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Abstract

In an undirected or a directed graph, the edge-connectivity between two disjoint vertex
sets X and Y is defined as the minimum number of edges or arcs that should be removed
for disconnecting all vertices in Y from those in X . This paper discusses how to construct
a directed graph from a given undirected graph by orienting edges so as to preserve the
edge-connectivity on pairs of vertex sets as much as possible. We present several bounds
on the gap between the edge-connectivities in the undirected graph and in the obtained
directed graphs, which extends the Nash-Williams’ strong orientation theorem.
Keywords: edge-connectivity, graph orientation, group Steiner tree packing

1 Introduction

An orientation D = (V,A) of an undirected graph G = (V,E) is a digraph obtained by
replacing each undirected edge e ∈ E with an arc from one end vertex of e to the other. In an
orientation problem, we are asked whether G has an orientation satisfying given connectivity
demands. This is a basic problem in combinatorial optimization, and many beautiful results
have been produced so far (e.g., [1, 2, 3, 4, 5]). The main purpose of this paper is to discuss
possibility to extend those results by introducing a general concept of the edge-connectivity.

Usually the edge-connectivity is defined on pairs of vertices. On the other hand, this
paper deals with the edge-connectivity defined on pairs of vertex sets. Let X and Y be non-
empty disjoint subsets of V , i.e., X,Y ∈ 2V and X ∩ Y = ∅. We define the edge-connectivity
λG(X,Y ) between X and Y in an undirected graph G = (V,E) as min{dG(Z) | Z ∈ 2V ,X ⊆
Z ⊆ V − Y } where dG(Z) stands for the number of edges joining vertices in Z to those
in V − Z. Equivalently λG(X,Y ) is the edge-connectivity λG′(x, y) between two vertices x
and y in the graph G′ obtained from G by shrinking X and Y into single vertices x and
y, respectively. For a digraph D, the arc-connectivity λD(X,Y ) from X to Y is defined as
min{δD(Z) | Z ∈ 2V ,X ⊆ Z ⊆ V − Y } where δD(Z) stands for the number of arcs from
vertices in Z to those in V − Z. λD(X,Y ) is also defined as the arc-connectivity λD′(x, y)
from x to y in the digraph D′ obtained from D by shrinking X and Y into single vertices x
and y, respectively.

The connectivity between vertex sets is a useful notion in practice. For example, let X
be a set of servers providing the same service in a communication network represented by an
undirected graph G = (V,E), and suppose that a vertex v ∈ V −X represents a client of the
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Figure 1: An undirected graph and pairs of vertex subsets

service. Then λG({v},X) stands for the minimum number of links which should be broken for
disconnecting the client from all servers. By such motivation, several optimization problems
defined by the edge-connectivity between vertex sets are considered (e.g., graph augmentation
problem [6, 7, 8], source location problem [9], and minimum cost subgraph problem [10]).

In this paper, we discuss the existence of orientations that satisfy demands defined on
given pairs of vertex sets. We ask how large connectivity is necessary for guaranteeing that
undirected graphs have such orientations. This is formulated as the following question. Note
that Z denotes the set of integers, and R denotes the set of reals.

Question 1. Let G = (V,E) be an undirected graph, and {Xi, Yi} be pairs of disjoint subsets
of V with connectivity demands fi ∈ Z for i ∈ {1, 2, . . . , ℓ}. What is the smallest C ∈ R such
that each undirected graph G with λG(Xi, Yi) ≥ Cfi, i ∈ {1, 2, . . . , ℓ} has an orientation D
with min{λD(Xi, Yi), λD(Yi,Xi)} ≥ fi, i ∈ {1, 2, . . . , ℓ}?

As mentioned in [5], C ≥ 2 is necessary for satisfying the statement in Question 1 even if
the connectivity demands are defined on vertex pairs. With respect to the edge-connectivity
between two vertices, Nash-Williams gave the following best possible result.

Theorem 1 (Nash-Williams [5]). Let f :
(

V
2

)

→ Z be a demand function, where
(

V
2

)

denotes
the set of unordered pairs of vertices. Every undirected graph G has an orientation D such
that λD(u, v) ≥ f(u, v) for each u, v ∈ V if λG(u, v) ≥ 2f(u, v) for each u, v ∈ V .

