
of those oriented chords, where reduction is performed by cancelling adjacent
inverse pairs of letters such as →ei

←ei or ←ei
→ei. The map assigning to a path in

|G| the sequence of (oriented) chords it traverses defines the canonical group
isomorphism between π1(|G|) and F ; in particular, reducing the words obtained
from homotopic paths yields the same reduced word.

Our description of π1(|G|) when G is infinite is similar in spirit, but more
complex. We start not with an arbitrary spanning tree but with a topological
spanning tree of |G|. Then every path in |G| defines as its ‘trace’ an infinite word
in the oriented chords of that tree, as before. However, these words can have
any countable order type, and it is no longer clear how to define the reduction
of words in a way that captures homotopy of paths.

Consider the following example. Let G be the infinite ladder, with a topo-
logical spanning tree T consisting of one side of the ladder, all its rungs, and its
unique end ω (Figure 4). The path running along the bottom side of the ladder
and back is a null-homotopic loop. Since it traces the chords →e0,

→e1, . . . all the
way to ω and then returns the same way, the infinite word →e0

→e1 . . .
←e1
←e0 should

reduce to the empty word. But it contains no cancelling pair of letters, such as
→ei
←ei or

←ei
→ei.

T
ω

→

e0

→

e1

Figure 4: The infinite ladder and its topological spanning tree T (bold edges)

This simple example suggests that some transfinite equivalent of cancelling
pairs of letters, such as cancelling inverse pairs of infinite sequences of letters,
might lead to a suitable notion of reduction. However, in graphs with infinitely
many ends one can have null-homotopic loops whose trace of chords contains
no cancelling pair of subsequences whatsoever:

Example 4.1. We construct a locally finite graph G and a null-homotopic loop
σ in |G| whose trace of chords contains no cancelling pair of subsequences, of
any order type.
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Let T be the binary tree with root r. Like in [2, pp. 30–31] we can construct
a loop σ in |T | that traverses every edge of T once in each direction, see Figure 5.

Figure 5: A loop running twice through each edge of the binary tree.

The loop σ is easily seen to be null-homotopic. It is also easy to check that
no sequence of passes of σ through the edges of T is followed immediately by
the inverse of this sequence.

The edges of T are not chords of a topological spanning tree, but this can
be achieved by changing the graph: just double every edge.5 The new edges
together with all vertices and ends then form a topological spanning tree in the
resulting graph G, whose chords are the original edges of our tree T , and σ is
still a (null-homotopic) loop in |G|.

Example 4.1 shows that there is no hope of capturing homotopies of loops
in terms of word reduction defined recursively by cancelling pairs of inverse
adjacent subwords, finite or infinite. We shall therefore define the reduction
of infinite words differently, though only slightly. We shall still cancel inverse
letters in pairs, even only one at a time, and these reduction ‘steps’ will be
ordered linearly (rather unlike the simultaneous dissolution of all the chords
by the homotopy in the example). However, the reduction steps will not be
well-ordered.

This definition of reduction is less straightforward, but it has an important
property: as for finite G, it will be purely combinatorial in terms of letters,
their inverses, and their linear order, making no reference to the interpretation
of those letters as chords and their relative positions under the topology of |G|.

Another problem, however, is more serious: since the reduction steps are not
well-ordered, it will be difficult to handle reductions—e.g. to prove that every
word reduces to a unique reduced word, or that word reduction captures the
homotopy of loops, i.e. that traces of homotopic loops can always be reduced
to the same word. The key to solving these problems will lie in the observation
that the property of being reduced can be characterized in terms of all the finite
subwords of a given word. We shall formalize this observation by way of an
embedding of our group F∞ of infinite words in the inverse limit F ∗ of the free
groups on the finite subsets of letters.

