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Star subdivisions and connected even factors in the square

of a graph
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Abstract.

For any positive integer s, a [2, 2s]-factor in a graph G is a connected even factor

with maximum degree at most 2s. We prove that if every induced S(K1,2s+1) in

a graph G has at least 3 edges in a block of degree at most two, then G2 has a

[2, 2s]-factor. This extends the results of Hendry and Vogler and of Abderrezzak

et al.
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1 Introduction

We use Bondy and Murty [2] for terminology and notation not defined here and we

consider only finite undirected simple graphs, unless otherwise stated.

Let G = (V,E) be a graph with vertex set V and edge set E. Let α(G) denote the

independence number of G, i.e., the cardinality of a largest independence set in G. For

any vertex x of G, let dG(x) denote the degree of x in G, NG(x) the set of all neighbors

of x in G, NG[x] = NG(x)∪ {x}. The square of a graph G, denoted by G2, is the graph

with V (G2) = V (G) in which two vertices are adjacent if their distance in G is at most

two. Thus G ⊆ G2.

1Department of Mathematics, University of West Bohemia, and Institute for Theoretical Computer

Science (ITI), Charles University, Univerzitni 22, 306 14 Pilsen, Czech Republic, e-mail: {ekstein,

holubpre, kaisert}@kma.zcu.cz; research supported by Grant No. 1M0545 of the Czech Ministry of

Education.
2Research supported by Research Plan MSM 4977751301 of the Czech Ministry of Education and
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For any S ⊆ V (G), we denote by G[S] the subgraph of G induced by S. For a

positive integer s, the graph S(K1,2s+1) is obtained from the complete bipartite graph

K1,2s+1 by subdividing each edge once. The graph G is said to be S(K1,2s+1)-free if it

does not contain any induced copy of S(K1,2s+1).

A connected graph that has no cut vertices is called a block. A block of a graph G

is a subgraph of G that is a block and is maximal with respect to this property. The

degree of a block B in a graph G, denoted by d(B), is the number of cut vertices of G

belonging to V (B).

A factor in a graph G is a spanning subgraph of G. A connected even factor in

G is a connected factor in G with all vertices of even degree. A [2, 2s]-factor in G is a

connected even factor in G in which degree of every vertex is at most 2s. A graph is

hamiltonian if it has a spanning cycle. In other word, a graph is hamiltonian if and only

if it has a [2, 2]-factor.

The following result concerns the existence of a [2, 2]-factor in the square of a 2-

connected graph.

Theorem A [3]. Let G be a 2-connected graph. Then G2 is hamiltonian.

Gould and Jacobson in [4] conjectured that for the hamiltonicity of G2, the connec-

tivity condition can be relaxed for S(K1,3)-free graphs. Their conjecture was proved by

Hendry and Vogler in [5].

Theorem B [5]. Let G be a connected S(K1,3)-free graph. Then G2 is hamiltonian,

i.e., has a [2, 2]-factor.

Moreover, Abderrezzak, Flandrin and Ryjáček in [1] proved the following result in

which graphs may contain an induced S(K1,3) of a special type.

Theorem C [1]. Let G be a connected graph such that every induced S(K1,3) in G

has at least three edges in a block of degree at most two. Then G2 is hamiltonian, i.e.,

has a [2, 2]-factor.

It is a natural question if there exists a [2, 2s]-factor in the square of a graph if

one replaces S(K1,3) by S(K1,2s+1) in Theorems B and C. In this paper, we will give a

positive answer to this question; we will extend Theorems B and C as follows.

Theorem 1. Let G be a connected S(K1,2s+1)-free graph of order at least three and s

a positive integer. Then G2 has a [2, 2s]-factor.
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Since the square of an S(K1,2s+1) itself has no [2, 2s]-factor, Theorem 1 is the best

possible in a sense.

Theorem 2. Let s be a positive integer and G be a connected graph such that every

induced S(K1,2s+1) has at least three edges in a block of degree at most two. Then G2

has a [2, 2s]-factor.

