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Abstract

A graph is called pseudo-outerplanar if each block has an embedding on the plane in such a way that the
vertices lie on a fixed circle and the edges lie inside the disk of this circle with each of them crossing at most one
another. In this paper, we prove that each pseudo-outerplanar graph admits edge decompositions into a linear
forest and an outerplanar graph, or a star forest and an outerplanar graph, or two forests and a matching, or
max{A(G), 4} matchings, or max{[A(G)/2], 3} linear forests. These results generalize some ones on outerplanar
graphs and K> 3-minor-free graphs, since the class of pseudo-outerplanar graphs is a larger class than the one

of K 3-minor-free graphs.
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1 Introduction

In this paper, all graphs considered are finite, simple and undirected. We use V(G), E(G), §(G) and A(G) to
denote the vertex set, the edge set, the minimum degree and the maximum degree of a graph G, respectively. Let
dg(v) (or d(v) for simplicity) denote the degree of a vertex v € V(G). A block is a maximal 2-connected subgraph
of a given graph G. A graph H is a minor of a graph G if a copy of H can be obtained from G via repeated edge
deletion and/or edge contraction. For a subset S C V(G) U E(G), G[S] denotes the subgraph of G induced by S.
The vertex connectivity of a graph G, denoted by £(G), is the minimum number of vertices whose deletion from G
disconnects it. For other undefined concepts we refer the readers to [3].

An outerplanar graph is a graph that can be embedded on the plane in such a way that it has no crossings
and that all its vertices lie on the outer face. In this paper, we aim to introduce an extension of this concept. A
graph is called pseudo-outerplanar if each block has an embedding on the plane in such a way that the vertices lie
on a fixed circle and the edges lie inside the disk of this circle with each of them crossing at most one another. In
this embedding, the edges bounding the disk(s) are called boundary edges and a disk is said to be closed or open
according to whether or not it contains the circle that constitutes its boundary. For example, Figure [I] exhibits a
pseudo-outerplanar embedding of a graph with two blocks: one is K4 and the other is K5 3. The drawing of K4 in
this embedding lies inside a closed disk but the one of K5 3 in this embedding lies inside an open disk. In Figure
[ the edges in bold are the boundary edges. A pseudo-outerplanar graph is mazimal if it is not possible to add
an edge such that the resulting graph is still pseudo-outerplanar. Thus K5 3 is not a maximal pseudo-outerplanar
graph, since we can possibly add two edges to K>3 and remain its pseudo-outerplanarity. One can easily check
that each pseudo-outerplanar graph has a planar embedding by its definition. So the class of pseudo-outerplanar
graphs forms a subclass of planar graphs. Actually, the definition of pseudo-outerplanar graphs are similar to that
of 1-planar graphs (i.e. graphs that can be drawn on the plane so that each edge is crossed by at most one other
edge), which was introduced by Ringel [10].

Many classic problems in graph theory are considered for the class of planar graphs and its subclasses, such as
the class of series-parallel graphs and the one of outerplanar graphs. Taking the problem of covering graphs with
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Figure 1: An example of pseudo-outerplanar

forests and a graph of bounded maximum degree for example, we say that a graph is (¢, d)-coverable if its edges
can be covered by at most ¢ forests and a graph of maximum degree d. In [2], Balogh et al. conjectured that every
simple planar graph is (2,4)-coverable and gave a example to show that there are infinitely many planar graphs
that are not (2, 3)-coverable. This conjecture was recently confirmed by Gongalves in [5]. In [2], it is also proved
that every series-parallel graph is (2, 0)-coverable and that every Ks s-minor-free graph is both (1, 3)-coverable and
(2,0)-coverable. Since a graph is outerplanar if and only if it is { K}, K2 3}-minor-free [§], every outerplanar graph
is both (1, 3)-coverable and (2, 0)-coverable. It is interesting to know what can be said about pseudo-outerplanar
graphs, another larger class than outerplanar graphs.

Edge-coloring is another classic problem in graph theory. In fact, we can regard edge-coloring problems as a
covering problem. When we color the edges of a graph G, our actual task is to decompose the edge set F(G) into
some parts such that the graph induced by each part satisfies a property P. Different properties P correspond
to different types of edge-coloring. For example, a proper k-edge-coloring of G is a decomposition of E(G) into k
subsets such that the graph induced by each subset is a matching in G. The minimum integer k such that G has
a proper k-edge-coloring, denoted by x'(G), is the edge chromatic number of G. Vizing’s Theorem states that for
any graph G, A(G) < x'(G) < A(G) + 1. A graph G is said to be of class 1 if x'(G) = A(G), and of class 2 if
X' (G) = A(G) + 1. To determine whether a planar graph is of class 1 is an interesting problem. Sanders and Zhao
[11] showed that each planar graph with maximum degree at least 7 is of class 1. Juvan, Mohar and Thomas [9]
proved that each series-parallel graph with maximum degree at least 3 is of class 1, and thus holds for outerplanar
graphs. It is open whether each pseudo-outerplanar graph with large maximum degree is of class 1.

