Star subdivisions and connected even factors in the square of a graph

Jan Ekstein ${ }^{1}$, Přemysl Holub ${ }^{1}$, Tomáš Kaiser 112, 2 ,
Liming Xiong ${ }^{3}$, Shenggui Zhang 4^{4}

Abstract

. For any positive integer s, a $[2,2 s]$-factor in a graph G is a connected even factor with maximum degree at most $2 s$. We prove that if every induced $S\left(K_{1,2 s+1}\right)$ in a graph G has at least 3 edges in a block of degree at most two, then G^{2} has a $[2,2 s]$-factor. This extends the results of Hendry and Vogler and of Abderrezzak et al.

Keywords: Square of a graph; connected even factor; $S\left(K_{1,2 s+1}\right)$

AMS Subject Classification (2000): 05C70, 05C75, 05C76

1 Introduction

We use Bondy and Murty [2] for terminology and notation not defined here and we consider only finite undirected simple graphs, unless otherwise stated.

Let $G=(V, E)$ be a graph with vertex set V and edge set E. Let $\alpha(G)$ denote the independence number of G, i.e., the cardinality of a largest independence set in G. For any vertex x of G, let $d_{G}(x)$ denote the degree of x in $G, N_{G}(x)$ the set of all neighbors of x in $G, N_{G}[x]=N_{G}(x) \cup\{x\}$. The square of a graph G, denoted by G^{2}, is the graph with $V\left(G^{2}\right)=V(G)$ in which two vertices are adjacent if their distance in G is at most two. Thus $G \subseteq G^{2}$.

[^0]For any $S \subseteq V(G)$, we denote by $G[S]$ the subgraph of G induced by S. For a positive integer s, the graph $S\left(K_{1,2 s+1}\right)$ is obtained from the complete bipartite graph $K_{1,2 s+1}$ by subdividing each edge once. The graph G is said to be $S\left(K_{1,2 s+1}\right)$-free if it does not contain any induced copy of $S\left(K_{1,2 s+1}\right)$.

A connected graph that has no cut vertices is called a block. A block of a graph G is a subgraph of G that is a block and is maximal with respect to this property. The degree of a block B in a graph G, denoted by $d(B)$, is the number of cut vertices of G belonging to $V(B)$.

A factor in a graph G is a spanning subgraph of G. A connected even factor in G is a connected factor in G with all vertices of even degree. A $[2,2 s]$-factor in G is a connected even factor in G in which degree of every vertex is at most $2 s$. A graph is hamiltonian if it has a spanning cycle. In other word, a graph is hamiltonian if and only if it has a [2, 2]-factor.

The following result concerns the existence of a $[2,2]$-factor in the square of a 2 connected graph.

Theorem A [3]. Let G be a 2-connected graph. Then G^{2} is hamiltonian.
Gould and Jacobson in [4] conjectured that for the hamiltonicity of G^{2}, the connectivity condition can be relaxed for $S\left(K_{1,3}\right)$-free graphs. Their conjecture was proved by Hendry and Vogler in [5].

Theorem B [5]. Let G be a connected $S\left(K_{1,3}\right)$-free graph. Then G^{2} is hamiltonian, i.e., has a $[2,2]$-factor.

Moreover, Abderrezzak, Flandrin and Ryjáček in [1] proved the following result in which graphs may contain an induced $S\left(K_{1,3}\right)$ of a special type.

Theorem C [1]. Let G be a connected graph such that every induced $S\left(K_{1,3}\right)$ in G has at least three edges in a block of degree at most two. Then G^{2} is hamiltonian, i.e., has a [2, 2]-factor.

It is a natural question if there exists a $[2,2 s]$-factor in the square of a graph if one replaces $S\left(K_{1,3}\right)$ by $S\left(K_{1,2 s+1}\right)$ in Theorems B and C. In this paper, we will give a positive answer to this question; we will extend Theorems B and C as follows.

Theorem 1. Let G be a connected $S\left(K_{1,2 s+1}\right)$-free graph of order at least three and s a positive integer. Then G^{2} has a $[2,2 s]$-factor.

Since the square of an $S\left(K_{1,2 s+1}\right)$ itself has no [2,2s]-factor, Theorem 1 is the best possible in a sense.