Note that Theorem 2 is a strengthening of Theorem 1, but we state Theorem 1

separately because it will be used in the proof of Theorem 2.

2 Preliminaries and auxiliary results

As noted in Section 1, for graph-theoretic notation not explained in this paper, we refer

the reader to [2].

A graph G is even if every vertex of G has even degree. In the subsequent sections,

we frequently take the symmetric difference of two subgraphs of a graph. Let H, H ′ be

subgraphs of a graph G. The graph H △ H ′ has vertex set V (H) ∪ V (H ′) and its edge

set is the symmetric difference of E(H) and E(H ′). Note that if H and H ′ are both

even graphs, then H △ H ′ is also an even graph.

A trail between vertices u0 and ur is a finite sequence T = u0e1u1e2u2 · · · erur,

whose terms are alternately vertices and edges, with ei = ui−1ui, 1 ≤ i ≤ r, where the

edges are distinct. A trail T is closed if u0 = ur, and it is spanning if V (T ) = V (G).

An s-trail between u0 and ur is a trail starting at u0, ending at ur and in which every

vertex is visited at most s times. In other words, a [2, 2s]-factor in a graph G can be

viewed as a spanning closed s-trail in G and vice versa. We define the degree of a vertex

x in an s-trail as the number of edges incident with x in the corresponding [2, 2s]-factor.

We use the following fact (see [6], Corollary 2.3.1 for a proof).

Theorem D [6]. Let k ≥ 2 be an integer and G a k-connected graph. If α(G) > k

then V (G) can be covered with α(G) − k disjoint paths.

From the proof of this Theorem it follows that the statement is true without the

restrictions on k, in particular for k = 0.

Corollary 3. Let G be a graph. Then there are at most α(G) disjoint paths covering

V (G).

Let G1, G2 be graphs such that V (G1) ∩ V (G2) = {x}. The symbol G = G1xG2

denotes a graph G with V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2).
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Given a subgraph K of a graph H, we define ∂H(K) as the set of all edges of H with

exactly one endvertex in V (K). Thus ∂H(K) is a (not necessarily minimal) edge-cut.

Lemma 4. Let H be a connected graph and P = xyz a path of length two such that

V (H) ∩ V (P ) = {x}. If (HxP )2 has a [2, 2s]-factor, then one of the following holds:

(a) H2 contains a spanning closed s-trail T such that the degree of x in T is at most

2s− 2, or

(b) H2 contains a spanning s-trail T between x and some x′ ∈ NH(x).

Proof. Let F be a [2, 2s]-factor of (HxP )2 and let K0, . . . ,Kℓ be all the components

of F \ {y, z}, where x ∈ V (K0). Furthermore, define W = NF (y) \ {z} and Wi =

W ∩ V (Ki) (i = 0, . . . , ℓ). Observe that each Wi is nonempty. Clearly, the induced

subgraph Q of H2 on W ∪ {x} is complete.

Since F covers z, it includes the edges yz and xz. For 0 ≤ i ≤ ℓ, every edge in

∂F (Ki) is incident with y, except for the edge xz ∈ ∂F (K0). Since

∂F (Ki) = ∂H(Ki) ∩ E(F )

and the intersection of any edge-cut with an eulerian subgraph has even cardinality, we

conclude that for 0 ≤ i ≤ ℓ,

|Wi| is odd if and only if i = 0.

If w ∈ Wi and w 6= x, then the degree of w in Ki is odd and does not exceed 2s−1. The

same is true for w = x provided that x /∈ W , since then xz is the only edge of ∂F (K0)

incident with x. On the other hand, if x ∈ W , then both xz and xy have this property,

so the degree of x in K0 is even and does not exceed 2s− 2.

