
ar
X

iv
:1

00
6.

55
96

v2
  [

m
at

h.
C

O
]  

21
 M

ar
 2

01
1

List precoloring extension in planar graphs

Maria Axenovich∗† Joan P. Hutchinson‡ Michelle A. Lastrina†

March 21, 2011

Abstract

A celebrated result of Thomassen states that not only can every planar graph be colored properly with

five colors, but no matter how arbitrary palettes of five colors are assigned to vertices, one can choose a

color from the corresponding palette for each vertex so that the resulting coloring is proper. This result

is referred to as 5-choosability of planar graphs. Albertson asked whether Thomassen’s theorem can

be extended by precoloring some vertices which are at a large enough distance apart in a graph. Here,

among others, we answer the question in the case when the graph does not contain short cycles separating

precolored vertices and when there is a “wide” Steiner tree containing all the precolored vertices.

1 Introduction

Let G be a graph, let L : V (G) → 2N be an assignment of lists of colors to vertices of G. We say that a
coloring c : V (G) → N is an L-coloring, or proper coloring from lists L if c(v) ∈ L(v) for v ∈ V (G), and
c(u) 6= c(v) if uv ∈ E(G). When such an L-coloring occurs, we say that G is L-colorable. For extensive
literature on list-colorings of planar graphs we refer the reader to [3, 5, 7, 8, 10, 11]. Thomassen [7] proved
that if G is a planar graph and |L(v)| = 5 for each vertex v ∈ V (G), then G is L-colorable. Let P be a
subset of vertices in a graph G. We say that a precoloring of P is extendable to a 5-list coloring of G if for
every list assignment L : V (G) → 2N, such that |L(v)| = 1 for v ∈ P and |L(v)| = 5 for v ∈ V (G)− P , G is
L-colorable. Albertson [1] posed the following question.

Let G be a plane graph. Is there a d > 0 such that whenever P ⊂ V is such that the distance between
every pair of vertices of P is at least d, then every precoloring of P extends to a 5-list coloring of G?

Here, the distance dist(x, y) between a pair of vertices x and y is the number of edges in a shortest path
joining them. Tuza and Voigt showed in [9], see also [12], that the condition of a large distance between
precolored vertices is essential by finding a planar graph G with a set of precolored vertices at pairwise
distance at least 4 such that the precoloring is not extendable to a 5-list coloring of G. So, the distance d in
the above question should be at least 5. Does this question have a positive answer if d ≥ 1000? The original
theorem of Thomassen [7] implies that if there are two adjacent precolored vertices assigned distinct colors,
then the precoloring is extendable to a 5-list coloring of G. Böhme et al. [2] described when the precoloring
of vertices on a short face with at most six vertices can be extended to a 5-list coloring of a planar graph.

In this manuscript, we introduce a technique using shortest paths in planar graphs which allows us to
answer Albertson’s question for a wide class of planar graphs. We prove that a proper precoloring of a pair
of vertices can always be extended to a 5-list coloring of a planar graph provided they are not separated by
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3- or 4-cycles. We also provide results about extensions of precolorings of vertices on one face. Finally, we
answer Albertson’s question in the case where there are no 3- or 4-cycles separating precolored vertices and
there is a special tree containing all of the precolored vertices.

To state our main results in all their generality, we need to define several notions. We say a set of vertices
X separates a set of vertices P in a connected graph G if there are at least two vertices of P contained in
distinct connected components of G−X . If X is an i-vertex set separating P in G and spanning Ci, we say
G contains a P -separating Ci. If X separates V (G) we say X separates G, or X is a separating set in G.
For a set of vertices P in a graph G, dist(P ) = dist(P,G) is the smallest distance in G between two vertices
of P . For a path S, with endpoints u and v, we say a vertex w is central if the distances in S from w to u

and from w to v differ by at most 1. Note there are at most two central vertices in S. For graph theoretic
terminology not defined here, we refer the reader to [13].

Definition 1 Let G be a planar graph, P a subset of vertices of G. Fix a positive integer d. Let T be a tree
with P ⊆ V (T ). Let the set of special vertices be the union of P and the set of vertices of degree either 1
or at least 3 in T . A path in T with special vertices as endpoints and containing no other special vertices is
called a branch of T .

We say a tree T is (P, d)-Steiner if
(1) every branch has length at least 2d,
(2) every branch is a shortest (in G) path between its endpoints,
(3) if vc is a center of a branch of T , then a shortest (in G) path between vc and every vertex in another
branch has length at least d, and
(4) no two vertices of T from distinct branches have a common neighbor outside of T nor are they adjacent.

For example, when P = {u, v} is a set of two vertices at distance 30 from each other, a shortest (u, v)-path
is a (P, 15)-Steiner tree with a single branch.

We say that a set X of four vertices of degree at most 5 in a graph G forms the configuration D = D(X),
if G[X ] is isomorphic to K4 − e. See Figure 1a for an illustration of D.
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Figure 1: Reducible configurations.

We say that a set X of seven vertices of degree at most 6 in a graph G forms the configurationW = W (X),
if G[X ] induces a 6-wheel, formed from a central vertex w adjacent to a 6-cycle x1, x2, x3, x4, x5, x6, x1 such
that x2, x3, x5 and x6 have degree at most 5 in G. See Figure 1b for an illustration of W .

For a graph G and a set of precolored vertices P , let R(G) = R(G,P ), a reduction of G, be a graph
obtained by one of the following operations: (1) for a separating C3 or C4 that does not separate P , remove
from G the vertices and edges in the region that is bounded by the separating C3 or C4 and that does not
contain any vertices of P , (2) for a configuration D = D(X) such that P ∩X = ∅, remove X from G, or (3)
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for a configuration W = W (X) such that P ∩X = ∅, remove X from G. If none of these operations can be
carried out, let R(G) = G.

Consider a sequence of graphs G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gm such that Gi = R(Gi−1, P ) for i = 1, . . . ,m
and R(Gm) = Gm. Call such a graphGm a reduced graph of G. A reduced graph does not have a separating
C3 or C4 that does not separate P and it contains no configurations D(X) or W (X) with P ∩X = ∅. We
shall show that if a reduced graph of G has a coloring extension of P , then so does G.