Question 1 is a natural extension of Theorem 1.
One may consider that an answer to Question 1 can be derived by applying Theorem 1

to the graph obtained by shrinking vertex sets in {Xi, Yi | i = 1, 2, . . . , ℓ} into single vertices.
We notice that this is not true because of the following two reasons. While we are assuming
Xi ∩ Yi = ∅ for i = 1, 2, . . . , ℓ in Question 1, there are possibly intersecting sets belonging
to different pairs, i.e., Z ∩ Z ′ 6= ∅ may hold for some Z ∈ {Xi, Yi} and Z ′ ∈ {Xj , Yj} with
i 6= j. In addition, even if all sets in the given pairs are disjoint, shrinking a set may change
the edge-connectivity of other pairs. For example, see Figure 1 illustrating a graph G with
pairs {X1, Y1}, {X2, Y2} and {X3, Y3} of subsets of V , and G′ obtained by shrinking X1

and Y1 into single vertices x1 and y1. Although the edge-connectivity of {X2, Y2} is not
changed by the shrinking (λG(X2, Y2) = λG′(X2, Y2) = 4), the edge-connectivity of {X3, Y3}
is (λG(X3, Y3) = 4 and λG′(X3, Y3) = 5).

In this paper, we prove the next theorem, which consists of two upper-bounds on C in
Question 1.
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Theorem 2. Let G = (V,E) be an undirected graph, and {Xi, Yi} be pairs of disjoint subsets
of V with connectivity demands fi ∈ Z for i ∈ {1, 2, . . . , ℓ}. Let C1 = 2max{|Xi|+ |Yi| − 1 |
i = 1, 2, . . . , ℓ} and C2 = 4ℓ−2. If an undirected graph G satisfies λG(Xi, Yi) ≥ min{C1, C2}fi
for i ∈ {1, 2, . . . , ℓ}, then G has an orientation D with min{λD(Xi, Yi), λD(Yi,Xi)} ≥ fi for
i ∈ {1, 2, . . . , ℓ}.

We present the proofs for C1 in Section 3 and for C2 in Section 4. The former bound
is derived from an observation presented in [10], and the latter one is proven by apply-
ing the theorem due to Frank [1] iteratively. In Section 4, we also show that C2 can
be improved slightly when an orientation D needs to satisfy λD(Xi, Yi) ≥ fi instead of
min{λD(Xi, Yi), λD(Yi,Xi)} ≥ fi for i ∈ {1, 2, . . . , ℓ}. Moreover we give upper- and lower-
bounds on the difference between min{λD(Xi, Yi), λD(Yi,Xi)} and λG(Xi, Yi) in Section 2.

Furthermore, we consider the case where the demand is rooted. Namely G contains a
vertex r ∈ V , called root, such that Xi = {r} for all i ∈ {1, 2, . . . , ℓ}, and the demand is
defined on only the arc-connectivity from the root to Yi. In this case, we have the next
question similar to Question 1.

Question 2. Let G = (V,E) be an undirected graph, r ∈ V , Yi ⊆ V − r for i ∈ {1, 2, . . . , ℓ},
and fi ∈ Z for i ∈ {1, 2, . . . , ℓ}. What is the smallest C ∈ R such that each undirected
graph G with λG(r, Yi) ≥ Cfi, i ∈ {1, 2, . . . , ℓ} has an orientation D with λD(r, Yi) ≥ fi,
i ∈ {1, 2, . . . , ℓ}?

If some C satisfies the statement in Question 1, then it also satisfies the statement in
Question 2. Moreover C = 2 remains best possible for Question 2 even if each Yi, i ∈
{1, 2, . . . , ℓ} is singleton. This is implied by an example where G is the union of k copies of
a cycle and |V | ≥ 3. This graph satisfies λG(r, v) = 2k for each v ∈ V − r, but it has no
orientation D such that λD(r, v) ≥ k + 1 for all v ∈ V − r. In Section 5, we prove the next
theorem, which answers to Question 2.

Theorem 3. Let G = (V,E) be an undirected graph, r ∈ V , Yi ⊆ V − r for i ∈ {1, 2, . . . , ℓ},
and fi ∈ Z for i ∈ {1, 2, . . . , ℓ}. If an undirected graph G satisfies λG(r, Yi) ≥ ℓfi for
i ∈ {1, 2, . . . , ℓ}, then G has an orientation D = (V,A) with λD(r, Yi) ≥ fi for i ∈ {1, 2, . . . , ℓ}.

