A short proof of the tree-packing theorem

Tomáš Kaiser*

Abstract

We give a short elementary proof of Tutte and Nash-Williams' characterization of graphs with k edge-disjoint spanning trees.

We deal with graphs that may have parallel edges and loops; the vertex and edge sets of a graph H are denoted by V(H) and E(H), respectively. Let G be a graph. If $\mathcal P$ is a partition of V(G), we let $G/\mathcal P$ be the graph on the set $\mathcal P$ with an edge joining distinct vertices $X,Y\in \mathcal P$ for every edge of G with one end in X and another in Y. Tutte [7] and Nash-Williams [4] proved the following classical result:

Theorem 1. A graph G contains k pairwise edge-disjoint spanning trees if and only if for every partition \mathcal{P} of V(G), the graph G/\mathcal{P} has at least $k(|\mathcal{P}|-1)$ edges.

Necessity of the condition in Theorem 1 is immediate. An elegant proof of sufficiency is based on the matroid union theorem (see, e.g., [5, Corollary 51.1a]) which yields the more general matroid base packing theorem of Edmonds [2]. A relatively short elementary proof of sufficiency in Theorem 1, due to W. Mader (personal communication from R. Diestel), is given in [1, Theorem 2.4.1].

In this paper, we give another elementary proof that is also short and perhaps somewhat more straightforward. The argument directly translates to an efficient algorithm to find either k disjoint spanning trees, or a proof that none exist.

To give the reader an idea of the approach, let us briefly sketch the proof of sufficiency, restricting to the case k=2. Let T be a spanning tree of G, and let $\overline{T}=G-E(T)$. We may assume that \overline{T} is disconnected as a spanning subgraph of G (otherwise, we have two disjoint spanning trees). We seek a partition \mathcal{P} of V(G) such that each class of \mathcal{P} induces a connected subgraph in both T and

^{*}Department of Mathematics and Institute for Theoretical Computer Science (ITI), University of West Bohemia, Univerzitní 8, 306 14 Plzeň, Czech Republic. E-mail: kaisert@kma.zcu.cz. Supported by project 1M0545 and Research Plan MSM 4977751301 of the Czech Ministry of Education, and by project GAČR 201/09/0197 of the Czech Science Foundation.

 \overline{T} . In order to find it, we start with the trivial partition $\{V(G)\}$ and iteratively refine it (in a suitable way) until we reach the desired partition \mathcal{P} .

Let $E_{\mathcal{P}}$ denote the set of edges of G joining different classes of \mathcal{P} . The fact that T[X] is connected for each $X \in \mathcal{P}$ enables us to count the edges of T in $E_{\mathcal{P}}$. Meanwhile, the density condition yields a lower bound on $|E_{\mathcal{P}}|$ and implies $|E(\overline{T}) \cap E_{\mathcal{P}}| \geq |\mathcal{P}| - 1$. Since \overline{T} is disconnected, and since $\overline{T}[X]$ is connected for all $X \in \mathcal{P}$, this forces a cycle in \overline{T} intersecting at least two classes of \mathcal{P} . We can replace some edge of T by an edge of this cycle, so as to obtain a new spanning tree T'. When done correctly, the exchange 'improves' the spanning tree T in a well-defined way. Thus, if the initial spanning tree T is chosen as optimal, then the basic assumption that \overline{T} is disconnected must fail, which gives us the desired disjoint spanning trees.

A variant of this approach was used by Kaiser and Vrána [3] in connection with the conjecture of Thomassen [6] that 4-connected line graphs are hamiltonian. In that context, the method is applied to hypergraphs instead of graphs and gives a connectivity condition under which a hypergraph admits a 'spanning hypertree' whose complement is, in a way, close to being connected. A significant difference from the above setup is that the situation in [3] is asymmetric (unlike the packing of two spanning trees in a graph). It would be interesting to identify more general conditions allowing for the application of the method.