Theorem 2. Let s be a positive integer and G be a connected graph such that every induced $S\left(K_{1,2 s+1}\right)$ has at least three edges in a block of degree at most two. Then G^{2} has a $[2,2 s]$-factor.

Note that Theorem 2 is a strengthening of Theorem [1, but we state Theorem 1 separately because it will be used in the proof of Theorem 2.

2 Preliminaries and auxiliary results

As noted in Section 1, for graph-theoretic notation not explained in this paper, we refer the reader to [2].

A graph G is even if every vertex of G has even degree. In the subsequent sections, we frequently take the symmetric difference of two subgraphs of a graph. Let H, H^{\prime} be subgraphs of a graph G. The graph $H \Delta H^{\prime}$ has vertex set $V(H) \cup V\left(H^{\prime}\right)$ and its edge set is the symmetric difference of $E(H)$ and $E\left(H^{\prime}\right)$. Note that if H and H^{\prime} are both even graphs, then $H \Delta H^{\prime}$ is also an even graph.

A trail between vertices u_{0} and u_{r} is a finite sequence $T=u_{0} e_{1} u_{1} e_{2} u_{2} \cdots e_{r} u_{r}$, whose terms are alternately vertices and edges, with $e_{i}=u_{i-1} u_{i}, 1 \leq i \leq r$, where the edges are distinct. A trail T is closed if $u_{0}=u_{r}$, and it is spanning if $V(T)=V(G)$. An s-trail between u_{0} and u_{r} is a trail starting at u_{0}, ending at u_{r} and in which every vertex is visited at most s times. In other words, a [2,2s]-factor in a graph G can be viewed as a spanning closed s-trail in G and vice versa. We define the degree of a vertex x in an s-trail as the number of edges incident with x in the corresponding $[2,2 s]$-factor.

We use the following fact (see [6], Corollary 2.3.1 for a proof).
Theorem D [6]. Let $k \geq 2$ be an integer and G a k-connected graph. If $\alpha(G)>k$ then $V(G)$ can be covered with $\alpha(G)-k$ disjoint paths.

From the proof of this Theorem it follows that the statement is true without the restrictions on k, in particular for $k=0$.

Corollary 3. Let G be a graph. Then there are at most $\alpha(G)$ disjoint paths covering $V(G)$.

Let G_{1}, G_{2} be graphs such that $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{x\}$. The symbol $G=G_{1} x G_{2}$ denotes a graph G with $V(G)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$.

Given a subgraph K of a graph H, we define $\partial_{H}(K)$ as the set of all edges of H with exactly one endvertex in $V(K)$. Thus $\partial_{H}(K)$ is a (not necessarily minimal) edge-cut.

Lemma 4. Let H be a connected graph and $P=x y z$ a path of length two such that $V(H) \cap V(P)=\{x\}$. If $(H x P)^{2}$ has a $[2,2 s]$-factor, then one of the following holds:
(a) H^{2} contains a spanning closed s-trail T such that the degree of x in T is at most $2 s-2$, or
(b) H^{2} contains a spanning s-trail T between x and some $x^{\prime} \in N_{H}(x)$.

Proof. Let F be a $[2,2 s]$-factor of $(H x P)^{2}$ and let K_{0}, \ldots, K_{ℓ} be all the components of $F \backslash\{y, z\}$, where $x \in V\left(K_{0}\right)$. Furthermore, define $W=N_{F}(y) \backslash\{z\}$ and $W_{i}=$ $W \cap V\left(K_{i}\right)(i=0, \ldots, \ell)$. Observe that each W_{i} is nonempty. Clearly, the induced subgraph Q of H^{2} on $W \cup\{x\}$ is complete.