In the rest of this introduction, let us review the difficulty of our problems from the view
point of demand functions. We say that a digraph D = (V,A) covers a demand function
h : 2V → Z if ρD(X) ≥ h(X) for all non-empty X ∈ 2V where ρD(X) denotes the number of
arcs from vertices in V −X to those in X.

Subsets X and Y of V are called intersecting if all of X − Y, Y − X,X ∩ Y are non-
empty. A set function h : 2V → Z is called intersecting G-supermodular if h(X) + h(Y ) ≤
h(X ∪ Y ) + h(X ∩ Y ) + dG(X,Y ) holds for each intersecting X,Y ∈ 2V where dG(X,Y )
denotes the number of edges in G joining vertices in X −Y and those in Y −X. If h satisfies
h(X) + h(Y ) ≤ h(X ∪ Y ) + h(X ∩ Y ) for each intersecting X,Y ∈ 2V , then h is called
intersecting supermodular. C8 For example, −ρD is intersecting supermodular (see e.g., [2]).

The following theorem is due to Frank [1].

Theorem 4 (Frank [1]). Let G be an undirected graph and h be an intersecting G-supermodular
function (with possible negative values). There is an orientation of G covering h if and only
if dG(P) ≥

∑t
i=1

h(Vi) holds for every subpartition P = {V1, V2, . . . , Vt} of V where dG(P)
denotes the number of edges in G entering at least one member of P.
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This theorem is so general that it includes several known orientation theorems. However
our setting is not included by this because demands on the edge-connectivity between vertex
sets is not captured by intersecting G-supermodular functions. In Section 5, we observe that
if Theorem 4 can be extended to skew-supermodular demand functions (defined in Section 5),
then C = 2 satisfies the statement in Question 2.

2 Upper- and lower-bounds based on the number of odd-

degree vertices

If G is Eulerian, we can obtain an orientation satisfying the demand in Question 1 with C = 2
by orienting edges along an Eulerian walk of G. By this fact, we can give an upper-bound
following the approach taken by Nash-Williams [5] for proving Theorem 1. We let τ(G) stand
for the number of odd-degree vertices in G.

Theorem 5. Let G = (V,E) be an undirected graph, and let {X1, Y1}, {X2, Y2}, . . . , {Xℓ, Yℓ}
be pairs of disjoint subsets of V . Then G has an orientation D such that

min{λD(Xi, Yi), λD(Yi,Xi)} ≥ ⌈λG(Xi, Yi)/2⌉ − τ(G)/2

for each i ∈ {1, 2, . . . , ℓ}.

Proof. Suppose that τ(G) = 0. Then dG(X) is even for all X ∈ 2V . We define D as
the digraph obtained by orienting edges in G along an Eulerian walk. Since D satisfies
ρD(X) = dG(X)/2 for all X ∈ 2V , min{λD(Xi, Yi), λD(Yi,Xi)} ≥ λG(Xi, Yi)/2 for each
i ∈ {1, 2, . . . , ℓ}.

Let us consider the case where τ(G) > 0. Augment G by adding a perfect matching M
on the odd-degree vertices in G. Then the obtained undirected graph G+M is Eulerian (i.e.,
τ(G+M) = 0). Hence G+M has an orientation D′ such that min{λD′(Xi, Yi), λD′(Yi,Xi)} ≥
λG+M (Xi, Yi)/2 for all i ∈ {1, 2, . . . , ℓ} as mentioned above. Define D as the digraph obtained
by removing arcs corresponding to M from D′. Then D is an orientation of G. Since
|M | = τ(G)/2, λD(Xi, Yi) ≥ λD′(Xi, Yi) − τ(G)/2 and λD(Yi,Xi) ≥ λD′(Xi, Yi) − τ(G)/2
for all i ∈ {1, 2, . . . , ℓ}. Since G +M is Eulerian, every cut has even capacity. It means that
λG+M (Xi, Yi) is even, and thus λG+M (Xi, Yi) ≥ 2⌈λG(Xi, Yi)/2⌉ holds for all i ∈ {1, 2, . . . , ℓ}.