We now state the main results of this manuscript.

Theorem 1 Let G be a plane graph, let P be a set of vertices such that there is no P -separating C3 or C4 in
G. If there is a reduced graph of G that has a (P, 45)-Steiner tree, then every precoloring of P is extendable
to a proper 5-list coloring of G.

Theorem 2 Let G be a plane graph and u, v ∈ V (G). If G has no {u, v}-separating C3 or C4, then every
proper precoloring of {u, v} is extendable to a proper 5-list coloring of G.

Theorem 3 Let G be a plane graph and C a set of vertices of a facial cycle of G. Let P = {v0, v1, . . . , vk−1} ⊆
C, where the vertices of P are labeled cyclically around C. Then every proper precoloring of P is extendable
to a 5-list coloring of G if one of the following conditions holds:

1. G[P ] consists of disjoint vertices and edges with pairwise distance at least 3,

2. k ≤ 6 and none of the following occur:

(a) There is a vertex u ∈ V (G) − P adjacent to at least five vertices of P such that L(u) consists of
the colors assigned to those five vertices.

(b) k = 6 and there is an edge u0u1 and a color α such that, for i = 0, 1, the vertex ui is adjacent
to v3i+1, v3i+2, v3i+3, v3i+4, where addition of indices is modulo k, and L(ui) consists precisely of
the colors assigned to those four vertices and α.

(c) k = 6 and there is a triangle (u0, u1, u2) and colors α, β, such that, for i = 0, 1, 2, the vertex ui

is adjacent to v2i+1, v2i+2, v2i+3, where addition of indices is modulo k, and L(ui) consists of the
colors assigned to those three vertices and α, β.

Theorem 4 Let P be a set of vertices in a plane graph G, dist(P ) ≥ 3, such that there are two faces F1, F2

where the vertices of P lie on the boundaries of F1 and F2. Assume G contains no P -separating C3 or
separating C4. Then every precoloring of P is extendable to a proper 5-list coloring of G.

The rest of the paper is organized as follows. In Section 2 we state known results mentioned above in
detail and prove some technical lemmas. We prove all of the theorems in Section 3. Finally, we state open
problems and comments in Section 4.

2 Preliminaries

Theorem 5 (Thomassen’s 5-list coloring theorem [7],[6]) Let G be a plane graph, F the set of vertices
of a face of G, L : V (G) → 2N an assignment of lists of colors to vertices of G such that |L(w)| = 5 for
all w 6∈ F , |L(u)| = |L(v)| = 1 with L(u) 6= L(v) for some adjacent vertices u, v ∈ F , and |L(w)| = 3 for
w ∈ F − {u, v}. Then G is L-colorable.
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Theorem 6 (Tuza-Voigt [9]) There is a planar graph G and a set P of vertices with dist(P ) ≥ 4 and an
assignment of lists of size 3 to vertices of P and lists of size 5 to the remaining vertices such that G is not
colorable from these lists.

Theorem 7 (Böhme, et al. [2]) Let G = (V,E) be a plane graph with facial cycle C of length k ≤ 6,
where the vertices of C are labeled cyclically v0, v1, . . . , vk−1. If |L(v)| = 1 for v ∈ V (C), |L(v)| = 5 for
v ∈ V − V (C), and G[V (C)] is L-colorable, then G is L-colorable unless one of the following occurs:

1. There is a vertex u ∈ V − V (C) adjacent to five vertices in C and L(u) consists exactly of the colors
assigned to those five vertices.

2. k = 6 and there is an edge u0u1, u0, u1 6∈ V (C) and a color α such that, for i = 0, 1, the vertex ui is
adjacent to v3i+1, v3i+2, v3i+3, v3i+4, where addition of indices is modulo k, and L(ui) consists precisely
of the colors assigned to those four vertices and α.

3. k = 6 and there is a triangle (u0, u1, u2), u0, u1, u2 6∈ V (C) and colors α, β, such that, for i = 0, 1, 2,
the vertex ui is adjacent to v2i+1, v2i+2, v2i+3, where addition of indices is modulo k, and L(ui) consists
of the colors assigned to those three vertices and α, β.

See Figure 2 for illustrations of the forbidden configurations described in conditions 2 and 3 of Theorem
7. Note how these compare to the forbidden configurations of Theorem 3.
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Figure 2: Forbidden configurations.

For a vertex v ∈ V (G), we denote N(v) = N(v,G) the neighborhood of v in G. For a vertex v and a set of
vertices X , we write v ∼ X if v is adjacent to all vertices in X . Let H be a subgraph of G and c be a vertex
coloring of H . For v 6∈ V (H), let c(v,H) = {c(u) : u ∈ N(v) ∩ V (H)} be the set of colors used on neighbors
of v in H . Let d(v,H) = |N(v)∩ V (H)| be the size of the neighborhood of v in H . For a vertex set X in G,
let N(X) = N(G[X ]) be the set of neighbors of vertices from X not in X . For an induced subgraph H of
G and v ∈ V (G) − V (H), let Lc(v,H) = L(v)− c(v,H). When the subgraph H is clear, we use Lc(v). We
say H is colored nicely by a coloring c with respect to lists L if c is an L-coloring of H and for every vertex
v ∈ N(H), |Lc(v,H)| ≥ 3. We also say c is a nice coloring of H in this case. A vertex from N(H) adjacent
to at least three vertices in H is called a three-neighbor, or simply 3-neighbor, of H . We denote the set of
3-neighbors of H by N3(H).

Definition 2 Let Q(H) = G[H ∪N3(H)] be the subgraph of G induced by vertices of H and its 3-neighbors.

For a path S = v0, v1, . . . , vm, and two vertices vi, vj of S we write viSvj to denote the subpath vi, vi+1, . . . , vj−1, vj
of S.
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The following proposition is almost identical to Thomassen’s theorem 5.3 of [6], with the added condition
that H contains all precolored vertices. The proof is included for completeness.