5And subdivide the new edges once, in case you prefer to obtain a simple graph instead of
a graph with multiple edges.
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A word is a map

w : S → A := {→e0,
→e1, . . . } ∪ {

←e0,
←e1, . . . }

(the letter ←ei being the inverse of →ei), where S is a totally ordered (countable)
set, the set of positions of (the letters used by) w, and every letter has only
finitely many preimages in S. A reduction of a word w is a totally ordered set R
of disjoint pairs of positions of w such that the positions in each pair are mapped
to inverse letters and are adjacent in the word obtained from w by deleting all
(positions of) letters contained in earlier pairs in R. We say that w reduces to
the word w ↾(S \

⋃

R). If w has no nonempty reduction, we call it reduced. Note
that neither the set S of positions of a word w nor a reduction of w have to be
well-ordered.

It was shown in [7] that every word w reduces to a unique word r(w)6 and
hence the reduced words form a group F∞. It was also shown that F∞ embeds
canonically in the inverse limit of the groups Fn, the free groups on the sets
{e0, . . . , en}.

On the other hand, the fundamental group of |G| embeds in F∞: Mapping
a homotopy class 〈α〉 to the word r(wα), where wα is the trace of α, the word
induced by the passes of α through the chords of T (with their natural order
given by α), turns out to be well-defined; in other words, the traces of homotopic
loops reduce to the same word. The harder part is to show the converse: that
two loops are homotopic whenever their traces reduce to the same word. In [7],
it was shown that the homotopy can even be chosen so that it contracts pairs
of passes, one at a time, like known from finite graphs.

The map 〈α〉 7→ r(wα) is not normally surjective. For example, →e0
→e1 · · ·

will always be a reduced word, but no loop in |G| can pass through these chords
in precisely this order if they do not converge to an end. Hence if there is a
non-converging sequence of chords—which is the case whenever there are two
ends of G with no contractible neighbourhood in |G|—then the reduced word
→e0
→e1 · · · lies outside the image of our map 〈α〉 7→ r(wα).
In order to describe the image of this map precisely, let us call a word

w : S → A monotonic if there is an enumeration s0, s1, . . . of S such that either
s0 < s1 < · · · or s0 > s1 > · · · . Let us say that w converges if the sequence of
chords corresponding to its sequence w(s0), w(s1), . . . of letters converges. If w
is the trace of a loop in |G|, then by the continuity of this path all the monotonic
subwords of w—and hence those of r(w)—converge. It was shown in [7] that
the converse is also true: A reduced word is the trace of a loop in |G| if and
only if all its monotonic subwords converge.

We can now summarize our combinatorial description of π1(|G|) as follows.

Theorem 4.2 ([7]). Let G be a locally finite connected graph, let T be a topo-
logical spanning tree of |G|, and let e0, e1, . . . be its chords.

(i) The map 〈α〉 7→ r(wα) is an injective homomorphism from π1(|G|) to the
group F∞ of reduced finite or infinite words in {→e0,

→e1, . . . }∪{
←e0,

←e1, . . . }.
Its image consists of those reduced words whose monotonic subwords all
converge in |G|.

6Unique as an abstract word, not as a restiction of w: The word →e0
←e0
→e0, for example,

reduces to →e0, but this letter can have the first or the last position in the original word
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(ii) The homomorphisms w 7→ r(w ↾I) from F∞ to FI embed F∞ as a subgroup
in lim
←−

FI . It consists of those elements of lim
←−

FI whose projections r(w ↾

I) use each letter only boundedly often. (The bound may depend on the
letter.)

Theorem 4.2 provides an interesting interaction between the topological cy-
cle space of G and the fundamental group of |G|: It is a well-known fact that
the first (singular) homology group of a space is the abelianization of its fun-
damental group. For graphs, this yields that the (classical) cycle space of G is
the abelianization of π1(G). Theorem 4.2 implies an analoguous result for the
topological cycle space: It is the strong abelianization of π1(|G|) [11, Theorem
6.19], the quotient of π1(|G|) obtained by factoring out all words in which every
letter appears as often as its inverse.

5 An ad-hoc homology for locally compact spaces

In this section we take up the thread of defining C(G) in terms of homology.
We have seen that Čech homology—although its first group is isomorphic to the
topological cycle space—fails to properly reflect its relation to the combinatorial
structure of G. For this reason, we shall keep at our singular approach to define
C in terms of homology. Since by Theorem 3.1 standard singular homology is
not the right theory to capture

→

C , we shall define a singular-type homology that
does so.