From these facts, we can derive

λD(Xi, Yi) ≥ λD′(Xi, Yi)− τ(G)/2

≥ λG+M (Xi, Yi)/2− τ(G)/2 ≥ ⌈λG(Xi, Yi)/2⌉ − τ(G)/2

and

λD(Yi,Xi) ≥ λD′(Yi,Xi)− τ(G)/2

≥ λG+M (Xi, Yi)/2− τ(G)/2 ≥ ⌈λG(Xi, Yi)/2⌉ − τ(G)/2

for all i ∈ {1, 2, . . . , ℓ}.

We also have a negative result for Question 1.

4



Theorem 6. Define {X1, Y1}, {X2, Y2}, . . . , {Xℓ, Yℓ} as all partitions of V into two non-
empty subsets ( i.e., {Xi | i = 1, 2, . . . , ℓ} = {X ∈ 2V | 0 < |X| < |V |/2} and Yi = V −Xi).
Then G has no orientation D such that

min{λD(Xi, Yi), λD(Yi,Xi)} > λG(Xi, Yi)/2 − τ(G)/4 (1)

for all i ∈ {1, 2, . . . , ℓ}.

Proof. Suppose that G has an orientation D that satisfies (1) for all i ∈ {1, 2, . . . , ℓ}. Let
us consider the case where at least τ(G)/2 vertices in D have the in-degrees larger than the
out-degrees. Let X denote the set of those vertices in G, and E(X) denote the set of edges
in G whose both end vertices are in X. Then X satisfies

ρD(X) =
∑

v∈X

ρD(v)− E(X) ≥
∑

v∈X

(δD(v) + 1)− E(X) ≥ δD(X) + τ(G)/2.

On the other hand, ρD(X) + δD(X) = dG(X). By these facts, δD(X) ≤ dG(X)/2 − τ(G)/4
holds. Hence we have λD(X,V − X) = δD(X) ≤ dG(X)/2 − τ(G)/4 = λG(X,V − X)/2 −
τ(G)/4, a contradiction.

If D has at least τ(G)/2 vertices having the out-degrees larger than the in-degrees, then
consider the digraph D′ obtained by reversing all arcs in D. By applying the above argument
to D′, we have a contradiction also in this case.

From Theorem 6, we can observe that the bound in Theorem 5 is higher than the best
possible by at most τ(G)/4. Theorem 6 also implies that C < min{4/(2− τ(G)/λG(Xi, Yi)) |
1 ≤ i ≤ ℓ} does not satisfy the statement in Question 1 in general.

3 Proof of the bound C1 in Theorem 2

Fukunaga and Nagamochi [10] gave the following useful relationship between the edge-connectivity
between vertices and that between vertex sets.

Lemma 1 (Fukunaga, Nagamochi [10]). Let {X,Y } be a pair of disjoint subsets of V . If
λG(X,Y ) ≥ k(|X| + |Y | − 1), then there exists a pair of vertices x ∈ X and y ∈ Y such that
λG(x, y) ≥ k.

From this fact, we can derive the bound C1 in Theorem 2.

Theorem 7. Let G = (V,E) be an undirected graph, and let {X1, Y1}, {X2, Y2}, . . . , {Xℓ, Yℓ}
be pairs of disjoint subsets of V associated with connectivity demands f1, f2, . . . , fℓ ∈ Z. If G
satisfies λG(Xi, Yi) ≥ 2(|Xi|+ |Yi| − 1)fi for each i ∈ {1, 2, . . . , ℓ}, then it has an orientation
D such that

min{λD(Xi, Yi), λD(Yi,Xi)} ≥ fi

for each i ∈ {1, 2, . . . , ℓ}.

Proof. Since λG(Xi, Yi) ≥ 2(|Xi| + |Yi| − 1)fi holds, there exists a pair of vertices xi ∈ Xi

and yi ∈ Yi such that λG(xi, yi) ≥ 2fi by Lemma 1. The orientation D of G given by Theo-
rem 1 satisfies min{λD(xi, yi), λD(yi, xi)} ≥ fi for each i ∈ {1, 2, . . . , ℓ}. Since λD(Xi, Yi) ≥
λD(xi, yi) and λD(Yi,Xi) ≥ λD(yi, xi), D is a required orientation.