Proposition 1 Let G be a planar graph and P a set of vertices. Let L be an assignment of lists of colors
such that |L(v)| = 1 for v ∈ P and |L(v)| = 5 for v ∈ V (G)−P . If there is an induced connected subgraph H

of G containing all vertices from P such that it can be nicely colored with respect to L, then G is L-colorable.

Note if d(v,H) ≤ 2 for each v 6∈ V (H) then every proper coloring of H is a nice coloring.

Proof. Consider a nice coloring c of H . Then |Lc(v,H)| ≥ 3 for all v ∈ N(H) and |Lc(v,H)| = 5 for all
v ∈ G − V (H). Therefore, by Thomassen’s theorem, G− V (H) is Lc-colorable. Together with the coloring
c of H , this gives a proper L-coloring of G as Lc(v) ⊂ L(v) for all v ∈ G− V (H). 2

Lemma 1 Let S be a shortest (u, v)-path in a planar graph G, where S = v0, v1, . . . , vm with u = v0, v = vm.
Then the following properties hold:
(1) for all w ∈ N(S), d(w, S) ≤ 3,
(2) for every x, y ∈ V (S), x 6∼ y in G unless {x, y} = {vi, vi+1}, for i = 0, . . . ,m− 1,
(3) if d(w, S) = 3 for some w ∈ N(S), then w ∼ {vi, vi+1, vi+2}, for i = 0, 1, . . . ,m− 2,
(4) if there is no separating C3 or C4 in G, then for each i with i = 0, 1, . . . ,m − 2 there is at most one
vertex w ∈ N(S) such that w ∼ {vi, vi+1, vi+2}.

Proof. Items (1)-(3) hold because S is a shortest (u, v)-path. To see the validity of item (4), assume there
are two vertices adjacent to vi, vi+1, vi+2. Then it is easy to verify that there is either a separating C3 or a
separating C4 in G. 2

Note that Lemma 1 implies that if S is a shortest path between two vertices of a planar graphG, then every
block of Q(S) with at least three vertices of S has vertex set {vi, vi+1, . . . , vi+k, wi+1, wi+2, . . . , wi+k−1},
for some k ≥ 2, where vi, . . . , vi+k are consecutive vertices of S and wi+j ∼ {vi+j−1, vi+j , vi+j+1}, for
j = 1, . . . , k − 1. Observe that because S is a shortest path and there are no separating C3s or C4s in G,
the vertices of Q(S)− S form an independent set. We call a block of Q(S) with i vertices of S an i-block,
i = 2, 3, 4, . . .. See Figure 3 for examples of blocks in Q(S). Note also that the block-cut-vertex tree of Q(S)
is a path. Note that if Q(S) has a cut-edge, that edge is in S, and if Q(S) has a cut-vertex, that vertex

Figure 3: Blocks in Q(S), where the bold line indicates S.

is in S. We shall need a notion of a nontrivial block which will allow us to focus on subpaths of S and
not worry about the boundary conditions. For a shortest (u′, v′)-path T ′, we say an edge e is a nontrivial
cut-edge of Q(T ′) if e is a cut-edge not incident to either u′ or v′; we say B is a nontrivial block of
Q(T ′) if B is a block that does not contain u′ or v′. We say a block B is a remote nontrivial block of
Q(T ′) if |V (B) ∩ V (B1)| = |V (B) ∩ V (B2)| = 1 where B1 and B2 are distinct nontrivial blocks of Q(T ′).
Let u′, v′ ∈ V (S) and let T ′ = u′Sv′. If e is a nontrivial cut-edge in Q(T ′), then it is easy to see that e is a
cut-edge in Q(S); if B is a nontrivial block of Q(T ′), then B is a block of Q(S).
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Lemma 2 Let S be a shortest (u, v)-path in a planar graph G, where S = v0, v1, . . . , vm with u = v0 and
v = vm. Let G have no separating C3 and no separating C4. Let L : V (G) → 2N be an assignment
of lists of colors to the vertices of G where |L(u)| = |L(v1)| = 1 with L(u) 6= L(v1) and |L(x)| = 5 for
x ∈ S ∪N(S)− {u, v1}. Then S can be nicely colored with respect to L.

Proof. Assume v0Svi+1, where i+2 ≤ m, has been colored nicely by c and c(vi) = 1, c(vi+1) = 2. If there is
no w ∈ N(S) such that w ∼ {vi, vi+1, vi+2}, then color vi+2 arbitrarily from its list so that c(vi+1) 6= c(vi+2).
If there is a w ∈ N(S) such that w ∼ {vi, vi+1, vi+2}, choose a color for vi+2 more carefully. If 1 or 2 is not
in L(w), then choose c(vi+2) from L(vi+2) − {2}. Otherwise, L(w) = {1, 2, α, β, γ}, for some colors α, β, γ.
If 1 ∈ L(vi+2), let c(vi+2) = 1. If 1 6∈ L(vi+2), then there is a ∈ L(vi+2) − L(w). Let c(vi+2) = a. In each
case, we have constructed a nice coloring of v0Svi+2. Since |L(vj)| = 5 for j = 2, . . . ,m, the above argument
may be applied along S up through v so that S is nicely colored. 2

Lemma 3 Let S be a shortest (u, v)-path in a planar graph G, where S = v0, v1, v2, . . . , vm with u = v0 and
v = vm. Let G have no separating C3 and no separating C4. Let L : V (G) → 2N be an assignment of lists of
colors to the vertices of G where |L(u)| = |L(v)| = 4 and |L(x)| = 5 for x ∈ S ∪N(S)− {u, v}. Then S can
be nicely colored with respect to L.

Proof. The proof is by induction on |V (S)|.
If |V (S)| ≤ 2, the statement follows trivially. If |V (S)| = 3, we can assume that there is a vertex w, where
w ∼ {v0, v1, v2}, otherwise color S properly from L. If c0 ∈ L(v0)∩L(v2) for some c0, let c(v0) = c(v2) = c0
and color v1 arbitrarily from L(v1)−{c0}. If L(v0)∩L(v2) = ∅, then |L(v0)∪L(v2)| = 8 and there is a color
c0 ∈ (L(v0) ∪ L(v2)) − L(w). Assume without loss of generality that c0 ∈ L(v0). Then let c(v0) = c0, and
color v1, v2 arbitrarily from their lists so the path v0, v1, v2 is properly colored. As a result |Lc(w)| ≥ 3.