As advertised in Section 1, we shall define our homology for locally compact
Hausdorff spaces with a (fixed) Hausdorff compactification. Recall that these
properties are needed to reflect the properties of G and |G| that are fundamental
for the success of C. Therefore, this class of spaces is the broadest for which
we can hope to obtain a homology theory with similar properties as C. Note
that this class includes, for instance, all locally finite CW-complexes, of any
dimension.

Loops like the one in Figure 3 suggest that our homology should allow to
subdivide a 1-simplex infinitely often: Then, every 1-chain in |G| will be ho-
mologous to the sum of its passes through edges of G, and hence it will be
null-homologous if and only if it lies in the kernel of f . The idea is thus to de-
fine the homology so that we obtain essentially the same 1-cycles as in standard
singular homology but more boundaries.

The construction of C is based on the idea to consider not only the graph
itself but also its ends. Nevertheless, although ends do not play a different role
in the definition of C than points in G, elements of C do behave differently at
ends. Indeed, elements of C are thin sums of circuits, and as G is locally finite,
these circuits are also ‘thin’ at vertices, i.e. every vertex lies in only finitely
many of the closures of the circuits in the family. This does not have to be the
case for ends: An end can lie in the closures of infinitely many circuits, even
when the circuits form a thin family.

This suggests to require a similar property from the chains in our homology:
They will have to be locally finite in G but not at ends.7 This will enable us to
subdivide paths in |G| infinitely often, but the required locally finiteness in G
will keep us from obtaining undesired cycles, such as the edges of a double-ray

7The formal definition of ‘locally finite’ will be given shortly.
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(all directed the same way), which has zero boundary but does not correspond
to an element of the cycle space. In the ad-hoc homology we shall define in
this section we will rule out such cycles by imposing an additional condition on
cycles. This will lead to the desired result in dimension 1, i.e. our first homology
group will be C, but generate problems elsewhere. More precisely, this homology
will fail to satisfy the Eilenberg-Steenrod axioms for homology, which is caused
precisely by this restriction on cycles.

In [8] we thus change our approach slightly: Instead of restricting the group
of cycles we define chains differently, so as to obtain 1-cycles that are essentially
finite and 2-cycles that allow us to subdivide 1-simplices infinitely often. This
homology theory then satisfies the axioms [8]. On the other hand, the proof
that this homology theory specializes in dimension 1 to yield C relies on the
corresponding result for the ad-hoc homology defined in this section. Moreover,
it introduces some of the main ideas from [8] in a technically simpler setting.

Let X be a locally compact Hausdorff space and let X̂ be a Hausdorff com-
pactification of X . (See e.g. [1] for more on such spaces.) Note that every
locally compact Hausdorff space is Tychonoff, and thus has a Hausdorff com-
pactification. Although we do not make any assumptions on the type of the
compactification, apart from being Hausdorff, we will call the points in X̂ \X
ends, even if they are not ends in the usual, more restrictive, sense.

Let us call a family (σi | i ∈ I) of singular n-simplices in X̂ admissible if

(i) (σi | i ∈ I) is locally finite in X , that is, every x ∈ X has a neighbourhood
in X that meets the image of σi for only finitely many i;

(ii) every σi maps the 0-faces of ∆n to X .

Note that as X is locally compact, (i) is equivalent to asking that every compact
subspace of X meets the image of σi for only finitely many i. Condition (ii),
like (i), underscores that ends are not treated on a par with the points in X :
we allow them to occur on infinitely many σi (which (i) forbids for points of
X), but not in the fundamental role of images of 0-faces: all simplices must be
‘rooted’ in X .