Theorem 7 coincides with Theorem 1 when all demands are defined for vertex pairs. The
bound in Theorem 7 is tight in this sense, but this does not deny possibility to improve the
bound for the other case.
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4 Proof of the bound C2 in Theorem 2

In this section, we provide the proof for bound C2 in Theorem 2. For this, we need the next
lemma.

Lemma 2. Let G = (V,E) be an undirected graph. Moreover let (X1, Y1), (X2, Y2), . . . , (Xℓ, Yℓ)
be ordered pairs of disjoint subsets of V associated with connectivity demands f1, f2, . . . , fℓ ∈ Z

such that f1 ≤ f2 ≤ · · · ≤ fℓ. If G satisfies λG(Xi, Yi) ≥ (2i − 1)fi for all i ∈ {1, 2, . . . , ℓ},
then G has an orientation D such that λD(Xi, Yi) ≥ fi for all i ∈ {1, 2, . . . , ℓ}.

Proof. Let Mi = (V,Ei, Ai), i ∈ {1, 2, . . . , ℓ} denote mixed graphs obtained from G by ori-
enting some edges where Ei is the set of undirected edges and Ai is the set of arcs in Mi. We
let Gi denote the undirected graph (V,Ei), and Di denote the digraph (V,Ai). For proving
Lemma 2, we show that it is possible to construct M1,M2, . . . ,Mℓ inductively so that Mi

satisfies
λDi

(Xj , Yj) ≥ fj for j ∈ {1, 2, . . . , i}, (2)

and
δDi

(Z) ≤ i(ρDi
(Z) + fi) for Yj ⊆ Z ⊆ V −Xj with j ∈ {i+ 1, i+ 2, . . . , ℓ}. (3)

First, let us show how to construct M1. Since λG(X1, Y1) ≥ f1, G contains at least f1
edge-disjoint paths between X1 and Y1. Orient edges in the paths from X1 to Y1. Then
the obtained mixed graph satisfies the conditions (2) and (3) for i = 1. In fact, the first
condition λD1

(X1, Y1) ≥ f1 holds by the existence of arc-disjoint f1 directed paths from X1

to Y1. The second condition δD1
(Z) ≤ ρD1

(Z) + f1 holds because a directed path containing
k arcs entering Z can have at most k arcs leaving Z if the path starts at a vertex in V − Z,
and at most k + 1 arcs leaving Z otherwise.

Now suppose that we have Mi for some 1 ≤ i < ℓ. We show how to construct Mi+1 from
Mi. Let M ′ = (V ′, E′, A′) be the mixed graph obtained from Mi by shrinking Xi+1 into a
single vertex x, shrinking Yi+1 into a single vertex y, and deleting generated loops. Define a
set function h : 2V

′

→ Z so that

h(Z) =











fi+1 − ρD′(Z) if y ∈ Z ⊆ V ′ − x,

−fi+1 − ρD′(Z) if x ∈ Z ⊆ V ′ − y,

−ρD′(Z) otherwise.

Then we have a helpful property of h as follows.

Claim 1. Function h is intersecting supermodular.

Proof. As mentioned in Section 1, −ρD′ is intersecting supermodular. Since intersecting
supermodularity is closed under addition, it suffices to show that h′ := h+ ρD′ is intersecting
supermodular. That is to say, the claim is proven if we show that for intersecting Z,W ∈ 2V

′

(i.e., all of Z ∩W , Z −W and W − Z are non-empty),

h′(Z) + h′(W ) ≤ h′(Z ∩W ) + h′(Z ∪W ) (4)

holds. Notice that h′ returns only three different values. We prove (4) by investigating cases
defined according to the values of h′(Z) and h′(W ).

Let h′(Z) = h′(W ) = fi+1. In this case, y ∈ Z ∩W,Z ∪W and x 6∈ Z ∩W,Z ∪W hold,
which implies h′(Z ∩W ) = h′(Z ∪W ) = fi+1. Hence (4) holds.
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Let h′(Z) = −fi+1 and h′(W ) = fi+1. In this case, h′(Z ∩W ) = 0 because x, y 6∈ Y ∩ Z,
and h′(Z ∪W ) = 0 because x, y ∈ Y ∪ Z. Hence (4) holds.