For each i, 0 ≤ i ≤ ℓ, choose a matching Mi that covers all except one or two vertices

of Wi (one if i = 0, two otherwise) and uses as few edges as possible from F . We argue

that the symmetric difference Ki △ Mi is connected. We may assume that Mi uses at

least one edge of F , otherwise there is nothing to prove. For a fixed i, let X ⊆ Wi

be the set consisting of vertices incident with edges in E(Mi) ∩ E(F ), together with

the vertices of Wi left uncovered by Mi. By the choice of Mi, Ki[X] must be complete

and |X| ≥ 3. All the edges of Ki that are removed as a result of taking the symmetric

difference are edges of Ki[X]. Since any graph obtained by removing a matching from

a complete graph on at least 3 vertices is connected, the claim follows.

Observe that for i ≥ 1, each Ki △ Mi contains exactly two vertices of odd degree

(and the degree does not exceed 2s− 1). The same is true for i = 0 unless x ∈ W and x
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is not incident with M0, in which case K0 △ M0 is eulerian and the degree of x in this

graph is at most 2s− 2. It follows that if ℓ = 0, then we can set T := K0 △ M0 and we

are done (T satisfies condition (a) if x ∈ W \ V (M0) and condition (b) otherwise).

If ℓ ≥ 1, then let u0 be the vertex of W0 \ V (M0), and for i ≥ 1, let Wi \

V (Mi) = {ui, vi}. Taking the union of all the graphs Ki △ Mi and adding the edges

u0v1, u1v2, . . . , uℓ−1vℓ, we obtain a connected graph T in which the only vertices of odd

degree are x and uℓ, and which satisfies condition (b) in the lemma. �

Using a similar argument as in the proof of Lemma 4, one can prove the following.

Lemma 5. Let H be a connected graph and P = xy an edge such that V (H)∩V (P ) =

{x}. If (HxP )2 has a [2, 2s]-factor, then H2 has a spanning s-trail T between x′ ∈ NH [x]

and some vertex x′′ ∈ NH(x).

The following theorem will be used in the proof of Theorem 2.

Theorem E [3]. Let y and z be arbitrarily chosen vertices of a 2-connected graph

G. Then G2 has a hamiltonian cycle C such that the edges of C incident with y are in

G and at least one of the edges of C incident with z is in G. If y and z are adjacent in

G, then these are three different edges.

3 Proofs

The purpose of this section is to prove Theorem 2. As mentioned in Section 1, the proof

makes use of Theorem 1 which we derive next.

Proof of Theorem 1. This proof is inspired by the proof in [5]. We prove our

result by induction on |V (G)|. Clearly G2 is hamiltonian (hence has a [2, 2]-factor) for

graphs with |V (G)| ≤ 6, since G is S(K1,3)-free. By Theorem A, we may assume that

G has cut vertices. If all cut vertices have degree two, then G is a path and hence G2 is

hamiltonian. So we may assume that there is a cut vertex u such that dG(u) = d ≥ 3.

Since G is connected, we may take a spanning tree S of G such that S contains all

edges of G incident with u. We label the neighbors of u by u1, u2, · · · , ud in such a way

that dG(ui) ≥ 2 for 1 ≤ i ≤ m and dG(ui) = 1 for m + 1 ≤ i ≤ d. For i ≤ m, let

Gi be the subgraph of G induced by the vertices in the component of the forest S − u

containing ui; we fix a neighbour u′i of u that is not contained in the same component of

G− u as ui (note that there must be such a vertex since u is a cut vertex of G), and let

Hi = G[V (Gi)∪{u, u′i}]. Then Hi is a proper S(K1,2s+1)-free subgraph of G since Hi is
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an induced subgraph of G and dG(u) ≥ 3. Note that Hi is connected. By the inductive

hypothesis, H2
i has a [2, 2s]-factor. Note that dH2

i

(u′i) = 2.

By Lemma 4 it follows that at least one of the following facts holds.

(a) there exists a spanning closed s-trail Ti in G2
i such that dTi

(ui) ≤ 2s− 2;

(b) there exists a spanning s-trail Ti in G2
i between ui and some zi ∈ NGi

(ui) .