Now assume the result holds for shortest paths on fewer than m+ 1 vertices. Let |V (S)| = m+ 1. Color
v0Svm−1 nicely with a coloring c. If there is no vertex outside of S adjacent to vm−2, vm−1 and v, then
choose c(v) from L(v) − {c(vm−1)}. This gives a nice coloring of S. So assume there is a vertex w ∈ N(S)
such that w ∼ {vm−2, vm−1, v}.

If c(vm−1) 6∈ L(w) or c(vm−2) 6∈ L(w), then let c(v) ∈ L(v) − {c(vm−1)}. If c(vm−1) ∈ L(w) − L(v) and
c(vm−2) ∈ L(w)−L(v), then L(v) contains a color not in L(w). Assign this color to v to obtain a nice coloring
of S. So we can assume c(vm−2) or c(vm−1) ∈ L(v) ∩L(w). If c(vm−2) ∈ L(v), let c(v) = c(vm−2) providing
a nice coloring of S. Thus we can assume L(v) = {c1, c2, c3, c4}, a = c(vm−2) 6= ci for all i = 1, 2, 3, 4, and
L(w) = {a, c1, c2, c3, c4}.

Apply induction to v0Svm−2 in the graph G′ induced in G by this path and its neighbors, with a new
list L(vm−2) − {a} assigned to vm−2 and all other old lists. There is a nice coloring c′ of v0Svm−2 in G′.
Note that it is a nice coloring of v0Svm−2 in G. We either have c′(vm−2) = ci, for some i = 1, 2, 3, 4,
or c′(vm−2) 6∈ L(w). If c′(vm−2) 6∈ L(w), color vm−1 first so that if there is w′ ∼ {vm−3, vm−2, vm−1},
then |Lc′(w

′)| ≥ 3. Then let c′(v) ∈ L(v) − {c′(vm−1)}. If c′(vm−2) = ci, without loss of generality say
c′(vm−2) = c1, then let c′(v) = c1 and color vm−1 so that |Lc′(w

′)| ≥ 3. 2

Lemma 4 Let S be a shortest (u, v)-path in a planar graph G, where S = v0, v1, . . . , vm with u = v0 and
v = vm. Let G have no separating C3 and no separating C4. Let L : V (G) → 2N be an assignment of lists of
colors to the vertices of G with |L(u)| = |L(v)| = 1 and |L(x)| = 5 for x ∈ S ∪N(S)−{u, v}. Assume Q(S)
has at least two cut-edges. Then S can be nicely colored with respect to L.

Proof. Let vkvk+1 and vlvl+1 be two cut-edges of Q(S), where 0 ≤ k < l < m. Using Lemma 2 color v0Svk
and vl+1Svm nicely with a coloring c. If vk+1 = vl, we are done by giving vl a color different from c(vk) and
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c(vl+1). Otherwise, delete c(vk) from L(vk+1), delete c(vl+1) from L(vl) and color vk+1Svl nicely from the
updated lists using Lemma 3. Since v0Svk, vk+1Svl, and vl+1Svm do not have pairwise common neighbors
in N3(S), this gives a nicely colored S. 2

The next lemma is a key lemma in this paper, stating that either a given shortest path between two
precolored vertices could be nicely colored, or another subgraph that is close to that path could be nicely
colored.

For a path T ′, a center vc of T ′, and an even positive integer d ≤ |V (T ′)| − 1, we call the two vertices of
T ′ at distance (in T ′) 1

2
d from vc the d-tag vertices with respect to vc, or simply tag vertices, of T ′.

Lemma 5 Let S be a shortest (u, v)-path in a planar graph G with a center vc and 40-tag vertices u∗, v∗

with respect to vc, where S = v0, v1, . . . , vm with v0 = u and vm = v. Assume G contains no separating C3

or C4 and no configuration D(X) or W (X) with {u, v} ∩ X = ∅. Let L : V (G) → 2N be an assignment of
lists of colors to the vertices of G such that |L(u)| = |L(v)| = 1 and |L(x)| = 5 for x ∈ V (G)− {u, v}. Then
there is a connected graph H = H(S, u, v) = uSu∗ ∪H ′ ∪ v∗Sv such that every vertex of H ′ is at distance at
most 21 from vc, and H can be nicely colored from L.

Proof. Recall that every vertex in V −V (S) is adjacent to at most three vertices in S, and if a vertex from
Q(S)− S is adjacent to vertices in S, these vertices in S must be consecutive.

Observation 1. If Q(S) has a p-block B, for a p ≥ 6, then there is a shortest (u, v)-path S′ such that Q(S′)
has a nontrivial cut-edge.

Let B contain vi, vi+1, . . . , vi+5 and vertices wi+k not in V (S), where wi+k ∼ {vi+k−1, vi+k, vi+k+1}, for
k = 1, 2, 3, 4. Consider the shortest (u, v)-path

S′ = v0, v1, . . . , vi, wi+1, vi+2, vi+3, wi+4, vi+5, . . . , vm.

Then it is a routine check to see that vi+2vi+3 is a nontrivial cut-edge in Q(S′), as shown in Figure 4.
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v v
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Figure 4: Note that vi+2vi+3 is a nontrivial cut-edge in Q(S′).

Observation 2. We can assume at least one of the following holds:
(1) for every shortest (u∗, vc)-path S′, each nontrivial block of Q(S′) is either a 3-, 4-, or 5-block,
(2) for every shortest (vc, v

∗)-path S′, each nontrivial block of Q(S′) is either a 3-, 4-, or 5-block.

If there is a shortest (u∗, vc)-path T ′ such that Q(T ′) has a nontrivial cut-edge and there is a shortest
(vc, v

∗)-path T ′′ such that Q(T ′′) has a nontrivial cut-edge, then Lemma 4 implies uSu∗T ′vcT
′′v∗Sv can

be nicely colored. Assume, without loss of generality that for every shortest (u∗, vc)-path S′, Q(S′) has no
nontrivial cut-edges. Then Observation 1 implies there is no p-block of Q(S′) with p ≥ 6.