As noted by D. Král' (personal communication), a matroid-theoretic reformulation of the argument of the present paper yields a proof of the matroid base packing theorem mentioned above.

Before we start with the detailed proof of Theorem 1, we introduce some terminology. Let $k \geq 1$. A k-decomposition \mathfrak{T} of a graph G is a k-tuple (T_1, \ldots, T_k) of spanning subgraphs of G such that $\{E(T_i): 1 \leq i \leq k\}$ is a partition of E(G).

We define the sequence $(\mathcal{P}_0, \mathcal{P}_1, \ldots, \mathcal{P}_{\infty})$ of partitions of V(G) associated with \mathcal{T} as follows. (See the illustration in Figure 1.) First, $\mathcal{P}_0 = \{V(G)\}$. For $i \geq 0$, if there exists $c \in \{1, \ldots, k\}$ such that the induced subgraph $T_c[X]$ is disconnected for some $X \in \mathcal{P}_i$, then let c_i be the least such c, and let \mathcal{P}_{i+1} consist of the vertex sets of all components of $T_{c_i}[X]$, where X ranges over all the classes of \mathcal{P}_i . Otherwise, the process ends by setting $\mathcal{P}_{\infty} = \mathcal{P}_i$. In this case, we also set $c_j = k + 1$ and $\mathcal{P}_j = \mathcal{P}_i$ for all $j \geq i$.

The level $\ell(e)$ of an edge $e \in E(G)$ (with respect to \mathfrak{T}) is defined as the largest i (possibly ∞) such that both ends of e are contained in one class of \mathfrak{P}_i . To keep the notation simple, the symbols \mathfrak{P}_i and $\ell(e)$ (as well as \mathfrak{P}_{∞} and c_i) will relate to a k-decomposition \mathfrak{T} , while \mathfrak{P}'_i and $\ell'(e)$ will relate to a k-decomposition \mathfrak{T}' . Thus, for instance, the level $\ell'(e)$ of an edge e with respect to \mathfrak{T}' is defined using the partitions \mathfrak{P}'_i associated with \mathfrak{T}' .

When \mathcal{P} and \mathcal{Q} are partitions of V(G), we say that \mathcal{P} refines \mathcal{Q} (and write $\mathcal{P} \leq \mathcal{Q}$) if every class of \mathcal{P} is a subset of a class of \mathcal{Q} . When $\mathcal{P} \leq \mathcal{Q}$ and $\mathcal{P} \neq \mathcal{Q}$, we write $\mathcal{P} < \mathcal{Q}$.

Figure 1: The sequence of partitions associated with a 2-decomposition $\mathcal{T} = (T_1, T_2)$ of G. The edges of T_1 are shown bold. (a) The partition \mathcal{P}_1 (dark grey regions). (b) The partition \mathcal{P}_2 (light grey regions). Note that $\mathcal{P}_2 = \mathcal{P}_{\infty}$.

We define a strict partial order \prec on k-decompositions of G. Given two k-decompositions \mathfrak{T} and \mathfrak{T}' , we set $\mathfrak{T} \prec \mathfrak{T}'$ if there is some (finite) $j \geq 0$ such that both of the following conditions hold:

- (i) for $0 \le i < j$, $\mathcal{P}_i = \mathcal{P}'_i$ and $c_i = c'_i$,
- (ii) either $\mathcal{P}_j < \mathcal{P}_j'$, or $\mathcal{P}_j = \mathcal{P}_j'$ and $c_j < c_j'$.

Proof of Theorem 1. The necessity of the condition is clear. To prove the sufficiency, we proceed by induction on k. The claim is trivially true for k = 0, so assume $k \geq 1$ and choose a k-decomposition $\mathfrak{T} = (T_1, \ldots, T_k)$ of G such that T_1, \ldots, T_{k-1} are trees and, subject to this condition, \mathfrak{T} is maximal with respect to \prec .