Since F covers z, it includes the edges $y z$ and $x z$. For $0 \leq i \leq \ell$, every edge in $\partial_{F}\left(K_{i}\right)$ is incident with y, except for the edge $x z \in \partial_{F}\left(K_{0}\right)$. Since

$$
\partial_{F}\left(K_{i}\right)=\partial_{H}\left(K_{i}\right) \cap E(F)
$$

and the intersection of any edge-cut with an eulerian subgraph has even cardinality, we conclude that for $0 \leq i \leq \ell$,

$$
\left|W_{i}\right| \text { is odd if and only if } i=0 \text {. }
$$

If $w \in W_{i}$ and $w \neq x$, then the degree of w in K_{i} is odd and does not exceed $2 s-1$. The same is true for $w=x$ provided that $x \notin W$, since then $x z$ is the only edge of $\partial_{F}\left(K_{0}\right)$ incident with x. On the other hand, if $x \in W$, then both $x z$ and $x y$ have this property, so the degree of x in K_{0} is even and does not exceed $2 s-2$.

For each $i, 0 \leq i \leq \ell$, choose a matching M_{i} that covers all except one or two vertices of W_{i} (one if $i=0$, two otherwise) and uses as few edges as possible from F. We argue that the symmetric difference $K_{i} \Delta M_{i}$ is connected. We may assume that M_{i} uses at least one edge of F, otherwise there is nothing to prove. For a fixed i, let $X \subseteq W_{i}$ be the set consisting of vertices incident with edges in $E\left(M_{i}\right) \cap E(F)$, together with the vertices of W_{i} left uncovered by M_{i}. By the choice of $M_{i}, K_{i}[X]$ must be complete and $|X| \geq 3$. All the edges of K_{i} that are removed as a result of taking the symmetric difference are edges of $K_{i}[X]$. Since any graph obtained by removing a matching from a complete graph on at least 3 vertices is connected, the claim follows.

Observe that for $i \geq 1$, each $K_{i} \Delta M_{i}$ contains exactly two vertices of odd degree (and the degree does not exceed $2 s-1$). The same is true for $i=0$ unless $x \in W$ and x
is not incident with M_{0}, in which case $K_{0} \triangle M_{0}$ is eulerian and the degree of x in this graph is at most $2 s-2$. It follows that if $\ell=0$, then we can set $T:=K_{0} \triangle M_{0}$ and we are done (T satisfies condition (a) if $x \in W \backslash V\left(M_{0}\right)$ and condition (b) otherwise).

If $\ell \geq 1$, then let u_{0} be the vertex of $W_{0} \backslash V\left(M_{0}\right)$, and for $i \geq 1$, let $W_{i} \backslash$ $V\left(M_{i}\right)=\left\{u_{i}, v_{i}\right\}$. Taking the union of all the graphs $K_{i} \triangle M_{i}$ and adding the edges $u_{0} v_{1}, u_{1} v_{2}, \ldots, u_{\ell-1} v_{\ell}$, we obtain a connected graph T in which the only vertices of odd degree are x and u_{ℓ}, and which satisfies condition (b) in the lemma.

Using a similar argument as in the proof of Lemma 4, one can prove the following.
Lemma 5. Let H be a connected graph and $P=x y$ an edge such that $V(H) \cap V(P)=$ $\{x\}$. If $(H x P)^{2}$ has a $[2,2 s]$-factor, then H^{2} has a spanning s-trail T between $x^{\prime} \in N_{H}[x]$ and some vertex $x^{\prime \prime} \in N_{H}(x)$.

The following theorem will be used in the proof of Theorem 2
Theorem E [3]. Let y and z be arbitrarily chosen vertices of a 2-connected graph G. Then G^{2} has a hamiltonian cycle C such that the edges of C incident with y are in G and at least one of the edges of C incident with z is in G. If y and z are adjacent in G, then these are three different edges.

3 Proofs

The purpose of this section is to prove Theorem 2. As mentioned in Section 1, the proof makes use of Theorem 1 which we derive next.