Assume that part (1) of Observation 2 holds. Let u′ = u∗, v′ = vc. Let T be a shortest (u′, v′)-path with
the largest number of 3-neighbors.
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Observation 3. If, for some shortest (u′, v′)-path T with maximum number of 3-neighbors, Q(T ) has a
nontrivial 3-block, then there is a graph H(S, u, v) satisfying the conditions of the lemma.

If such a block B were to exist, say with consecutive vertices xi, xi+1, xi+2 of T and w 6∈ V (T ), w ∼
{xi, xi+1, xi+2}, then there is no vertex w′ 6∈ S ∪ T , such that w′ is adjacent to w and two other vertices
of T , otherwise there is a shortest (u′, v′)-path with more 3-neighbors than T . Let H(S, u, v) be the graph
induced by vertices of uSu′Tv′Sv and w. Nicely color uSu′Txi and nicely color xi+2Tv

′Sv, then properly
color w and xi+1 from remaining available colors in their lists. Since there is no 3-neighbor of H(S, u, v)
adjacent to xi+1 and there is no such 3-neighbor adjacent to w, this coloring is a nice coloring of H(S, u, v).

Thus, we can assume that all nontrivial blocks of Q(T ) are 4- or 5-blocks. Since dist(u′, v′) = 20, there are
remote nontrivial blocks in Q(T ).

Observation 4. If Q(T ) has a remote 5-block for some shortest (u′, v′)-path T with maximum number of
3-neighbors, then there is a graph H(S, u, v) satisfying the conditions of the lemma.

Assume there is such a block B with consecutive vertices xi, xi+1, xi+2, xi+3, xi+4 of T and vertices wi+1,
wi+2,wi+3 not in T such that wk ∼ {xk−1, xk, xk+1}, for k = i+ 1, i+ 2, i+ 3. From Observation 3, we can
assume that every nontrivial block of Q(T ) is either a 4- or a 5-block.

Note first that there is no vertex w adjacent to wi+1 and two vertices of T , and there is no vertex w adjacent
to wi+3 and two vertices of T . Indeed, assume otherwise that there is a vertex w adjacent to wi+1 and two
vertices of T . Then w ∼ {xi−1, xi, wi+1}. Since all nontrivial blocks of T have at least four vertices of T ,
and there are nontrivial blocks B1 and B2 of Q(T ) such that |V (B) ∩ V (B1)| = |V (B) ∩ V (B2)| = 1, we see
there is a vertex wi−1 adjacent to {xi−2, xi−1, xi} and there is a vertex wi−2 adjacent to {xi−3, xi−2, xi−1},
as shown in Figure 5. Then u′Txi−3, xi−2, xi−1, xi, wi+1, xi+2Tv

′ is a shortest (u′, v′)-path T ′′ with a block

T’’

1x0

w1

x3
x4

5x

w2 w5

x6 x7

w6w4

x1x0

w1

x3
x4

5x

w2 w5

x6 x7

w6w4

x2x2

u’ v’

B

T

u’ v’

w

x

Figure 5: Example corresponding to a case of Observation 4.

in Q(T ′′) having at least six vertices of T ′′, as can be seen in Figure 5. This is a contradiction to Observation
2. Similarly, it is impossible to have a vertex w adjacent to wi+3 and two vertices of T .

Assume now that there is no vertex w adjacent to wi+1 and wi+3 and a vertex of T . Let H(S, u, v) be
a graph induced by vertices of uSu′Tv′Sv and wi+1, wi+3, as shown in Figure 6. Note that while wi+2 is
shown in the figure, it is not a vertex in the graph H(S, u, v). To color H(S, u, v) nicely, first color uSu′Txi

and xi+4Tv
′Sv nicely, then color xi+1Txi+3 properly so wi+2 has at least three colors remaining in its list

after the removal of colors used on adjacent vertices, and finally color wi+1 and wi+3 using available colors.

Fact. We can assume for every shortest (u′, v′)-path T = y0, y1, . . . , yl, where y0 = u′, yl = v′, with maximum
number of 3-neighbors and for every remote nontrivial 5-block B of T with vertices yi, yi+1, yi+2, yi+3, yi+4

of T and wj ∼ {yj−1, yj , yj+1}, for j = i+ 1, i+ 2, i+ 3, there is a vertex w ∼ {wi+1, yi+2, wi+3}.

Consider the shortest (u′, v′)-path T̃1 = u′Tyi, yi+1, wi+2, yi+3, yi+4Tv
′. There must be a vertex w′ ∼

{yi, yi+1, wi+2}, otherwise yiyi+1 is a cut-edge in Q(T̃1). There must also be a vertex w′′ ∼ {wi+2, yi+3, yi+4},
otherwise yi+3yi+4 is a cut-edge in Q(T̃1).

Next, consider the shortest (u′, v′)-path T̃2 = u′Tyi, wi+1, w, wi+3, yi+4Tv
′. There must be a vertex
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x1

w2

x2

x3x0 x 4

w3w1

vv’u’u
T SS

B

Figure 6: An example of H(S, u, v), as described in a case of Observation 4.

x ∼ {yi, wi+1, w}, otherwise yiwi+1 is a cut-edge in Q(T̃2). There must also be a vertex x′ ∼ {w,wi+3, yi+4},
otherwise wi+3yi+4 is a cut-edge in Q(T̃2). Finally, consider the shortest (u′, v′)-paths

T̃3 = u′Tyi, yi+1, wi+2, yi+3, yi+4Tv
′ and T̃4 = u′Tyi, wi+1, w, wi+3, yi+4Tv

′.