Without loss of generality we may assume that {u1, u2, . . . , um′} ⊆ {u1, u2, . . . , um}

is the set of all vertices ui such that Gi has an s-trail of type (b), for a suitable m′ ≤ m.

Construct the graphH fromG[{u1, u2, . . . , um′ , z1, z2, . . . , zm′}] by contracting edges uizi

to a vertex wi for i = 1, . . . ,m′. Since G is S(K1,2s+1)-free, α(H) ≤ 2s. By Corollary 3,

there are ℓ ≤ α(H) vertex-disjoint paths P1, P2, . . . , Pℓ covering V (H). Without loss

of generality, we may assume that Pi = wsi−1+1wsi−1+2 . . . wsi , for i = 1, . . . , ℓ (where

s0 = 0 and sℓ = m′). Since we contracted edges ujzj to vertices wj , both uj and zj have

a neighbor in {uj+1, zj+1} in G2 for i = 1, . . . , ℓ, and j = si−1+1, . . . , si−1. Hence from

the paths Pi (i = 1, . . . , ℓ) and s-trails Tj (i = 1, . . . ,m′) we can obtain the following

s-trails Fi in G2:

- for a trivial (one-vertex) path Pi, Fi = Ti,

- for a nontrivial path Pi, we construct Fi by joining the trails Tsi−1+1, . . . , Tsi with

the edges xjxj+1, where xj ∈ {uj , zj} and xj+1 ∈ {uj+1, zj+1} with respect to

Pi. Clearly dFi
(usi−1+1) < 2s, dFi

(xsi) < 2s and Fi spans all the vertices of

Gsi−1+1 ∪ · · · ∪Gsi .

Note that the number of s-trails Fi is ℓ ≤ 2s.

Let T = um′+1Tm′+1um′+1um′+2Tm′+2um′+2 . . . umTmumum+1 . . . ud be an s-trail

containing all vertices of Gm′+1 ∪ · · · ∪ Gm and all neighbours of u of degree one in

G. We set F ′ = u1F1xs1uxs2F2us1+1us2+1F3 . . . xsℓFℓusℓ−1+1um′+1 for even ℓ and F ′ =

u1F1xs1uxs2F2us1+1us2+1F3 . . . usℓ−1+1Fℓxsℓuum′+1 for odd ℓ. In both cases, F ′ is an

s-trail containing all vertices of G1 ∪ · · · ∪ Gm′ . Finally, we construct a trail F =

u1F
′um′+1Tudu1. Clearly, dF (u) = ℓ ≤ 2s and F corresponds to a [2, 2s]-factor in G2.

�

Corollary 6. Let G be a simple connected graph with ∆(G) ≤ 2s. Then G2 has a

[2, 2s]-factor.

Before we present the proof of Theorem 2, we give some additional definitions.

Let x be a cut vertex of G, and H ′ be a component of G − x. Then the subgraph
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H = G[V (H ′) ∪ {x}] is called a branch of G at x. Let F be a connected subgraph of

G and x some vertex of F . Let Pi(x) denote a path on i vertices with end vertex x.

The subgraph F is called to be nontrivial at x if it contains a P3(x) as a proper induced

subgraph (i.e., F is trivial at x if F = P3(x) or V (F ) ⊆ N [x]).

Now we present the proof of Theorem 2.

Proof of Theorem 2. We prove this theorem by contradiction. Suppose that

Theorem 2 is not true and choose a graph G in such a way that

(1) G is connected and every induced S(K1,2s+1) in G has at least three edges in a

block of degree at most two;

(2) G2 has no [2, 2s]-factor;

(3) |V (G)| is minimized with respect to (1) and (2).

The following fact is necessary for our proof.

Claim 1. Let x be a cut vertex of G and F1, F2 two connected subgraphs of G such

that F1, F2 belong to different branches of G at x. Assume that F2 is nontrivial at x,

i.e., F2 contains an induced P3(x) = xyz as a proper induced subgraph. Then the graph

G′ = F1xP3(x) also satisfies (1).