On the other hand, one can consider improper edge-colorings. Concerning this topic, Harary [7] introduced
the concept of linear arboricity. A linear forest is a forest in which every connected component is a path. A
k-tree-coloring of G is a decomposition of E(G) into k subsets such that the graph induced by each subset is a
linear forest. The linear arboricity la(G) of a graph G is the minimum integer k such that G has a k-tree-coloring.
Akiyama, Exoo and Harary [I] conjectured that la(G) = [(A(G)+1)/2] for any regular graph G. It is obvious that
la(G) > [A(G)/2] for any graph G and la(G) > [(A(G) +1)/2] for any regular graph G. Hence the conjecture is
equivalent to the following one.

Conjecture 1.1 (Linear Arboricity Conjecture). For any graph G, (#] <la(G@) < [w]

Now Conjecture [[LT] has been proved true for all planar graphs (see [13| [I5]). However, it is still interesting to
determine which kinds of planar graphs satisfy la(G) = [A(G)/2]. Wu [13] proved that it holds for planar graphs
with maximum degree at least 13. And the bound 13 was later improved to 9 by Cygan et al. [4]. For subclasses of
planar graphs, Wu [I4] proved that la(G) = [A(G)/2] for all series-parallel graphs (hence also for all outerplanar
graphs) with maximum degree at least 3. Can the same conclusion extend to the class of pseudo-outerplanar
graphs?

In Section 2, we give some relationships among three classes containing the outerplanar graphs; they are the
K 3-minor-free graphs, the series-parallel graphs and the pseudo-outerplanar graphs. In Section 3, we investigate
the problem of covering pseudo-outerplanar graphs with forests and a graph of bounded maximum degree. In
Section 4, some unavoidable structures of pseudo-outerplanar graphs are obtained. These structures will be applied
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Figure 2: Each hamiltonian pseudo-outerplanar graphs has a hamiltonian diagram

to determine the edge chromatic number and linear arboricity of pseudo-outerplanar graphs in Section 5.

2 Basic Properties

Let G be a pseudo-outerplanar graph. In the following of this paper, we always assume that G has been drawn on
the plane such that (1) for each block B of G, the vertices of B lie on a fixed circle and the edges of B lie inside
the disk of this circle with each of them crossing at most one another; (2) the number of crossings in G is as small
as possible. This drawing is called a pseudo-outerplanar diagram of G. Let G be a pseudo-outerplanar diagram
and let B be a block of G. Denote by v1,vs,- -+, v p| the vertices of B, which are lying in a clockwise sequence.
Let V[vi, vj] = {vi, Vi1, - ,v;} and V(v;, v5) = V]vs, v;]\{vs, v;}, where the subscripts and the additions are taken
modular |B].

Lemma 2.1. [8] Let G be an outerplanar graph. Then
(a) 6(G) <2,
(b) k(G) < 2.

Theorem 2.2. Let G be a pseudo-outerplanar graph. Then
(a) 0(G) <3,
(b) K(G) <2 unless G ~ Ky.

Proof. The proof of (a) is left to Corollary A3l So we only prove (b) here. If |G| < 4, then this theorem is trivial.
So we assume that G is a pseudo-outerplanar diagram with |G| > 5 and x(G) > 3. If G has no crossings, then G is
an outerplanar graph and thus by Lemma 2] x(G) < 2, a contradiction. So we assume that there are two chords
v;v; and vpy; in G that cross each other, and that v;, vk, v;, v; are lying in a clockwise sequence. Since |G| > 5,
at least one of V(vi,vk), V(vk,v;), V(vj,v) and V(v;,v;) is nonempty. Without loss of generality, assume that
V(vi,vi) # 0. Since v;v; crosses viv;, there is no edges between the two vertex sets V(v;, vg) and V(vg, v;). So
{vi, v} separates V(v;, v) and V(vg,v;), contradicting to x(G) > 3. O

It is well-known that every 2-connected outerplanar graph is hamiltonian. But this result does not hold for 2-
connected pseudo-outerplanar graphs. The complete bipartite graph K5 3 is such a counterexample. A 2-connected
pseudo-outerplanar diagram is called a hamiltonian diagram if it is in such a way that all its vertices lie on a closed
circuit C (i.e. the disk of C is closed). This closed circuit C is called the hamiltonian boundary of the diagram.
By this definition, one can easily see that a non-hamiltonian 2-connected pseudo-outerplanar graph cannot have
a hamiltonian diagram. It seems interesting to answer whether each hamiltonian pseudo-outerplanar graph has a

hamiltonian diagram.