When (σi | i ∈ I) is an admissible family of n-simplices, any formal lin-
ear combination

∑

i∈I λiσi with all λi ∈ Z is an n-sum in X .8 We regard
n-sums

∑

i∈I λiσi and
∑

j∈J µjτj as equivalent if for every n-simplex ρ we have
∑

i∈I,σi=ρ λi =
∑

j∈J,τj=ρ µj . Note that these sums are well-defined since an
n-simplex can occur only finitely many times in an admissible family. We write
Cn(X) for the group of n-chains, the equivalence classes of n-sums. The ele-
ments of an n-chain are its representations. Clearly every n-chain c has a unique
representation whose simplices are pairwise distinct—which we call the reduced
representation of c—, but we shall consider other representations too. The sub-
group of Cn(X) consisting of those n-chains that have a finite representation is
denoted by C′

n(X).
The boundary operators ∂n : Cn → Cn−1 are defined by extending linearly

from ∂nσi, which are defined as usual in singular homology. Note that ∂n is well
defined (i.e., that it preserves the required local finiteness), and ∂n−1∂n = 0.
Chains in Im ∂ will be called boundaries.

8In standard singular homology, one does not usually distinguish between formal sums and
chains. It will become apparent soon why we have to make this distinction.
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As n-cycles, we do not take the entire kernel of ∂n. Rather, we define
Z ′

n(X) := Ker (∂n ↾C
′

n(X)), and let Zn(X) be the set of those n-chains that are
sums of such finite cycles:

Zn(X) :=
{

ϕ ∈ Cn(X)
∣

∣

∣
ϕ =

∑

j∈J

zj with zj ∈ Z
′

n(X) ∀j ∈ J
}

.

More precisely, an n-chain ϕ ∈ Cn(X) shall lie in Zn(X) if it has a representation
∑

i∈I λiσi for which I admits a partition into finite sets Ij (j ∈ J) such that,
for every j ∈ J , the n-chain zj ∈ C′

n(X) represented by
∑

i∈Ij
λiσi lies in

Z ′

n(X). Any such representation of ϕ as a formal sum will be called a standard
representation of ϕ as a cycle.9 We call the elements of Zn(X) the n-cycles
of X .

The chains in Bn(X) := Im ∂n+1 then form a subgroup of Zn(X): by defi-
nition, they can be written as

∑

j∈J λjzj where each zj is the (finite) boundary
of a singular (n+ 1)-simplex. We therefore have homology groups

Hn(X) := Zn(X)/Bn(X)

as usual.
Note that if X is compact, then all admissible families and hence all chains

are finite, so the homology defined above coincides with the usual singular ho-
mology. The characteristic feature of this homology is that while infinite cycles
are allowed, they are always of ‘finite character’: in any standard representation
of an infinite cycle, every finite subchain is contained in a larger finite subchain
that is already a cycle.

Let us look at an example which might indicate whether we obtain the
desired cycles in order to capture the topological cycle space. Consider the
double ladder. This is the 2-ended graph G with vertices vn and v′n for all
integers n, and with edges en from vn to vn+1, edges e

′

n from v′n to v′n+1, and
edges fn from vn to v′n. The 1-simplices corresponding to these edges, oriented
in their natural directions, are θen , θe′n , and θfn , see Figure 6.

v−1 v0 v1

v′
−1 v′

0
v′
1

f−1 f0 f1

e−2 e1

e′
−2

e′
1

ϕ

ϕ′

Figure 6: The 1-chains ϕ and ϕ′ in the double ladder.

In order to let the elements of our homology be defined, let Ĝ be any Haus-
dorff compactification of G. (One could, for instance, choose the Freudenthal
compactification |G| of G.) For the infinite chains ϕ and ϕ′ represented by

∑

θen
and

∑

θe′n , respectively, and for ψ := ϕ− ϕ′ we have ∂ϕ = ∂ϕ′ = ∂ψ = 0, and
neither sum as written above contains a finite cycle. However, we can rewrite

9Since the σi need not be distinct, ϕ has many representations by formal sums. Not all of
these need admit a partition as indicated—an example will be given later in the section.
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ψ as ψ =
∑

zn with finite cycles zn = θen + θfn+1
− θe′n − θfn . This shows that

ψ ∈ Z1(G), although this was not visible from its original representation.
By contrast, one can show that ϕ /∈ Z1(G) if Ĝ is the Freudenthal compact-

ification of G. This is proved in [9], but is not obvious. For example, one might
try to represent ϕ as ϕ =

∑

∞

n=1 z
′

n with z′n := θe−n
+ θn−1 + θen − θn, where

θn : [0, 1]→ e−n ∪ · · · ∪ en maps 0 to v−n and 1 to vn+1, see Figure 7.