Proof of Theorem 1, This proof is inspired by the proof in [5]. We prove our result by induction on $|V(G)|$. Clearly G^{2} is hamiltonian (hence has a [2, 2]-factor) for graphs with $|V(G)| \leq 6$, since G is $S\left(K_{1,3}\right)$-free. By Theorem A. we may assume that G has cut vertices. If all cut vertices have degree two, then G is a path and hence G^{2} is hamiltonian. So we may assume that there is a cut vertex u such that $d_{G}(u)=d \geq 3$. Since G is connected, we may take a spanning tree S of G such that S contains all edges of G incident with u. We label the neighbors of u by $u_{1}, u_{2}, \cdots, u_{d}$ in such a way that $d_{G}\left(u_{i}\right) \geq 2$ for $1 \leq i \leq m$ and $d_{G}\left(u_{i}\right)=1$ for $m+1 \leq i \leq d$. For $i \leq m$, let G_{i} be the subgraph of G induced by the vertices in the component of the forest $S-u$ containing u_{i}; we fix a neighbour u_{i}^{\prime} of u that is not contained in the same component of $G-u$ as u_{i} (note that there must be such a vertex since u is a cut vertex of G), and let $H_{i}=G\left[V\left(G_{i}\right) \cup\left\{u, u_{i}^{\prime}\right\}\right]$. Then H_{i} is a proper $S\left(K_{1,2 s+1}\right)$-free subgraph of G since H_{i} is
an induced subgraph of G and $d_{G}(u) \geq 3$. Note that H_{i} is connected. By the inductive hypothesis, H_{i}^{2} has a $[2,2 s]$-factor. Note that $d_{H_{i}^{2}}\left(u_{i}^{\prime}\right)=2$.

By Lemma 4 it follows that at least one of the following facts holds.
(a) there exists a spanning closed s-trail T_{i} in G_{i}^{2} such that $d_{T_{i}}\left(u_{i}\right) \leq 2 s-2$;
(b) there exists a spanning s-trail T_{i} in G_{i}^{2} between u_{i} and some $z_{i} \in N_{G_{i}}\left(u_{i}\right)$.

Without loss of generality we may assume that $\left\{u_{1}, u_{2}, \ldots, u_{m^{\prime}}\right\} \subseteq\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ is the set of all vertices u_{i} such that G_{i} has an s-trail of type (b), for a suitable $m^{\prime} \leq m$. Construct the graph H from $G\left[\left\{u_{1}, u_{2}, \ldots, u_{m^{\prime}}, z_{1}, z_{2}, \ldots, z_{m^{\prime}}\right\}\right]$ by contracting edges $u_{i} z_{i}$ to a vertex w_{i} for $i=1, \ldots, m^{\prime}$. Since G is $S\left(K_{1,2 s+1}\right)$-free, $\alpha(H) \leq 2 s$. By Corollary 3, there are $\ell \leq \alpha(H)$ vertex-disjoint paths $P_{1}, P_{2}, \ldots, P_{\ell}$ covering $V(H)$. Without loss of generality, we may assume that $P_{i}=w_{s_{i-1}+1} w_{s_{i-1}+2} \ldots w_{s_{i}}$, for $i=1, \ldots, \ell$ (where $s_{0}=0$ and $s_{\ell}=m^{\prime}$). Since we contracted edges $u_{j} z_{j}$ to vertices w_{j}, both u_{j} and z_{j} have a neighbor in $\left\{u_{j+1}, z_{j+1}\right\}$ in G^{2} for $i=1, \ldots, \ell$, and $j=s_{i-1}+1, \ldots, s_{i}-1$. Hence from the paths $P_{i}(i=1, \ldots, \ell)$ and s-trails $T_{j}\left(i=1, \ldots, m^{\prime}\right)$ we can obtain the following s-trails F_{i} in G^{2} :

- for a trivial (one-vertex) path $P_{i}, F_{i}=T_{i}$,
- for a nontrivial path P_{i}, we construct F_{i} by joining the trails $T_{s_{i-1}+1}, \ldots, T_{s_{i}}$ with the edges $x_{j} x_{j+1}$, where $x_{j} \in\left\{u_{j}, z_{j}\right\}$ and $x_{j+1} \in\left\{u_{j+1}, z_{j+1}\right\}$ with respect to P_{i}. Clearly $d_{F_{i}}\left(u_{s_{i-1}+1}\right)<2 s, d_{F_{i}}\left(x_{s_{i}}\right)<2 s$ and F_{i} spans all the vertices of $G_{s_{i-1}+1} \cup \cdots \cup G_{s_{i}}$.