By the fact above, there must be vertices z and z′ such that z ∼ {w′, wi+2, w
′′} and z′ ∼ {x,w, x′}. Thus,

G[X ] where X = {yi+1, yi+2, yi+3, wi+1, wi+2, wi+3, w} corresponds to the configuration W (X) in G, as seen
in Figure 7, where the bold vertices represent X . This completes the proof of Observation 4.

z

v’u’
T

y1 y5

3
y2

y

x x’z’

w

w’’w’

v’u’
T

B

w

ww

y1 y2

2

y3

3

4

y4 y5

w2 w4

w3

y4

Figure 7: The configuration W as it arises locally around T .

To summarize, we know that for any shortest (u′, v′)-path T , every nontrivial block of Q(T ) is a 3-, 4-, or
5-block. Moreover, if T has the largest number of 3-neighbors among all such shortest (u′, v′)-paths, then
every remote nontrivial block of Q(T ) is a 4-block.

To conclude the proof of Lemma 5, let T be a shortest (u′, v′)-path with the largest number of 3-neighbors
among all such shortest (u′, v′)-paths. Consider a remote nontrivial block of Q(T ) with consecutive vertices
xi, xi+1, xi+2, xi+3 of T and vertices wi+1, wi+2 not in T such that wk ∼ {xk−1, xk, xk+1} for k = i+1, i+2.

Case 1. There is no w adjacent to wi+1 and two vertices of T , and there is no vertex w adjacent to wi+2

and two vertices of T .

Let H(S, u, v) be the graph induced by vertices of uSu′Tv′Sv and wi+1, wi+2. To color H(S, u, v) nicely,
first color uSu′Txi and xi+3Tv

′Sv nicely, then color G[xi+1, xi+2, wi+1, wi+2] properly.

Case 2. There is, without loss of generality, a vertex w adjacent to wi+1 and two vertices of T .

If w′ ∼ {xi−1, xi, wi+1} for some vertex w′, then consider the path T ′ = u′Txi, wi+1, xi+2Tv
′. Then

in Q(T ′) there is a p-block with p ≥ 6, a contradiction as shown on the left in Figure 8. So assume
w ∼ {wi, xi+2, xi+3}. Consider a path T ′′ = u′Txi, wi+1, w, xi+3Tv

′. Observe that the edge xiwi+1 is a
nontrivial cut-edge in Q(T ′′) unless there is a vertex w′ adjacent to xi, wi+1 and another vertex of T ′′.
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x 3
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w5

x6
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x1x0 x3
x4

5x

w2 w5

x
6

w4

x2

w1
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w

w’’

w’

w’’’

T

u’u’ v’

w’ w

T

Figure 8: Observe why there is no w such that w ∼ {wi+1, xi+2, xi+3}.

This third vertex is either xi−1 or w. It could not be xi−1 as shown before. Thus, w′ ∼ {xi, wi+1, w}.
See the right hand side of Figure 8. Similarly, by considering the path u′Txi, xi+1, wi+2, xi+3Tv

′, we see
there is a vertex w′′ ∼ {xi, xi+1, wi+2}. Finally, by considering the path u′Txi, w

′′, wi+2, xi+3Tv
′, we have

a vertex w′′′ ∼ {w′′, wi+2, xi+3}. But now the graph G[X ], where X = {xi+1, xi+2, wi+1, wi+2}, gives the
configuration D(X) in G, as seen in Figure 8 where the bold vertices represent X .

We see now, that a graph H(S, u, v) in all the cases above was constructed by taking the union of uSu′,
v′Sv, and a graph H ′ induced by a shortest (u′, v′)-path T (of length 20) and, perhaps some vertices at
distance 1 from T . Thus, any vertex of H ′ is at distance at most 21 to v′ = vc. 2

3 Proofs of Theorems

Proof. [Proof of Theorem 2] Note if the two precolored vertices are adjacent, then the coloring is extendable
by Thomassen’s theorem. In general, we use induction on |V (G)| where the base case is precolored u and v

connected by an edge. Assume G is connected, otherwise the result follows trivially by induction.

Claim. G has no separating C3 or C4.
Let U be a vertex set of such a separating cycle. By the assumption of the theorem, U does not separate
{u, v}. Let V1 and V2 be the vertex sets of disconnected plane graphs obtained by removing G[U ] from G,
such that {u, v} ⊆ V1 ∪U . By induction, color G[V1 ∪U ] from L. This gives a proper coloring c of U . Now,
in G[V2 ∪ U ], there is a face with vertex set U having color lists of size 1 and all other vertices have color
lists of size 5. Thus, by Theorem 7, G[V2 ∪ U ] is colorable from the corresponding lists.

Let S = v0, v1, . . . , vm be a shortest (u, v)-path in G, with v0 = u and vm = v, for m ≥ 2. By
Lemma 2 there is a nice coloring c of v0, . . . , vm−2. By Lemma 1(4) there is at most one vertex adja-
cent to vm−2, vm−1, vm and at most one vertex adjacent to vm−3, vm−2, vm−1, if m ≥ 3. Let c(vm−1) ∈
L(vm−1)− ({c(vm−2)} ∪ L(vm)).

If there is no vertex x, with x ∼ {vm−2, vm−1, vm}, and no vertex x, with x ∼ {vm−3, vm−2, vm−1}, then
c is a nice coloring of S.

Assume that there is a vertex y, with y ∼ {vm−3, vm−2, vm−1}, and there is no vertex x, with x ∼
{vm−2, vm−1, vm}, or, the other way around, there is no vertex x, with x ∼ {vm−3, vm−2, vm−1} and there
is a vertex y, with y ∼ {vm−2, vm−1, vm}. Then c is a proper coloring of S such that |Lc(p)| ≥ 3 for every
p ∈ N(S)− {y}, and |Lc(y)| ≥ 2. Deleting S and the corresponding colors from the lists of their neighbors
in G− S produces a list assignment where all vertices in a face containing N(S) have lists of size at least 3
(except for y), and all other vertices have lists of size 5. Using Thomassen’s theorem, G− S can be colored
from these lists. Together with the coloring c of S, it gives a proper L-coloring of G.