If T_k is connected, then we are done. Otherwise, suppose that T_k has at least two components (i.e., $|\mathcal{P}_1| \geq 2$). We prove that there exists an edge of finite level (with respect to \mathcal{T}) contained in a cycle of T_k . Let $\mathcal{P} = \mathcal{P}_{\infty}$. Recall that for $1 \leq i < k$ and $X \in \mathcal{P}$, the graph $T_i[X]$ is connected. Hence T_i/\mathcal{P} is a tree and has exactly $|\mathcal{P}| - 1$ edges. By hypothesis, G/\mathcal{P} has at least $k(|\mathcal{P}| - 1)$ edges, so T_k/\mathcal{P} has at least $|\mathcal{P}| - 1$ edges. Since T_k/\mathcal{P} has $|\mathcal{P}|$ vertices and is disconnected, it must contain a cycle. Thus T_k contains a cycle, since $T_k[X]$ is connected for each $X \in \mathcal{P}$. At least two edges of the cycle join different classes of \mathcal{P} , and therefore their level is finite, as required.

Let $e \in E(T_k)$ be an edge of minimum level that is contained in a cycle of T_k , and set $m = \ell(e)$. (See Figure 2 for an illustration with m = 1.) Let P be the class of \mathcal{P}_m containing both ends of e. Since e joins different components of $T_{c_m}[P]$, we have $c_m \neq k$, and the unique cycle C in $T_{c_m} + e$ contains an edge with only one end in P. Thus, for an edge e' of C of lowest possible level we have $\ell(e') < m$. Let Q be the class of $\mathcal{P}_{\ell(e')}$ containing both ends of e'. Observe that

Figure 2: The exchange step for the 2-decomposition \mathcal{T} of Figure 1. (a) A cycle in T_2 containing e (dotted) and the cycle C in T_1+e (dashed). (b) The spanning tree T_1' (bold) obtained from T_1 by exchanging e for the edge e' of C. The partitions \mathcal{P}_1' and \mathcal{P}_2' associated with the resulting 2-decomposition \mathcal{T}' are shown in dark grey and light grey, respectively. Note that \mathcal{P}_2' is equal to \mathcal{P}_{∞}' and that $\mathcal{T} \prec \mathcal{T}'$.

 $V(C) \subseteq Q$. We will exchange e for e' in the members of the k-decomposition to eventually obtain the desired contradiction.

Let \mathfrak{I}' be the k-decomposition obtained from \mathfrak{I} by replacing T_{c_m} with $T_{c_m} + e - e'$ and T_k with $T_k - e + e'$. The i-th element of \mathfrak{I}' , where $1 \leq i \leq k$, is denoted by T_i' . To relate the sequences of partitions associated with \mathfrak{I} and \mathfrak{I}' , we prove the following two claims.

Claim 1. If $T_c[X]$ is connected, for some $X \subseteq V(G)$ and $1 \le c \le k$, then $T'_c[X]$ is connected unless one of the following holds:

- (a) $c = c_m$, and X contains both ends of e', and $Q \nsubseteq X$, or
- (b) c = k, and X contains both ends of e, and $P \not\subseteq X$.

To prove the claim, suppose that $T'_c[X]$ is disconnected. We have $c \in \{c_m, k\}$, since otherwise $T_c = T'_c$. Consider $c = c_m$. Since $E(T_{c_m}) - E(T'_{c_m}) = \{e'\}$, both ends of e' lie in X. Furthermore, $Q \not\subseteq X$, since otherwise $T'_{c_m}[X]$ would contain the path C - e' joining the ends of e', which would make $T'_{c_m}[X]$ connected. A similar argument for the case c = k completes the proof of Claim 1.

Claim 2. For all $i \leq m$, it holds that $c'_i = c_i$ and $\mathcal{P}'_i = \mathcal{P}_i$.