Note that the number of s-trails F_{i} is $\ell \leq 2 s$.
Let $T=u_{m^{\prime}+1} T_{m^{\prime}+1} u_{m^{\prime}+1} u_{m^{\prime}+2} T_{m^{\prime}+2} u_{m^{\prime}+2} \ldots u_{m} T_{m} u_{m} u_{m+1} \ldots u_{d}$ be an s-trail containing all vertices of $G_{m^{\prime}+1} \cup \cdots \cup G_{m}$ and all neighbours of u of degree one in G. We set $F^{\prime}=u_{1} F_{1} x_{s_{1}} u x_{s_{2}} F_{2} u_{s_{1}+1} u_{s_{2}+1} F_{3} \ldots x_{s_{\ell}} F_{\ell} u_{s_{\ell-1}+1} u_{m^{\prime}+1}$ for even ℓ and $F^{\prime}=$ $u_{1} F_{1} x_{s_{1}} u x_{s_{2}} F_{2} u_{s_{1}+1} u_{s_{2}+1} F_{3} \ldots u_{s_{\ell-1}+1} F_{\ell} x_{s_{\ell}} u u_{m^{\prime}+1}$ for odd ℓ. In both cases, F^{\prime} is an s-trail containing all vertices of $G_{1} \cup \cdots \cup G_{m^{\prime}}$. Finally, we construct a trail $F=$ $u_{1} F^{\prime} u_{m^{\prime}+1} T u_{d} u_{1}$. Clearly, $d_{F}(u)=\ell \leq 2 s$ and F corresponds to a [2,2s]-factor in G^{2}.

Corollary 6. Let G be a simple connected graph with $\Delta(G) \leq 2 s$. Then G^{2} has a [$2,2 s]$-factor.

Before we present the proof of Theorem 2, we give some additional definitions. Let x be a cut vertex of G, and H^{\prime} be a component of $G-x$. Then the subgraph
$H=G\left[V\left(H^{\prime}\right) \cup\{x\}\right]$ is called a branch of G at x. Let F be a connected subgraph of G and x some vertex of F. Let $P_{i}(x)$ denote a path on i vertices with end vertex x. The subgraph F is called to be nontrivial at x if it contains a $P_{3}(x)$ as a proper induced subgraph (i.e., F is trivial at x if $F=P_{3}(x)$ or $\left.V(F) \subseteq N[x]\right)$.

Now we present the proof of Theorem 2.
Proof of Theorem 2. We prove this theorem by contradiction. Suppose that Theorem 2 is not true and choose a graph G in such a way that
(1) G is connected and every induced $S\left(K_{1,2 s+1}\right)$ in G has at least three edges in a block of degree at most two;
(2) G^{2} has no $[2,2 s]$-factor;
(3) $|V(G)|$ is minimized with respect to (1) and (2).

The following fact is necessary for our proof.
Claim 1. Let x be a cut vertex of G and F_{1}, F_{2} two connected subgraphs of G such that F_{1}, F_{2} belong to different branches of G at x. Assume that F_{2} is nontrivial at x, i.e., F_{2} contains an induced $P_{3}(x)=x y z$ as a proper induced subgraph. Then the graph $G^{\prime}=F_{1} x P_{3}(x)$ also satisfies (1).

Proof of Claim 1. If not, there exists in G^{\prime} some $S\left(K_{1,2 s+1}\right)$ that has no connected part of order at least 4 in a block of degree at most two. But if so, it is the same in G, since any $S\left(K_{1,2 s+1}\right)$ in G^{\prime} is also an induced $S\left(K_{1,2 s+1}\right)$ of G.

Since in our proof we have assumed that G^{2} has no [2,2s]-factor, we know from Theorem 1 that G contains some $S\left(K_{1,2 s+1}\right)$ as an induced subgraph. By (1), the $S\left(K_{1,2 s+1}\right)$ has at least 3 edges in some block H of G of degree at most 2 . Notice that $|V(H)| \geq 5$.

Case 1: $d(H)=1$. Let c be the cut vertex of G belonging to H and let R be the union of all branches of G at c which intersect H only at c.