Theorem 2.3. Let G be a pseudo-outerplanar diagram and C' be a hamiltonian cycle of G. If C' is not the boundary

of G, then G has a hamiltonian diagram such that C is the hamiltonian boundary of this diagram.



Proof. We proceed by induction on the order of GG. Since G has a hamiltonian cycle C = vjvs - - - v,v1 that is not
the boundary of the pseudo-outerplanar diagram of G, one can easily deduce that there exists at least one crossing
in the drawing of C (a sub-diagram of G indeed). Suppose that v;v;y1 and vgve1 (j<k) cross each other and
that v; follows vy in a clockwise walk around G. Denote respectively by U and W the set of vertices from v; to
V41 and from vj41 to vy in the cyclic clockwise sequence of vertices on the outer boundary of G. Take the first

graph in Figure [ for example, we have C = viva---vpv1, U = {vj,vj-1, -+ ,Vig1,V1, * , Vi, Un, Un—1, "+ , Uk1}
and W = {vj41,vj42, -+ ,Uk—1,Vk}. Note that besides v;v;11 and vivk+1, there is no other edge uw such that

u € U and w € W by the definition of G. Let G1 = G[U] +vjv41 and Ga = G[W]+v;+1v,. Then Gy is a pseudo-
outerplanar diagram with a hamiltonian cycle C1 = vjy1Vk42 - U1 - - - VU541 While Go is a pseudo-outerplanar
diagram with a hamiltonian cycle Cy = vj41v42 - vgvj41. By induction hypothesis, G1, G2 respectively has a
hamiltonian diagram such that C7,C5 is the hamiltonian boundary of each diagram. Now we combine these two
hamiltonian diagrams and add two edges v;v;41 and vgvgt1 (see the second graph in Figll), then we can get a
hamiltonian diagram of G with hamiltonian boundary vg41vVg42 - Upv1 - - - VjVj41Vj42 * + - Up—1VkVk+1, Which is the
cycle C indeed. O

Corollary 2.4. Each hamiltonian pseudo-outerplanar graph has a hamiltonian diagram.

We say a graph G quasi-hamiltonian if each block of G is hamiltonian. Denote the class of pseudo-outerplanar
graphs, quasi-hamiltonian pseudo-outerplanar graphs, series-parallel graphs, K» s-minor-free graphs and outerpla-
nar graphs by P, Py, S, Ma 3 and O, respectively. The following basic relationship is obvious.

Remark 2.5. P D Py DO, My3S=0
In the following, we continue to study some more interesting relationships among these five classes of graphs.
Theorem 2.6. Py (S = 0.

Proof. Let G € Py (S and let B be a block of G. By Corollary 24 B has a hamiltonian diagram, and actually
this diagram is outerplanar. If there was a crossing, there would be four vertices u, v, z,y with uv and zy crossing
in B. Since the diagram is hamiltonian, there are four pairwise disjoint paths Pz, Pyy, Pyy and Py, that connects
u to x, x to v, v to y and y to u. Thus the edges uv and vy and the four paths P, Pry, Poy, Py, form a Ky-minor,

which is impossible in a series-parallel graph. Hence B is an outerplanar graph. [l

Lemma 2.7. [6] Let H be a graph obtained from Kz 3 by adding an edge joining two vertices of degree 2 and let G
be a H-minor-free graph. Then each block of G is either Ky-minor-free or isomorphic to Ky.

Corollary 2.8. For any 2-connected graph G € My 3, either G € O or G ~ Kjy.

Proof. Since G € My 3, G is H-minor-free where H is the graph in Lemma 2.7 Thus by Remark [2.5] and Lemma
2.7 either G € O or G ~ K. O

Theorem 2.9. M3 C Py.