Let h′(Z) = 0 and h′(W ) = fi+1. If x, y ∈ Z, then x 6∈ Z∩W , y ∈ Z∩W and x, y ∈ Z∪W
hold, which implies that h′(Z∩W ) = fi+1 and h′(Z ∪W ) = 0. If x, y 6∈ Z, then x, y 6∈ Z∩W ,
x 6∈ Z ∪W and y ∈ Z ∪W hold, which implies that h′(Z ∩W ) = 0 and h′(Z ∪W ) = fi+1. In
both cases, (4) holds.

Let h′(Z) = 0 and h′(W ) = −fi+1. If x, y ∈ Z, then x ∈ Z ∩ W , y 6∈ Z ∩ W and
x, y ∈ Z ∪W hold, which implies that h′(Z ∩W ) = −fi+1 and h′(Z ∪W ) = 0. If x, y 6∈ Z,
then x, y 6∈ Z ∩W , x ∈ Z ∪W and y 6∈ Z ∪W hold, which implies that h′(Z ∩W ) = 0 and
h′(Z ∪W ) = −fi+1. In both cases, (4) holds.

Let h′(Z) = h′(W ) = 0. If x, y ∈ Z and x, y ∈ W , then x, y ∈ Z ∩W and x, y ∈ Z ∪W ,
and hence h′(Z ∩W ) = h′(Z ∪W ) = 0 holds. If x, y ∈ Z and x, y 6∈ W , then x, y 6∈ Z ∩W
and x, y ∈ Z ∪W , and hence h′(Z ∩W ) = h′(Z ∪W ) = 0 holds. If x, y 6∈ Z and x, y 6∈ W ,
then x, y 6∈ Z ∩W and x, y 6∈ Z ∪W , and hence h′(Z ∩W ) = h′(Z ∪W ) = 0 holds. In any
cases, (4) holds.

(4) holds when h′(Z) = h′(W ) = −fi+1 because h′(Z ∩ W ) ≥ −fi+1 and h′(Z ∪ W ) ≥
−fi+1. Therefore the claim is proven.

Recall that intersecting supermodular set functions on V ′ are intersecting G′-supermodular.
Hence we can apply Theorem 4 for obtaining the following fact.

Claim 2. G′ has an orientation covering h.

Proof. We first see that dG′(Z) ≥ 2h(Z) holds for any Z ⊆ V ′. It suffices to consider the
case where y ∈ Z and x 6∈ Z because h(Z) ≤ 0 in the other case. Notice that dG(Z) =
dG′(Z) + ρD′(Z) + δD′(Z). Since λG(Xi+1, Yi+1) ≥ (2i + 1)fi+1, dG(Z) ≥ (2i + 1)fi+1 holds
by Menger’s theorem. Recall the assumption that fi ≤ fi+1. By these and condition (3), we
have

dG′(Z) + (i+ 1)ρD′(Z) ≥ dG′(Z) + ρD′(Z) + δD′(Z)− ifi

≥ dG(Z)− ifi+1

≥ (i+ 1)fi+1.

Hence dG′(Z) ≥ (i+ 1)(fi+1 − ρD′(Z)) = (i+ 1)h(Z) ≥ 2h(Z).
Let P = {V1, V2, . . . , Vt} be a subpartition of V ′. It then satisfies dG′(P) ≥

∑t
j=1

dG′(Vj)/2 ≥
∑t

j=1
h(Vj). This means that G′ satisfies the condition presented in Theorem 4. Therefore

G′ has an orientation covering h.

Let D′′ denote the orientation of G′ covering h, and D′ +D′′ denote the digraph whose
arc set consists of the arcs in D′ and D′′. Then λD′+D′′(x, y) ≥ fi+1 since each Z ⊆ V ′ with
y ∈ Z and x 6∈ Z satisfies ρD′+D′′(Z) = ρD′(Z) + ρD′′(Z) ≥ ρD′(Z) + h(Z) ≥ fi+1. Choose
fi+1 arc-disjoint directed paths from x to y in D′ + D′′, and call them by P1, P2, . . . , Pfi+1

.
We denote the set of edges both in Ei and in Pj by E(Pj). Define Mi+1 as the mixed graph
obtained by orienting the edges in E(P1)∪E(P2)∪· · ·∪E(Pfi+1

) from x to y. In the following,
we see that the constructed Mi+1 satisfies conditions (2) and (3).