If H is trivial at c, then $V(H)-\{c\}=\left\{b_{1}, b_{2}, \ldots, b_{h}\right\} \subseteq N(c)$. The graph $G^{\prime}=$ $R c\left(c b_{1}\right)$ satisfies condition (1). So by minimality of G, the graph G^{2} has a $[2,2 s]$-factor and, by Lemma $5, R^{2}$ has a spanning s-trail T between some $c^{\prime} \in N_{R}[c]$ and some $c^{\prime \prime} \in N_{R}(c)$. Let $F=c^{\prime} T c^{\prime \prime} b_{1} \ldots b_{h} c^{\prime}$. It is easy to see that F is a $[2,2 s]$-factor in G^{2}, a contradiction.

Hence H is nontrivial at c, i.e., it contains a proper induced path $P_{3}(c)=c b_{1} b_{2}$. By Theorem E, H^{2} contains a hamiltonian path $b_{1} P_{H^{2}} c$ connecting b_{1} and c. On the other hand the graph $G^{\prime \prime}=R c P_{3}(c)$ is connected and, by Claim 1, $G^{\prime \prime}$ satisfies condition (1).

Since $\left|V\left(G^{\prime \prime}\right)\right|<|V(G)|,\left(G^{\prime \prime}\right)^{2}$ has a $[2,2 s]$-factor and by Lemma 4 , one of the following subcases occur.

If the graph R^{2} has a spanning closed s-trail T^{\prime} in which $d_{T^{\prime}}(c) \leq 2 s-2$, then $F=c T^{\prime} c b_{1} P_{H^{2}} c$ is a $[2,2 s]$-factor in G^{2}, a contradiction.

If the graph R^{2} has a spanning s-trail $T^{\prime \prime}$ between c and some neighbor $c^{\prime \prime \prime} \in N_{R}(c)$, then $F=c T^{\prime \prime} c^{\prime \prime \prime} b_{1} P_{H^{2}} c$ is a $[2,2 s]$-factor in G^{2}, contradicting condition (2).

Case 2: $d(H)=2$. Let c_{1} and c_{2} be two cut vertices of G belonging to H and let $B_{i}, i=1,2$, be the union of all branches of G at c_{i} not containing H. This means that $G=\left(B_{1} c_{1} H\right) c_{2} B_{2}$. The subgraph H is a block and thus, by Theorem E, $V(H)$ can be covered by two vertex-disjoint paths $a_{1} P_{H}^{1} a_{2}$ and $c_{2} P_{H}^{2} c_{1}$ in H^{2}, where $a_{1} \in N\left(c_{1}\right)$ and $a_{2} \in N\left(c_{2}\right)$. We distinguish, up to symmetry, the following three subcases.

Subcase 2.1: B_{1} is trivial at c_{1} and B_{2} is trivial at c_{2}.
If $V\left(B_{1}\right)=\left\{b_{1}, b_{2}, \ldots, b_{k}, c_{1}\right\} \subseteq N\left[c_{1}\right], k \geq 1$, and $B_{2}=P_{3}\left(c_{2}\right)=c_{2} d_{1} d_{2}$, then $F=c_{1} b_{1} b_{2} \ldots b_{k} a_{1} P_{H}^{1} a_{2} d_{1} d_{2} c_{2} P_{H}^{2} c_{1}$ is even a hamiltonian cycle in G^{2}, which contradicts the fact that G^{2} has no [2,2s]-factor.

The proof is similar if $B_{1}=P_{3}\left(c_{1}\right)$ and $V\left(B_{2}\right) \subseteq N\left[c_{2}\right]$.
If $V\left(B_{1}\right)=\left\{b_{1}, b_{2}, \ldots, b_{k}, c_{1}\right\} \subseteq N\left[c_{1}\right]$ and $V\left(B_{2}\right)=\left\{d_{1}, d_{2}, \ldots, d_{l}, c_{2}\right\} \subseteq N\left[c_{2}\right]$, then $F=c_{1} b_{1} b_{2} \ldots b_{k} a_{1} P_{H}^{1} a_{2} d_{1} d_{2} \ldots d_{l} c_{2} P_{H}^{2} c_{1}$ is also a hamiltonian cycle in G^{2}, contradicting (2).