Proof. The inclusion of My 3 in Py directly follows from Corollary 28 The inequality comes from the graph
(K1 K2) V K, that belongs to Py but not to M 3. O

3 Decomposability

Let G be a pseudo-outerplanar diagram and let B be a block of GG. Denote by v1, vz, -+ ,v|p| the vertices of B,
which are lying in a clockwise sequence. The edges of the form v;v; (j —i =1 or |B| — 1) are called boundaries
while the edges of the form vv; (1 < j —4 < |B| — 1) are called chords of G. Since G is a pseudo-outerplanar
diagram, all the crossings are generated by one chord crossing another chord. Let Clv;, v;] be the set of chords zy
with z,y € V[v;,v;] and let C(G) be the set of crossed chords in G.
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Figure 3: Decomposability of pseudo-outerplanar graphs

Theorem 3.1. Let G be a hamiltonian pseudo-outerplanar diagram and C be the hamiltonian boundary of this
diagram. Let y € V(C) and yx,yz € E(C). Then there exists a linear forest T in G such that E(T) C C(G),
dr(y) =0, max{dr(x),dr(z)} <1, and G — E(T) is an outerplanar diagram.

Proof. We proceed by induction on the order of G. One can see that the theorem holds for |G| < 4 since the case
G = K4 is trivial. So we assume that |G| > 5. In the following, we also assume that the three vertices z, y, z occur
on C in a clockwise sequence.

First, we consider the case when dg(y) = 2. Let G’ = (G —y)+ 2z and C' = (C — y) + 2z (note that if the edge
xz already exists in G, we let G’ = G —y and C' = C —y). Then G’ is a hamiltonian pseudo-outerplanar diagram
with C” being its hamiltonian boundary. Let z2’ € E(C") with 2’ # z (2 exists because |[V(G)| > 5). By induction
on (G',C", 2/ x,z) (as (G,C, z,y, z), respectively), there exists a linear forest T’ in G’ such that E(T') C C(G’),
dr(z) = 0, max{dy (2'),dr(2)} <1, and G’ — E(T") is an outerplanar diagram. Note that C(G’') = C(G). Let
T =T'. Then E(T) C C(G), dr(xz) = dr(y) =0 and dr(z) < 1. Furthermore, one can easily see that G — E(T) is
an outerplanar diagram.

If dg(y) = 3 and xz € E(G), then the edge zz is crossed by another edge yw. Assume first that V(z,w) = 0,
then zw € E(C). Let G' = G[V[w,z]] + wx and let C’ be the cycle consisting of the edge zw and the clockwise
subpath around C from w to . We assume that N¢v(z) \ {w} # 0, because otherwise G would have less than five
vertices, a contradiction. Let xz’ € E(C") with 2’ # w (see 1st graph of Figure B). Note that G’ is a hamiltonian
pseudo-outerplanar diagram with C” being its hamiltonian boundary. By induction on (G',C’, 2/, z, w), there exists
a linear forest 7’ in G’ such that E(T") C C(G'), dr(x) = 0, max{dy (2'),dr(w)} < 1, and G' — E(T") is an
outerplanar diagram. Let T'= T’ + zz. Then E(T) C C(G), dr(y) =0, dr(x) = dr(z) = 1, and G — E(T) is an
outerplanar diagram. Thus a linear forest T as required has been constructed. So in the following, we assume that
V(z,w) # 0 and V(w,z) # 0. Let 22’ € E(C}) with 2’ # y,w, and let za’ € F(C) with 2’ # y,w (see 2nd graph of
Figure [d). Set G1 = G[V[z,w]] + zw and G2 = G[V[w,z]] + wz. By C; and C2, we respectively denote the cycle
that consists of the edge wz and the clockwise subpath around C from z to w, and that consists of the edge zw and
the clockwise subpath around C' from w to . Then for i = 1,2, G; is a hamiltonian pseudo-outerplanar diagram
with C; being its hamiltonian boundary. By inductions on (G1, C1, w, z,2") and (Ge, Co, w, x, '), there respectively
exists a linear forest T1 in Gy with E(T1) € C(G1), dp, (2) = 0, max{dp, (w),dn, ()} <1 and G; — E(T1) being an
outerplanar diagram, and a linear forest Ty in Go with E(T3) € C(Gs), dr,(z) = 0, max{dp, (w),dr, ()} <1 and
G2 — E(T») being an outerplanar diagram. Let T = T3 U Ty U {zz}. Then we can easily see that E(T) C C(G),
dr(y) =0, dr(z) = dr(z) = 1, dr(w) < 2 and G — E(T) is an outerplanar diagram. Since T; and Ty intersect
on at most one vertex, w, of degree at most one in each forest and there is no edges between V(T1) \ {w} and
V(T2) \ {w}, T1 UTy is a linear forest. Furthermore since z,y and z have degree 0 in T3y U T, T UTs U {xz} is as
required.