For each j ∈ {1, 2, . . . , i}, λDi+1
(Xj , Yj) ≥ fj holds because Ai ⊆ Ai+1 and Mi satisfies

(2). Moreover, λDi+1
(Xi+1, Yi+1) ≥ fi+1 holds since Di+1 contains fi+1 arc-disjoint directed

paths from Xi+1 to Yi+1. Hence Mi+1 satisfies (2).
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Let Z ∈ 2V such that Yj ⊆ Z ⊆ V −Xj for some j ∈ {i+2, i+3, . . . , ℓ}. Notice that each
arc entering or leaving Z in Ai+1 − Ai is part of a directed path from x to y in D′′. Hence
δDi+1

(Z)− δDi
(Z) ≤ ρDi+1

(Z)+ fi+1 holds. By this fact and the assumption that Mi satisfies
(3), it holds that

δDi+1
(Z) = δDi+1

(Z)− δDi
(Z) + δDi

(Z)

≤ ρDi+1
(Z) + fi+1 + i(ρDi

(Z) + fi)

≤ (i+ 1)(ρDi+1
(Z) + fi+1),

where the last inequality follows from the properties ρDi
(Z) ≤ ρDi+1

(Z) and fi ≤ fi+1.
Therefore Mi+1 satisfies (3). This completes the proof of Lemma 2.

The result on C2 in Theorem 2 is obtained as follows.

Theorem 8. Let G = (V,E) be an undirected graph, and {Xi, Yi} be pairs of disjoint sub-
sets of V with connectivity demands fi ∈ Z for i ∈ {1, 2, . . . , ℓ}. If an undirected graph
G satisfies λG(Xi, Yi) ≥ (4ℓ − 2)fi for i ∈ {1, 2, . . . , ℓ}, then G has an orientation D with
min{λD(Xi, Yi), λD(Yi,Xi)} ≥ fi for i ∈ {1, 2, . . . , ℓ}.

Proof. The theorem can be proven by applying Lemma 2 for the set of ordered pairs (Xi, Yi)
and (Yi,Xi), i = 1, 2, . . . , ℓ.

In addition, we would like to note that Lemma 2 gives a theorem on a slightly weaker
connectivity demand.

Theorem 9. Let G = (V,E) be an undirected graph, and (Xi, Yi) be ordered pairs of disjoint
subsets of V with connectivity demands fi ∈ Z for i ∈ {1, 2, . . . , ℓ}. If an undirected graph
G satisfies λG(Xi, Yi) ≥ (2ℓ − 1)fi for i ∈ {1, 2, . . . , ℓ}, then G has an orientation D with
λD(Xi, Yi) ≥ fi for i ∈ {1, 2, . . . , ℓ}.

5 Proof of Theorem 3

In this section, we discuss the case where the connectivity demands are defined on pairs
containing the root. Theorem 3 is an immediate consequence of the following lemma.

Lemma 3. Let r ∈ V and Y1, Y2, . . . , Yℓ ⊆ V − r. An undirected graph G = (V,E) has an
orientation D such that λD(r, Yi) ≥ fi for all i ∈ {1, 2, . . . , ℓ} if G satisfies λG(r, Yi) ≥ ifi for
all i ∈ {1, 2, . . . , ℓ}.

Proof. Most part of the proof of Lemma 3 is same with the proof of Lemma 2. In Lemma 3, we
can show that it is possible to construct mixed graphs M1,M2, . . . ,Mℓ such that Mi satisfies
(2) and

δDi
(Z) ≤ iρDi

(Z) for Yj ⊆ Z ⊆ V − r with j ∈ {i+ 1, i + 2, . . . , ℓ}, (5)

which improves (3). Here we mention only the different part from the proof of Lemma 2.
We consider constructing Mi+1 from Mi satisfying (2) and (5). Define M ′ = (V ′, E′, A′)

as the mixed graph obtained from Mi by shrinking Yi+1 into a single vertex y. Define a set
function h : 2V

′

→ Z as in the proof of Lemma 2 by replacing x with r.
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Let G′ = (V ′, E′) and D′ = (V ′, A′). If y ∈ Z ⊆ V ′ − r, then dG′(Z) + ρD′(Z) + δD′(Z) =
dG(Z) ≥ λG(r, Yi+1) ≥ (i+ 1)fi+1 holds. This and (5) imply

dG′(Z) + (i+ 1)ρD′(Z) ≥ dG′(Z) + ρD′(Z) + δD′(Z) ≥ (i+ 1)fi+1,

and hence G′ = (V ′, E′) satisfies dG′(Z) ≥ (i+ 1)h(Z) ≥ 2h(Z) for any Z such that y ∈ Z ⊆
V ′ − r. For the other Z ∈ 2V

′

, dG′(Z) ≥ 2h(Z) holds because h(Z) ≤ 0. Consequently we
can see that G′ has an orientation covering h as in Claim 2.