10



Finally, assume there is a vertex x, with x ∼ {vm−3, vm−2, vm−1}, and there is a vertex w, with w ∼
{vm−2, vm−1, vm}. Note that there is at most one additional vertex adjacent to vm−1 and vm, call it z if
it exists. Delete S from G and add two new adjacent vertices t and s in the resulting face, also add edges
xt, ws, tz, sz, tyi, where yi ∈ N(vm−1) and sxi, where xi ∈ N(vm). Choose two new colors α and β not
used in any of the lists assigned to vertices of G. Let L′(t) = {α}, L′(s) = {β}, L′(yi) = Lc(yi) ∪ {α},
L′(xi) = Lc(xi) ∪ {β}, L′(z) = Lc(z) ∪ {α, β}, L′(x) = Lc(x) ∪ {α}, and L′(w) = Lc(w) ∪ {β}. For every
other vertex of this modified graph, let L′ be equal to Lc. See Figure 9 for an illustration of this process.
Observe that L′ satisfies the conditions of Thomassen’s theorem, so there is a proper L′-coloring of this

0 S v=vm
vm−1

vm−2

x

zt

s

w

w

z
x

N(S)

u=v

Figure 9: The addition of vertices t and s in G− S.

graph. Thus, there is a proper L′-coloring of G − S, where no vertex uses colors α or β. This is a proper
Lc-coloring of G− S. Together with the coloring c of S, it gives a proper L-coloring of G. 2

Proof. [Proof of Theorem 1] Let T be a (P, 45)-Steiner tree in G′, a reduced graph of G satisfying the
conditions of the theorem. Let L be an assignment of lists of colors to vertices of G such that |L(v)| = 1 for
v ∈ P and |L(v)| = 5 for v 6∈ P . We first color G′, then extend it to a proper L-coloring of G.

To color G′, first color special vertices of T which are not in P arbitrarily from their lists. Let S be the
set of branches in T and let S ∈ S with endpoints uS , vS . Let H(S, uS , vS) = H(S) be the graph obtained
by applying Lemma 5 to S and cS be a nice coloring of H(S) from the corresponding lists (see Figure 10).
Finally, let c be a coloring of H = ∪S∈SH(S), such that c(v) = cS(v) if v ∈ H(S).

Claim 1. The coloring c is a nice coloring of H .

Let x, x′ be two vertices of H that do not belong to the same H(S). We shall prove that x and x′ do
not have common neighbors outside of H and they are not adjacent. Let x ∈ H(S), x′ ∈ H(S′), S, S′ ∈ S,
S 6= S′.

If x, x′ ∈ V (T ), then x and x′ do not have a common neighbor outside of T and they are not adjacent by
part (4) of the definition of a (P, d)-Steiner tree.

If x ∈ V (T ), x′ 6∈ V (T ), then x′ ∈ V (H(S′))−V (S′), thus dist(x′, vc′) ≤ 21, where vc′ is a center of S′, as
follows from Lemma 5. From part (3) of the definition of a (P, d)-Steiner tree, we have that dist(vc′ , x) ≥ d.
Thus dist(x, x′) ≥ d− 21 ≥ 3 when d ≥ 24.

Finally if x, x′ 6∈ V (T ), then x ∈ V (H(S))−V (S) and x′ ∈ V (H(S′))−V (S′). Thus dist(x, vc), dist(x
′, vc′) ≤

42, where vc, vc′ are centers of S and S′, respectively. Moreover dist(vc, vc′) ≥ d. Thus d(x, x′) ≥ d− 42 ≥ 3
if d ≥ 45.

It follows that c is a proper coloring of H . To show that c is nice, consider a vertex v adjacent to H .
We see that v is adjacent to non-special vertices of H(S) for at most one branch S of T . Since c is a nice
coloring of H(S), it follows that |Lc(v)| ≥ 3.
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To conclude the proof of Claim 1, recall that H is a connected graph containing all vertices of P . Propo-
sition 1 implies that G′ is colorable from L. To show that G is colorable, it is sufficient to observe the
following.

S

S’

uS

v =uS’=uS’’S

vS’’
S’

S’’

v

Figure 10: An example of the graph H obtained in the proof of Theorem 1.

Claim 2. Let F be a graph, P be a set of vertices, and L be an assignment of lists of size 5 to vertices of
V (G)−P and lists of size 1 to vertices of P . Let F ′ = R(F ) be a reduction of F . If F ′ has a proper coloring
from lists L then F has a proper coloring from lists L.

Let c be a proper coloring of F ′ from lists L.

If F ′ was obtained from F by removing the vertices in a region separated by C3 or C4, these vertices can
be colored properly from L using Theorem 7.

If F ′ was obtained from F by removing the set X of 4 vertices, y1, y2, z1, z2 of configuration D, we see
that |Lc(yi)| ≥ 2, i = 1, 2 for the two vertices y1, y2 of degree two in F [X ] and |Lc(zi)| ≥ 3, i = 1, 2, for the
two vertices z1, z2 of degree three in F [X ]. In the subgraph F [X ] each vertex has list size equal to its degree
under list assignment Lc. An Lc-coloring of F [X ] can be found directly or by the results of [4, 6]. Thus F
has a proper coloring from lists L.

If F ′ was obtained from F by removing the set X of 7 vertices w, x1, . . . , x6 of configuration W , then
we see that |Lc(x1)|, |Lc(x4)| ≥ 2, |Lc(x2)|, |Lc(x3)|, |Lc(x5)|, |Lc(x6)| ≥ 3, and |Lc(w)| = 5. Let α ∈
Lc(w) − (Lc(x1) ∪ Lc(x4)), so color w with α and remove α from Lc(x2), Lc(x3), Lc(x5), Lc(x6). What
remains to be colored is a 6-cycle with vertices having lists of size at least 2, which is colorable by the
classification of all 2-choosable graphs by Erdős et al. [3]. Since F [X ] is properly colorable from lists Lc, F
is properly colorable from lists L.

This proves Claim 2.

Since G′ was obtained from G via a sequence of reductions, the theorem follows. 2

Proof. [Proof of Theorem 3]

(1) Let L be an assignment of lists of colors to vertices of G such that |L(x)| = 5 for all x 6∈ P and
|L(vi)| = 1 for all vi ∈ P . If P is a set of vertices and edges with pairwise distance at least 3, then for
all x 6∈ P , x is adjacent to at most two vertices of P . Thus, for every proper coloring c of G[P ] from the
corresponding lists L and for all x 6∈ P , we have |Lc(x, P )| ≥ 3. Moreover, N(P ) belongs to the frontier of
a face in G− P . Thus, by Proposition 1, G is colorable from lists L.