The last case is when dg(y) > 3 and zz ¢ E(G). We label the neighbors of y by y1, 42, -, yr in a clockwise
sequence on C, where y; = z, yx = « and k > 3. If yys is not a crossed chord in G, then set G1 = G[V]y, y2]] and
Go = G[V]y2,y]]. Denote by Cy (resp. C3) the cycle consisting of the edge yy» and the clockwise subpath around
C from y to ya (resp. from yo to y). Then G;(i = 1,2) is a hamiltonian pseudo-outerplanar diagram with C; being



its hamiltonian boundary. By using inductions on (G1,C1, 42,4y, 2) and (G2, Ca,y2,y, ), it is easy to construct a
linear forest as required. So we assume that yys, is crossed by another edge yry£ in G, where y&, y2, ylt are labeled
clockwise. Since there is no edges between V(y,y) and V(y%,y), or between V(y, y¥) and V(y¥,vy), we can add
two edges yy& and yyf* to G if they do not really exist so that they do not generate new crossings in G and thus the
resulting graph is still pseudo-outerplanar (see the 3rd graph of Fig. B). By C1, Cy and Cs, we respectively denote
the cycle that consists of the edge yXy and the clockwise subpath around C from y to y¥, and that consists of the
path y£yyL and the clockwise subpath around C from y& to 3£, and that consists of the edge yy&* and the clockwise
subpath around C from y&¥ to y. Let G; be the subgraph of G contained in the closed disc of C;(i = 1,2,3). Here one
should be careful that if yJ' = y; (resp. y&* = yx), then C; (resp. C3) is not a cycle indeed and then G (resp. G3)
is defined to be a null graph. However, G; and G5 cannot simultaneously be null graphs, since y1y, € F(G). Hence
any of G;(i = 1,2,3) is a subgraph of G with smaller order. Moreover, every non-null graph G; is a hamiltonian
pseudo-outerplanar diagram with C; being its hamiltonian boundary. Without loss of generality, we assume that
none of G;(i = 1,2,3) is null graph. By inductions on (G1, C1,y1,y,y5), (G2, Co, y&, v, y&) and (Gs, Cs, yi, y, y&),
there exists a linear forest T; in G; such that E(T;) € C(G;), dr,(y) = 0 and G; — E(T;) is an outerplanar
diagram (i = 1,2,3). Meanwhile, we have max{dr, (y1),dr, (v&),dr,(y%), dr, (¥, dr, (¥E),dr, (yx)} < 1. Let
T =T, UT;UTs. Note that there is no edges whose end points are belong to different parts of the vertex partition
V(y, y5), V(yk, vdt), V(yE,y)] (because otherwise either yys or ykyLf may be crossed twice). So T is still a forest.
Since dr(y¥) < dr, (yd) +dr, (yd) < 2 and dr(vd) < dr, (vE) +dr, (%) <2, A(T) < 2. Thus, a linear forest T has
been constructed. Since C(G;) C C(G) (i =1,2,3), E(T) = E(Th)UE(T2)UE(T3) € C(G1)UC(G1)UC(G3) € C(G).
Meanwhile, dr(y) = dr, (y)+dz, (y) +dr, (y) = 0, dr(x) = dr(yr) = dry (yx) < Land dr(z) = dr(y1) = dr, (y1) < 1.
At last since G — E(T) C Ule (G, — E(Ty)), G — E(T) is an outerplanar diagram. Hence we construct a linear
forest T as required in G and completes the proof of the theorem. O

A star forest is a graph in which every component is a star. The root of a star is the vertex of maximum degree.
Note that Ky has two roots. The roots of a star forest is the union of the root of each star component. The
following Theorem is an analog of Theorem [B1] (note that the condition max{dr(z),dr(z)} < 1 in Theorem
Bl is equivalent to that = or z are vertices of T if and only if « or z are leaves of T'), whose proof is almost the
same with that of Theorem Bl Actually, we can still proceed by induction on the order of G and split the proofs
into three cases: the first is dg(y) = 2, the second is dg(y) = 3 and 2z € E(G), and the last is dg(y) > 3 and
2z € E(G). In each case we can construct a star forest T as required by the same way as in the proof of Theorem
Bl The detailed proof of Theorem is left to the readers.