We proceed by induction on i. The case i = 0 follows from $\mathcal{P}_0 = \mathcal{P}'_0 = \{V(G)\}$ and $c_0 = c'_0 = k$. Let us thus assume that the assertion holds for some i, $0 \le i < m$, and prove it for i + 1.

We first prove that $\mathcal{P}_{i+1} = \mathcal{P}'_{i+1}$. Let S be an arbitrary class of \mathcal{P}_{i+1} ; we assert that $T'_{c'_i}[S]$ is connected. Since $T_{c_i}[S]$ is connected and since $c'_i = c_i$ by the

inductive hypothesis, we can use Claim 1 (with X = S and $c = c_i$). Condition (a) in the claim cannot hold, because every class of \mathcal{P}_{i+1} containing both ends of e' contains Q as a subset. For a similar reason, condition (b) fails. Consequently, $T'_{c_i}[S]$ is connected, and hence S is a subset of some class of \mathcal{P}'_{i+1} . Since S was arbitrary, it follows that $\mathcal{P}_{i+1} \leq \mathcal{P}'_{i+1}$. Now by the choice of \mathcal{T} (and the inductive assumption), we cannot have $\mathcal{P}_{i+1} < \mathcal{P}'_{i+1}$. We conclude that $\mathcal{P}_{i+1} = \mathcal{P}'_{i+1}$.

assumption), we cannot have $\mathcal{P}_{i+1} < \mathcal{P}'_{i+1}$. We conclude that $\mathcal{P}_{i+1} = \mathcal{P}'_{i+1}$. Next, we prove that $c'_{i+1} = c_{i+1}$. Let $R \in \mathcal{P}'_{i+1}$ and $c < c_{i+1}$. By the above, $R \in \mathcal{P}_{i+1}$. The definition of c_{i+1} implies that $T_c[R]$ is connected. Using Claim 1 as above, we find that $T'_c[R]$ is also connected. Consequently, $c'_{i+1} \geq c_{i+1}$, and by the maximality of \mathcal{T} once again, we must have $c'_{i+1} = c_{i+1}$. The proof of Claim 2 is complete.

It is now easy to finish the proof of Theorem 1. Since $\mathcal{P}'_m = \mathcal{P}_m$ and $c'_m = c_m$, the classes of \mathcal{P}'_{m+1} are the vertex sets of components of $T'_{c_m}[U]$, where $U \in \mathcal{P}_m$. Observe that for $U \in \mathcal{P}_m - \{P\}$, we have $T'_{c_m}[U] = T_{c_m}[U]$, and so the components of $T'_{c_m}[U]$ coincide with those of $T_{c_m}[U]$. The graph $T'_{c_m}[P]$ is obtained from $T_{c_m}[P]$ by adding the edge e that connects two components of $T_{c_m}[P]$. It follows that $\mathcal{P}_{m+1} < \mathcal{P}'_{m+1}$, contradicting the choice of \mathcal{T} .

Acknowledgment

I am indebted to Douglas West and two anonymous referees who suggested a number of improvements to the paper.

References

- [1] R. Diestel, Graph Theory, 3rd Edition, Springer, 2005.
- [2] J. Edmonds, Lehman's switching game and a theorem of Tutte and Nash-Williams, J. Res. Nat. Bur. Standards Sect. B 69B (1965), 73–77.
- [3] T. Kaiser and P. Vrána, Hamilton cycles in 5-connected line graphs, *European J. Combin.*, doi:10.1016/j.ejc.2011.09.015.
- [4] C. St. J. A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J. London Math. Soc. 36 (1961), 445–450.
- [5] A. Schrijver, Combinatorial Optimization, Springer, 2003.
- [6] C. Thomassen, Reflections on graph theory, J. Graph Theory 10 (1986), 309–324.
- [7] W. T. Tutte, On the problem of decomposing a graph into n connected factors, J. London Math. Soc. 36 (1961), 221–230.