(2) Without loss of generality, assume C is on the unbounded face of G. Let P = {v0, v1, . . . , vk−1} ⊆ C

be a set of at most six precolored vertices on the boundary of C. Fix an assignment L of lists of colors to
the vertices of G with |L(v)| = 5 for all v ∈ V (G)− P and |L(vi)| = 1 for all vi ∈ P . We shall show that G
is L-colorable provided the three forbidden configurations are not present.

We shall create a new graph G′ on the vertex set of G with new lists L′. Let c0, . . . , ck−1 be distinct colors
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not present in L(v) for any v ∈ V (G). Let L′ be a new list assignment with L′(vi) := {ci} for i = 0, . . . , k−1
and L′(v) = L(v)− Sv ∪S′

v for each v ∈ V (G)−P , where Sv is the set of colors used in lists L of vertices in
P ∩N(v) and S′

v is an arbitrary subset of the set of colors used in lists L′ of vertices of P ∩N(v), such that
|S′

v| = |Sv|. In creating L′ we simply replaced the colors originally assigned to P with new distinct colors,
and replaced the old colors in the lists of vertices in the neighborhood of vertices of P .

Let a new plane graph G′ be obtained from G by removing the edges vivi+1 for i = 0, . . . , k − 1 that
correspond to non-consecutive vertices of C, and adding all edges vivi+1 for i = 0, . . . , k − 1 in the un-
bounded face of G. The resulting graph has a new unbounded face with vertex set P , and, perhaps, some
new edges. By Theorem 7, G′ is L′-colorable by a coloring c provided the three forbidden configurations are
not present. Moreover, for any v 6∈ P , we have c(v) 6∈ {c0, . . . , ck} ∪ Sv, so c(v) ∈ L(v) and c(v) 6∈ L(vi) if
v ∼ vi. To create a proper L-coloring of G, replace the color ci with an element of L(vi) for i = 0, . . . , k−1. 2

Proof. [Proof of Theorem 4] Delete P and the corresponding colors from the lists of adjacent vertices.
There are at most two faces, F ′

1 or F ′
1 and F ′

2, in the graph G − P such that the vertices adjacent to P

in G belong to the boundaries of these two faces. These vertices have lists of size at least 4, and all other
vertices in G− P have lists of size at least 5. Call the resulting lists L′. Add a vertex vi to the face F ′

i and
make it adjacent to all vertices on F ′

i , i = 1, or i = 1, 2. Let α be a color not used in any of the lists L(v),
v ∈ V . Let L′′(v1) = L′′(v2) = {α}, L′′(v) = L′(v) ∪ {α}, if v ∈ V (F ′

1 ∪ F ′
2) and |L′(v)| = 4. For all other

vertices, let L′′(v) = L′(v). Applying Theorem 2 to the resulting graph with lists L′′ allows for this graph
to be properly colored from these lists. We note here that it is not hard to see that this new graph does not
contain any {v1, v2}-separating C3s or C4s because such a separating C3 or C4 would have to be made up
of vertices and edges from the original graph and would have separated some of the precolored vertices of
G, a contradiction. This coloring gives a proper coloring of G − P from lists L′, and thus it gives a proper
coloring of G from lists L. 2

4 Conclusions

We proved the question of Albertson has a positive answer if there are no short cycles separating precolored
vertices and there is a nice tree containing precolored vertices.

We note here that by the definition of a (P, d)-Steiner tree, Theorem 1 can be applied to plane graphs
with precolored vertices that are not far apart. For example, let G be a 100-cycle with vertices v0, v1, . . . , v99
and P = {v1, v50, v98}. Then G contains a (P, 48)-Steiner tree obtained from deleting v0, v99 and incident
edges. The centers of the branches are far apart, but dist(v1, v98) = 3.

We believe that in a planar triangulation either such a tree could always be found, or there are small
reducible configurations such as shown in Figure 1. The reducible configurations D and W are just two in
a family of many reducible configurations of those types. Modifying the definition of a reduced graph to
include the removal of every reducible K4− e and every reducible 6-wheel leads us to the following question.

Question 1 Is it the case that every reduced planar triangulation with a set P of precolored vertices with
dist(P ) ≥ 1000 contains a (P, 45)-Steiner tree?

If the above question has a positive answer, then by Theorem 1, the precoloring of P extends to a 5-list
coloring of G. We did not strive to improve the constants here. With more careful calculations, one could
easily obtain smaller constants.

The condition of no separating short cycles seems to be essential. Reducing the sizes of the lists, increasing
the sizes of lists on so-called “precolored” vertices, or eliminating the distance condition in this problem is
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not possible even for a small number of precolored vertices, see Figure 11. Figure 11d shows we cannot
reduce the sizes of the lists, even if the vertices are on the same face. This graph belongs to a family of
graphs where the length of each path along the unbounded face from the outer triangles to the inner triangle
must be divisible by three. It is not hard to see that if the vertices of the inner triangle are assigned colors
1, 2, 3, respectively, then one of the vertices with lists of size 2 cannot be colored. However, we conjecture

{1,2,a,b,c}

b

c

a

{1,2,3,a,c}

{1,2,3,b,c}

{1,2,3,a,b}

(a) Non-extendable precoloring of three vertices
at distance 2.

{a,b,c}

aa {a,b,c}

{a,b,c}

(b) Non-extendable precoloring of
two vertices at distance 2 where other
vertices have lists of size 3.

a

{b,c} {a,b,c}

{a,b,c}

(c) Non-list-colorable graph
with lists of size 1, 2, and 3.

{1,2}

{1,2}

{1,2}

(d) Non-list-colorable graph with all other lists {1, 2, 3}.

Figure 11: Non-extendable precolorings.

that a precoloring of two far-apart vertices is always extendable to a 5-list coloring of a planar graph.
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