Theorem 3.2. Let G be a hamiltonian pseudo-outerplanar diagram and C be the hamiltonian boundary of this
diagram. Let y € V(C) and yz,yz € E(C). Then there exists a star forest T in G such that E(T) € C(G),

dr(y) =0, x or z are vertices of T if and only if x or z are roots of T, and G — E(T) is an outerplanar diagram.

Corollary 3.3. Each pseudo-outerplanar graph can be decomposed into an outerplanar graph and a linear forest,

or an outerplanar graph and a star forest.

Proof. Without loss of generality, let G be a quasi-hamiltonian pseudo-outerplanar diagram. Otherwise we can
add some edges to close the circumferential boundary of each block. In what follows, we proceed by induction on
the number of blocks, w(G), in G. The base case when w(G) = 1 follows directly from Theorems Bl and B2 so we
assume that w(G) > 2. Choose a block B of G that contains only one cut vertex y (i.e. B is an end-block). By
Theorems Bl and B2l B can be decomposed into an outerplanar graph H; and a linear forest 77 with dr, (y) = 0,
or an outerplanar graph Hs and a star forest T» with dr, (y) = 0. Meanwhile, by the induction hypothesis, G — B
can also be decomposed into an outerplanar graph Hs and a linear forest T3, or an outerplanar graph Hy and a star
forest Ty. Therefore, G can be covered by the linear forest "= T} U T3 and the outerplanar graph H = H; U Hs,
or the star forest T'= T5 U Ty and the outerplanar graph H = Hy U Hy. O

Theorem 3.4. For every integer n > 12, there exists a 2-connected pseudo-outerplanar graph with order n that

cannot be decomposed into an outerplanar graph and a matching.



Proof. We show the last graph G in Figure [ is a graph that cannot be decomposed into an outerplanar graph
and a matching. Otherwise we suppose that F(G) = E(H) U E(M), where H is an outerplanar and M is
matching. Set S; = {041, ViVit2, ViVit3, Vit1Vits, Vir2Vits} (mod 12) (i = 1,4,7,10). We then claim that
there exists an edge set S; that is contained in F(H). Suppose not, assume first that vive € E(M). Then
vivg € E(H) (k= 3,4,7,10,11,12) and exactly one of v1gv11 and vigv12 should be contained in E (M), say v1gv11-
Then vgvio € E(H) (k = 4,7,12). However, the five vertices {v1,v4,v7,v10,v12} and the three disjoint paths
{v1v4v10, V1V7V10, V1V12010} form a copy of Ko 3 in H; this is a contradiction. Now assume that v1vs € E(M).
Then v1v2, V103, V107, U2U4, V304, V47 € E(H) and thus the graph induced by {v1,vs,vs,v4,v7} is a Ky 3, which is
impossible in an outerplanar graph. Hence in the following we assume that S1 C E(H). If {vivr,vqv7} C E(H),
then the five vertices {v1, va, v, v4, v7} and the three disjoint paths {v1vavy, v1v3v4, v1v7V4 } form a copy of Ko 3 in H,
a contradiction. So exactly one of v1v7 and v4v7 should be contained in E(M), say vyv7. Similarly, {viv19, v4v10} €
E(H). Thus vivig € E(H), vav10 € E(M) and vyv19 € E(H). Now the six vertices {v1, v2, v3, v4, v7,v10} and the
three disjoint paths {v1v3v4, v1V204, vV1v10v7V4} form a Kg s-minor in H. This contradiction completes the proof of
this theorem. O

Theorem 3.5. Every mazimal pseudo-outerplanar graph G is obtained from a mazimal pseudo-outerplanar diagram

H by gluing a K3 or a K4 along a boundary edge of H.

Proof. Without loss of generality, we assume that G is a 2-connected maximal pseudo-outerplanar diagram. Since
G is maximal, G is hamiltonian and G has at least one chord. Let C' = {vivz - --v|g|} be the hamiltonian boundary
of the diagram of G. Now we split the proof into two cases.

Case 1. There exists a crossed chord in G.

Let v;v; be a chord in G that crosses another chord vgy; (1 <i <k < j <! <|G|). Actually, we can properly
choose i and j such that there is no pair of mutually crossed chords in Clv;, vi] \ {viv;, vpvi}, because otherwise we
can change the value of ¢ or j to meet this condition.