Finally, if $B_{1}=P_{3}\left(c_{1}\right)=c_{1} b_{1} b_{2}$ and $B_{2}=P_{3}\left(c_{2}\right)=c_{2} d_{1} d_{2}$, then again the cycle $F=c_{1} b_{2} b_{1} a_{1} P_{H}^{1} a_{2} d_{1} d_{2} c_{2} P_{H}^{2} c_{1}$ gives a similar contradiction.

Subcase 2.2: B_{1} is nontrivial at c_{1} and B_{2} is trivial at c_{2}.
Since $\left|V(H) \cup V\left(B_{2}\right)\right|>3$, there exists some vertex in $V(H) \cup V\left(B_{2}\right)$ (for example each vertex in $\left.V\left(B_{2}\right) \backslash\left\{c_{2}\right\}\right)$ nonadjacent to c_{1}, the subgraph $G^{\prime}=H c_{2} B_{2}$ is nontrivial. Then G^{\prime} contains a path $P_{3}\left(c_{1}\right)=c_{1} n_{1} n_{2}$ as a proper induced subgraph. Now let $G_{1}=B_{1} c_{1} n_{1} n_{2}$. By Claim 11, G_{1} satisfies condition (1). By minimality of G, the graph G_{1}^{2} has a $[2,2 s]$-factor and thus, by Lemma 4 , we have the following two possibilities.
a) The graph B_{1}^{2} has a spanning closed s-trail T in which $d_{T}\left(c_{1}\right) \leq 2 s-2$.

If $V\left(B_{2}\right)=\left\{b_{1}, b_{2}, \ldots, b_{k}, c_{2}\right\} \subseteq N\left[c_{2}\right], k \geq 1$, then $F=c_{1} T c_{1} a_{1} P_{H}^{1} a_{2} b_{1} b_{2} \ldots b_{k} c_{2} P_{H}^{2} c_{1}$ is a $[2,2 s]$-factor in G^{2}, a contradiction with (2).

If $B_{2}=P_{3}\left(c_{2}\right)=c_{2} d_{1} d_{2}$, then $F=c_{1} T c_{1} a_{1} P_{H}^{1} a_{2} d_{1} d_{2} c_{2} P_{H}^{2} c_{1}$ is a $[2,2 s]$-factor in G^{2}, which contradicts condition (2).
b) The graph B_{1}^{2} has a spanning s-trail T^{\prime} between c_{1} and some neighbor $c_{1}^{\prime} \in$ $N_{B_{1}}\left(c_{1}\right)$.

If $V\left(B_{2}\right)=\left\{b_{1}, b_{2}, \ldots, b_{k}, c_{2}\right\} \subseteq N\left[c_{2}\right], k \geq 1$, then $F=c_{1} T^{\prime} c_{1}^{\prime} a_{1} P_{H}^{1} a_{2} b_{1} b_{2} \ldots b_{k} c_{2} P_{H}^{2} c_{1}$ is a $[2,2 s]$-factor in G^{2} and contradicts (2).

Figure 1: An example showing that a condition in Theorem 2 cannot be relaxed.

If $B_{2}=P_{3}\left(c_{2}\right)=c_{2} d_{1} d_{2}$, then $F=c_{1} T^{\prime} c_{1}^{\prime} a_{1} P_{H}^{1} a_{2} d_{1} d_{2} c_{2} P_{H}^{2} c_{1}$ is a $[2,2 s]$-factor in G^{2}, a contradiction with (2).

Subcase 2.3: B_{1} is nontrivial at c_{1} and B_{2} is nontrivial at c_{2}.
Let G_{1} be the same graph as in Subcase 2.2 and in a similar way as in Subcase 2.2 let $G_{2}=B_{2} c_{2} m_{1} m_{2}$, where a path $c_{2} m_{1} m_{2}$ is a proper induced subgraph of $H c_{1} B_{1}$. Then, by Claim 1, both G_{1} and G_{2} satisfy condition (1). By minimality of G, the graphs G_{1}^{2} and G_{2}^{2} have a $[2,2 s]$-factor and thus, by Lemma 4 , we have the following two possibilities.
a) The graph B_{1}^{2} has a spanning closed s-trail T in which $d_{T}\left(c_{1}\right) \leq 2 s-2$.