θe
−1 θe0

= θ0 θe1

θ1

z′
1

:
θe
−2 θe2

θ2

z′
2

:

v−2 v−1 v0 v1 v2 v3ϕ :

Figure 7: Finite cycles summing to ϕ—by an inadmissible sum.

This representation of ϕ, however, although well defined as a formal sum
(since every simplex occurs at most twice), is not a legal 1-sum, because its
family of simplices is not locally finite and hence not admissible. (The point v0,
for instance, lies in every simplex θi.)

This homology indeed captures the cycle space [9]. To see this, note that
since infinite chains are allowed, we can add infinitely many boundaries to a loop
like in Figure 3 so as to subdivide it into its edge passes. Note that the family
of boundaries we add has to be locally finite and it is not obvious that this
can always be satisfied. (See [9] for how to choose the boundaries.) Therefore,
two chains are homologous if both of them traverse each edge of G the same
number of times. Together with the fact that the homomorphism f from the first
singular homology group H1(|G|) to C(G) can be extended to a homomorphism
H1(G)→ C(G) [9], this implies that H1(G) and C(G) are isomorphic.

Theorem 5.1 ([9]). If G is a locally finite graph and Ĝ = |G|, then H1(G) is
canonically isomorhic to C(G).

Note that it does not suffice to require the chains to be locally finite withour
any further assumptions, as it is the case for the locally finite homology defined
in [10]: This homology does not capture the cycle space. Indeed, applied to
|G| it yields the usual singular homology, since every locally finite chain in a
compact space is finite. On the other hand, applied to G, the locally finite
homology allows for chains like ϕ above, which do not correspond to an element
of the cycle space.

As mentioned before, the ad-hoc homology defined above does not satisfy
the Eilenberg-Steenrod axioms for homology. (For an example, as well as a
listing of the axioms, see [8].) This is caused by the fact that the cycles are not
chosen to be the entire kernel of ∂ but with the additional property that they
are a locally finite sum of finite cycles.

For this reason, we develop in [8] a homology that does satisfy the axioms
and that is defined without further assumptions on the cycles. Like before,
we define this homology for locally compact Hausdorff spaces X with a fixed
Hausdorff compactification X̂. For this homology to capture C(G) we have
to allow infinite chains, since chains like (the chain consisting of) the loop in
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Figure 3 have to be null-homologous in our homology—as they correspond to the
empty edge set in G—but are not the boundary of a finite chain. On the other
hand, we cannot allow all locally finite chains, as this would yield the locally
finite homology mentioned above. The solution to this dilemma is surprisingly
simple: We allow only those simplices to appear infinitely often in a chain that
are needed to subdivide a path, or more generally, a simplex. This will enable
us to subdivide simplices into their edge passes and the isomorphism between
our new homology and C(G) will follow like for the ad-hoc homology above.

A main feature of the simplices whose boundaries we need to subdivide a
path σ is that they are in a sense ‘one-dimensional’: they can be written as
the composition of a map ∆2 → ∆1 and σ.10 This leads us to the following
definition: Call a singular n-simplex τ in X̂ degenerate if there is a compact
Hausdorff space Xτ of topological dimension less than n such that τ can be
written as the composition of continuous maps ∆n → Xτ → X̂.

We would now like to say that we only allow chains (that have a represen-
tation) with all but finitely many simplices degenerate. This would not be a
proper definition of ‘chain’ since the boundary of a chain would not have to
be a chain in this case. This can easily be remedied: Call a chain good if it
has the above property. We now allow all n-chains that are the sum of a good
n-chain and the boundary of a good (n+1)-chain. This homology turns out to
satisfy all the Eilenberg-Steenrod axioms [8], and the fact that all 2-simplices
in the one-dimensional space |G| are degenerate implies that we indeed obtain
the right boundaries. Hence

Theorem 5.2 ([8]). If G is a locally finite graph and Ĝ = |G|, then the first
group H1(G) of the new homology is canonically isomorphic to C(G).
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