Assume first that there is no non-crossed chord in Clv;, v;] \ {v;v;}. Then we shall have k = i + 1. Otherwise,
since v;ur, € FE(G) by our assumption, we can add v;v; to G so that G is still pseudo-outerplanar, contradicting
the fact that G is maximal. Similarly, j = k+1, [ = j+ 1 and v;v; € E(G) by the maximality of G. Furthermore,
d(vr) = d(v;) = 3. Now remove the vertices vy and v; from G and denote the resulting graph by H. Then H is
a maximal pseudo-outerplanar diagram. Otherwise we can add an edge e = v,u, € E(H) (a,b # k or j) to H so
that H + e is pseudo-outerplanar. Therefore, e ¢ E(G) and G + e is a pseudo-outerplanar graph, contradicting
the fact that G is maximal. At this stage, one can easily see that G is obtained from H by gluing a K, along the
boundary edge v;v; of H.

Second, assume that there is a non-crossed chord v,vs in Clv;, v;] \ {v;v;}. Since there is no crossed chords
in C[v,vs] by assumption, we can properly choose r and s such that C[v,,vs] \ {v,vs} = 0. By the maximality
of G, we have s = r 4 2, otherwise we can add an edge v,v,42 to G so that the resulting graph is still pseudo-
outerplanar, a contradiction. Since v,vs is a non-crossed chord, d(v,41) = 2. Now remove the vertex v,41 from G
and denote the resulting graph by H’. Then by a similar argument as before one can prove that H’ is a maximal
pseudo-outerplanar diagram. Furthermore, one can easily see that G is obtained from H’ by gluing a K3 along the
boundary edge v, v, 4o of H.

Case 2. There exists a non-crossed chord in G.

Let v;v; (1 < i < j <|G|) be anon-crossed chord in G. In this case we shall assume that there is no crossed chord
in Clv;, vj], because otherwise we are in Case 1. We can also properly choose i and j such that Clv;, v;]\ {viv;} = 0.
Therefore, we are now in the second subcase of Case 1, where we can set r := i and s := j. O

Corollary 3.6. Each pseudo-outerplanar graph can be decomposed into two forests and a matching.

Proof. Let G be a pseudo-outerplanar graph. In the following, we proceed by induction on the size of G and
assume that G is a maximal pseudo-outerplanar diagram. By Theorem [B.5] there respectively exists a K3 = [xyz]

or a Ky = [zyuv] contained in G such that H = G — {zz,yz} or H = G — {zu,zv,yu, yv,uv} is a maximal



pseudo-outerplanar graph with zy being its boundary edge. By induction on H, there exists two forests Fy, Fb
and a matching M such that E(H) = E(Fy)U E(F>) U E(M). In the former case, let F{ = Fy +xz, F§ = Fo +yz
and M’ = M; and in the latter case, let F{ = F} + {zu,2v}, F} = Fo + {yu,yv} and M’ = M + uv. One can easily
check that the two forests Fy, Fj and the matching M’ are the desired decomposition of G. O

Theorem 3.7. For every integer n > 6, there exists a 2-connected pseudo-outerplanar graph with order n that
cannot be decomposed into two forests.

Proof. Let C = vy ---v,v1(n > 6) be a cycle with n vertices. We add edges vyv; for all 3 < ¢ < n—1 and
edges vg;v9;42 for all 1 < i < L%J — 1. One can easily check that the resulted graph G, is a 2-connected pseudo-
outerplanar graph with order n and size Lgnj — 4. If G,, can be decomposed into two forests F} and F5, then
|E(Gp)| = |E(F1)|+ |E(F)| < |V(F1)|+ |V(Fy)| — 2 < 2n — 2. However, for n > 6, |[E(G,)| = LgnJ —4>2n—2.

Hence, the graph G, (n > 6) cannot be covered by two forests. O

From Corollary [3.6] and Theorem [3.7, we directly have the following two corollaries.
Corollary 3.8. Every pseudo-outerplanar graph is (2,1)-coverable; the two parameters given here are best possible.

Corollary 3.9. The arboricity of a pseudo-outerplanar graph is at most 3; and this bound is sharp.

4 Unavoidable Structures

In this section, a vertex set V[v;,v;] (i < j) is called a non-edge if j = i+ 1 and v;v; ¢ E(G), called a path if
vevgp+1 € E(Q) for all i < k < j and called a subpath if j > i + 1 and some edges in the form vivr1 (2 < k < j)
are missing. We say a chord viv; (kK < 1) is contained in a chord v;v; (i < j) if ¢ < k and I < j. In any figure of
this section, the solid vertices have no edges of G incident with them other than those shown.

Lemma 4.1. [12] Let G be a 2-connected outerplanar graph. Then
(1) G has two adjacent 2-vertices u and v, or
(2) G has a 3-cycle vwzu such that d(u) =2 and d(w) =3, or
(3) G has a 4-vertez w, where N(w) = {u,v,z,y}, such that d(u) = d(v) = 2, N(u) = {w, z} and N(v) = {w,y}.