If the graph B_{2}^{2} has a spanning closed s-trail T^{\prime} in which $d_{T^{\prime}}\left(c_{2}\right) \leq 2 s-2$, then $F=c_{1} T c_{1} a_{1} P_{H}^{1} a_{2} c_{2} T^{\prime} c_{2} P_{H}^{2} c_{1}$ is a $[2,2 s]$-factor in G^{2} and contradicts (2).

If the graph B_{2}^{2} has a spanning s-trail $T^{\prime \prime}$ between c_{2} and some neighbor $c_{2}^{\prime} \in$ $N_{B_{2}}\left(c_{2}\right)$, then $F=c_{1} T c_{1} a_{1} P_{H}^{1} a_{2} c_{2}^{\prime} T^{\prime \prime} c_{2} P_{H}^{2} c_{1}$ is a $[2,2 s]$-factor in G^{2}, contradicting condition (2).
b) The graph B_{1}^{2} has a spanning s-trail T^{*} between c_{1} and some neighbor $c_{1}^{\prime} \in$ $N_{B_{1}}\left(c_{1}\right)$.

If the graph B_{2}^{2} has a spanning closed s-trail $T^{* *}$ in which $d_{T^{* *}}\left(c_{2}\right) \leq 2 s-2$, then $F=c_{1} T^{*} c_{1}^{\prime} a_{1} P_{H}^{1} a_{2} c_{2} T^{* *} c_{2} P_{H}^{2} c_{1}$ is a [2, 2s]-factor in G^{2}, a contradiction.

If the graph B_{2}^{2} has a spanning s-trail T^{\bullet} between c_{2} and some neighbor $c_{2}^{\prime} \in$ $N_{B_{2}}\left(c_{2}\right)$, then $F=c_{1} T^{*} c_{1}^{\prime} a_{1} P_{H}^{1} a_{2} c_{2}^{\prime} T^{\bullet} c_{2} P_{H}^{2} c_{1}$ is a $[2,2 s]$-factor in G^{2} and contradicts (2).

The graph G in Figure 1 shows that (for $s=1$) the constant 3 in Theorem 2 cannot be decreased. Although every induced $S\left(K_{1,2 s+1}\right)$ in G has at least two edges in a block of degree at most two, G^{2} has no $[2,2 s]$-factor.

References

[1] M.E.K. Abderrezzak, E. Flandrin, Z. Ryjáček, Induced $S\left(K_{1,3}\right)$ and hamiltonian cycles in the square of a graph. Discrete Math. 207 (1999), 263-269.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications. Elsevier, New York (1976).
[3] H. Fleischner, The square of every two connected graph is hamiltonian. J. Combinatorical Theory Ser. B 16 (1974), 29-34.
[4] R.J. Gould, M.S. Jacobson, Forbidden subgraphs and hamiltonian properties in the square of a connected graph. J. Graph Theory 8 (1984), 147-154.
[5] G. Hendry, W. Vogler, The square of a connected $S\left(K_{1,3}\right)$-free graph is vertex pancyclic. J. Graph Theory 9 (1985), 535-537.
[6] B. Jackson, O. Ordaz, Chvátal-Erdős conditions for paths and cycles in graphs and digraphs. A survey. Discrete Math. 84 (1990), 241-254.

[^0]: ${ }^{1}$ Department of Mathematics, University of West Bohemia, and Institute for Theoretical Computer Science (ITI), Charles University, Univerzitni 22, 30614 Pilsen, Czech Republic, e-mail: \{ekstein, holubpre, kaisert\}@kma.zcu.cz; research supported by Grant No. 1M0545 of the Czech Ministry of Education.
 ${ }^{2}$ Research supported by Research Plan MSM 4977751301 of the Czech Ministry of Education and the grant GAČR 201/09/0197 of the Czech Science Foundation.
 ${ }^{3}$ Department of Mathematics, Beijing Institute of Technology, Beijing, 100081, P.R. China; Supported by Nature Science Funds of China.
 ${ }^{4}$ Department of Applied Mathematics, Northwestern Polytechnical University, Xian, Shaanxi 710072, P.R. China; Supported by Nature Science Funds of China.