From the orientation of G′ covering h, define Mi+1 in the same way with the proof of
Lemma 2. The existence of fi+1 arc-disjoint directed paths from r to Yi+1 means that Mi+1

satisfies (2). (5) is also satisfied by Mi+1 because each of the paths starts at r 6∈ Z.

rr

Y1

Y2

Y3

y1

y2
y3

G M

Figure 2: Construction of M from G

In the remainder of this section, we show that the orientation problem with arc-connectivity
demands from r to Yi, i ∈ {1, 2, . . . , ℓ} can be reduced to the orientation problem in mixed
graphs with connectivity demands from r to single vertices. Given graph G = (V,E) with
r ∈ V and Y1, Y2, . . . , Yℓ ⊆ V − r, augment G with a new vertex yi for each i ∈ {1, 2, . . . , ℓ}
and fi parallel arcs from each v ∈ Yi to yi. Let M denote the obtained mixed graph (see
Figure 2). If we can orient the undirected edges in M so that the resultant digraph D satisfies
λD(r, yi) ≥ fi for i ∈ {1, 2, . . . , ℓ}, then it gives an orientation D′ of G such that λD′(r, Yi) ≥ fi
for i ∈ {1, 2, . . . , ℓ}.

Unfortunately we do not know how to solve this orientation problem. If the connectivity
demand is defined from r to v for all v ∈ V − r, then Theorem 4 gives a necessary and
sufficient condition. However, in the above reduced problem, the connectivity demand is
defined only from r to yi, i ∈ {1, 2, . . . , ℓ}. This demand can not be formulated by G-
supermodular functions, but by skew supermodular functions. If Theorem 4 can be extended
to skew supermodular functions, then it implies that C = 2 is an answer to Question 2.

6 Concluding Remarks

As a concluding remark, let us mention a relationship between rooted k-arc-connectivity and
tree packings.

For an undirected graph G = (V,E) with a root r ∈ V and subsets Yi, i ∈ {1, 2, . . . , ℓ} of
V − {r}, a group Steiner tree is defined as a tree T in G spanning r and at least one vertex
in Yi for each i ∈ {1, 2, . . . , ℓ}. The packing number of group Steiner trees is defined as the
maximum number of edge-disjoint group Steiner trees contained by G. Notice that if the
packing number is at least k, then G has obviously an orientation D that satisfies λ(r, Yi) ≥ k
for all i ∈ {1, 2, . . . , ℓ}. We do not know whether its converse holds or not.

9



In [10], Fukunaga and Nagamochi have shown that the packing number is at least k if
G satisfies λG(r, Yi) ≥ 2k|Yi| for all i ∈ {1, 2, . . . , ℓ}. Based on this observation, they have
presented an approximation algorithm for the minimum group Steiner tree problem, which is
the problem of finding a minimum cost group Steiner tree1. The approximation factor of their
algorithm is the gap between the edge-connectivity in G and the packing number. Hence it
is important to improve this gap.

Notice that the gap presented by Fukunaga and Nagamochi [10] coincides with Theorem 7.
A natural question is whether Theorem 3 can be strengthened to obtain another gap between
the edge-connectivity in G and the packing number. This question is formulated as the
following conjecture.

Conjecture 1. Let G = (V,E) be an undirected graph with a root r ∈ V and subsets
Y1, Y2, . . . , Yℓ ⊆ V − r. If λG(r, Yi) ≥ ℓk for all i ∈ {1, 2, . . . , ℓ}, then G contains k edge-
disjoint group Steiner trees.

This conjecture implies an ℓ-approximation algorithm for the group Steiner tree problem.
Since the union of minimum cost paths from r to Yi for i ∈ {1, 2, . . . , ℓ} is an ℓ-approximate
solution, this implication is not interesting. Nevertheless we believe that the packing of group
Steiner trees itself deserves attention.
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