Proof of Claim 1. If not, there exists in G′ some S(K1,2s+1) that has no connected

part of order at least 4 in a block of degree at most two. But if so, it is the same in G,

since any S(K1,2s+1) in G′ is also an induced S(K1,2s+1) of G. ✷

Since in our proof we have assumed that G2 has no [2, 2s]-factor, we know from

Theorem 1 that G contains some S(K1,2s+1) as an induced subgraph. By (1), the

S(K1,2s+1) has at least 3 edges in some block H of G of degree at most 2. Notice that

|V (H)| ≥ 5.

Case 1: d(H) = 1. Let c be the cut vertex of G belonging to H and let R be the

union of all branches of G at c which intersect H only at c.

If H is trivial at c, then V (H) − {c} = {b1, b2, ..., bh} ⊆ N(c). The graph G′ =

Rc(cb1) satisfies condition (1). So by minimality of G, the graph G′2 has a [2, 2s]-factor

and, by Lemma 5, R2 has a spanning s-trail T between some c′ ∈ NR[c] and some

c′′ ∈ NR(c). Let F = c′Tc′′b1...bhc
′. It is easy to see that F is a [2, 2s]-factor in G2, a

contradiction.

Hence H is nontrivial at c, i.e., it contains a proper induced path P3(c) = cb1b2. By

Theorem E, H2 contains a hamiltonian path b1PH2c connecting b1 and c. On the other

hand the graph G′′ = RcP3(c) is connected and, by Claim 1, G′′ satisfies condition (1).

7



Since |V (G′′)| < |V (G)|, (G′′)2 has a [2, 2s]-factor and by Lemma 4, one of the following

subcases occur.

If the graph R2 has a spanning closed s-trail T ′ in which dT ′(c) ≤ 2s − 2, then

F = cT ′cb1PH2c is a [2, 2s]-factor in G2, a contradiction.

If the graph R2 has a spanning s-trail T ′′ between c and some neighbor c′′′ ∈ NR(c),

then F = cT ′′c′′′b1PH2c is a [2, 2s]-factor in G2, contradicting condition (2).

Case 2: d(H) = 2. Let c1 and c2 be two cut vertices of G belonging to H and let

Bi, i = 1, 2, be the union of all branches of G at ci not containing H. This means that

G = (B1c1H)c2B2. The subgraph H is a block and thus, by Theorem E, V (H) can be

covered by two vertex-disjoint paths a1P
1
Ha2 and c2P

2
Hc1 in H2, where a1 ∈ N(c1) and

a2 ∈ N(c2). We distinguish, up to symmetry, the following three subcases.

Subcase 2.1: B1 is trivial at c1 and B2 is trivial at c2.

If V (B1) = {b1, b2, ..., bk, c1} ⊆ N [c1], k ≥ 1, and B2 = P3(c2) = c2d1d2, then

F = c1b1b2...bka1P
1
Ha2d1d2c2P

2
Hc1 is even a hamiltonian cycle in G2, which contradicts

the fact that G2 has no [2, 2s]-factor.

The proof is similar if B1 = P3(c1) and V (B2) ⊆ N [c2].

If V (B1) = {b1, b2, ..., bk, c1} ⊆ N [c1] and V (B2) = {d1, d2, ..., dl, c2} ⊆ N [c2], then

F = c1b1b2...bka1P
1
Ha2d1d2...dlc2P

2
Hc1 is also a hamiltonian cycle in G2, contradicting

(2).

Finally, if B1 = P3(c1) = c1b1b2 and B2 = P3(c2) = c2d1d2, then again the cycle

F = c1b2b1a1P
1
Ha2d1d2c2P

2
Hc1 gives a similar contradiction.

Subcase 2.2: B1 is nontrivial at c1 and B2 is trivial at c2.

Since |V (H) ∪ V (B2)| > 3, there exists some vertex in V (H) ∪ V (B2) (for example

each vertex in V (B2) \ {c2}) nonadjacent to c1, the subgraph G′ = Hc2B2 is nontrivial.

Then G′ contains a path P3(c1) = c1n1n2 as a proper induced subgraph. Now let

G1 = B1c1n1n2. By Claim 1, G1 satisfies condition (1). By minimality of G, the graph

G2
1 has a [2, 2s]-factor and thus, by Lemma 4, we have the following two possibilities.

a) The graph B2
1 has a spanning closed s-trail T in which dT (c1) ≤ 2s− 2.

If V (B2) = {b1, b2, ..., bk, c2} ⊆ N [c2], k ≥ 1, then F = c1Tc1a1P
1
Ha2b1b2...bkc2P

2
Hc1

is a [2, 2s]-factor in G2, a contradiction with (2).

If B2 = P3(c2) = c2d1d2, then F = c1Tc1a1P
1
Ha2d1d2c2P

2
Hc1 is a [2, 2s]-factor in G2,

which contradicts condition (2).

b) The graph B2
1 has a spanning s-trail T ′ between c1 and some neighbor c′1 ∈

NB1
(c1).

If V (B2) = {b1, b2, ..., bk, c2} ⊆ N [c2], k ≥ 1, then F = c1T
′c′1a1P

1
Ha2b1b2...bkc2P

2
Hc1

is a [2, 2s]-factor in G2 and contradicts (2).
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Figure 1: An example showing that a condition in Theorem 2 cannot be relaxed.

If B2 = P3(c2) = c2d1d2, then F = c1T
′c′1a1P

1
Ha2d1d2c2P

2
Hc1 is a [2, 2s]-factor in

G2, a contradiction with (2).

Subcase 2.3: B1 is nontrivial at c1 and B2 is nontrivial at c2.

Let G1 be the same graph as in Subcase 2.2 and in a similar way as in Subcase

2.2 let G2 = B2c2m1m2, where a path c2m1m2 is a proper induced subgraph of Hc1B1.

Then, by Claim 1, both G1 and G2 satisfy condition (1). By minimality of G, the

graphs G2
1 and G2

2 have a [2, 2s]-factor and thus, by Lemma 4, we have the following

two possibilities.

a) The graph B2
1 has a spanning closed s-trail T in which dT (c1) ≤ 2s− 2.

If the graph B2
2 has a spanning closed s-trail T ′ in which dT ′(c2) ≤ 2s − 2, then

F = c1Tc1a1P
1
Ha2c2T

′c2P
2
Hc1 is a [2, 2s]-factor in G2 and contradicts (2).

If the graph B2
2 has a spanning s-trail T ′′ between c2 and some neighbor c′2 ∈

NB2
(c2), then F = c1Tc1a1P

1
Ha2c

′

2T
′′c2P

2
Hc1 is a [2, 2s]-factor in G2, contradicting con-

dition (2).

b) The graph B2
1 has a spanning s-trail T ∗ between c1 and some neighbor c′1 ∈

NB1
(c1).

If the graph B2
2 has a spanning closed s-trail T ∗∗ in which dT ∗∗(c2) ≤ 2s − 2, then

F = c1T
∗c′1a1P

1
Ha2c2T

∗∗c2P
2
Hc1 is a [2, 2s]-factor in G2, a contradiction.

If the graph B2
2 has a spanning s-trail T • between c2 and some neighbor c′2 ∈

NB2
(c2), then F = c1T

∗c′1a1P
1
Ha2c

′

2T
•c2P

2
Hc1 is a [2, 2s]-factor in G2 and contradicts

(2). �

The graph G in Figure 1 shows that (for s = 1) the constant 3 in Theorem 2 cannot

be decreased. Although every induced S(K1,2s+1) in G has at least two edges in a block

of degree at most two, G2 has no [2, 2s]-factor.
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