For the class of pseudo-outerplanar graphs, we have a similar structural theorem as Lemma [£1l But it seems

much more complex since crossings are permitted in a pseudo-outerplanar graph.

Theorem 4.2. Let G be a pseudo-outerplanar diagram with 6(G) > 2. Then G contains one of the following
configurations G1-G17. Moreover,

(a) if G contains some configuration among Ge¢—G17, then the drawing of this configuration in the figure is a
part of the diagram of G with its bending edges corresponding to the chords;

(b) if G contains the configuration Gs and xy € E(G), where x and y are the vertices of Gs as described in the

figure, then we can properly add an edge xy to G so that the resulting diagram is still pseudo-outerplanar.

Yy Xuw aXZWUV yxzwuvay

vV uw yxuw

Ge G,
VUuw Y XuUuyv uvw VvzZyXzwuvay
G, Gy, G Gys Gie Gy,



Proof. We first consider the case when G is a 2-connected pseudo-outerplanar diagram. Recall that this diagram
minimizes the number of crossings. Let v1,v2, -, v|g| be the vertices of this diagram lying in a clockwise sequence.
If there is no crossings in G, then G is an outerplanar graph and thus G satisfies this theorem by Lemma [Tl
Otherwise, we can properly choose one chord v;v; such that

(1) vyv; crosses vpy; in G

(2) v;, vk, v; and vy are lying in a clockwise sequence;

(3) besides v;v; and vivy, there is no crossed chords in Clv;, vy].

The condition (3) can be easily fulfilled, because otherwise we could change the values of i and j to meet this
condition (note that the values of k and [ are determined by i and j). Without loss of generality, assume that
1 <i< k< j<l<|G| because otherwise we can adjust the labellings of the vertices in G to meet it.

Claim 1. V[v;,vg] is either non-edge or path, and so do V{vk,v;| and V[vj,v].

We only need to prove that V[v;,vi] cannot be subpath. Otherwise there exists two vertices v, and vy,41,
where i < m < k — 1, such that v, v,,11 € E(G). If there are chords in the form v,v,,+1 such that i <a <m —1,
then we choose one among them such that ¢ is maximum. One can see that v, is a vertex cut of G, because
there is no edges between V[vg41, V] and V[vy4+1,v4.—1] by the choice of a and (3). This contradicts the fact
that G is 2-connected. Thus there is no chords in the form v,v,,+1 such that ¢ < a < m — 1. Similarly, there
is no chords in the form v,,v, such that m +2 < b < k. Let p = max{n|v,+1v, € E(G),m+1 < n < k} and
q = min{n|v,v, € E(G),i < n < m}. Since V]v;, vg] is neither non-edge nor path, we have k — ¢ > 2 and thus
at least one of the integers p and ¢ exists. Without loss of generality suppose that p exists. Then v, is a vertex
cut of G, because there is no edges between V(v 11, vp—1] and V[vp11,vm] by the choices of m, p and by (3). This

contradiction completes the proof of Claim 1.

Claim 2. If V[v;,v] is a path and k —i > 3, then G has a subgraph isomorphic to one of the configurations
{G1,G2,G4}. This result also holds for V[vg,v;] and V{v;,v] if j —k >3 and | — j > 3, respectively.

Suppose that there is no other chord except v;vy (if exists) in V[v;, vg], then the configuration G occurs, since
k —i > 3. So we assume that S := Clv;,vi] \ {vivk} # 0. Now we prove that there exists at least one chord
in S that contains at least one other chord. Suppose that such a chord does not exist. Then we first choose a
chord v, v, € S (m < n). Without loss of generality, assume that n # k. If n —m > 3, then we can easily find
a copy of G in G, since v,,v, contains no other chords by our assumption. If n — m = 2, then it is trivial to
see that d(vym41) = 2. Now if min{d(v,,),d(v,)} < 3, then a copy of G would be found. Thus we shall assume
that min{d(v,,),d(v,)} > 4. So there exists another chord v,v, (n < p) in S, since d(v,) > 4 and v,,v,, cannot
be contained in a chord in the form v,v, (¢ < n) by the assumption. Similarly, we shall assume that p —n = 2
and d(vp41) = 2 for otherwise the configuration G; would be found. Now one can see that d(v,) = 4, because
otherwise there would be chord in S that contains either v,,v, or v,v,, a contradiction. Therefore, the graph
induced by V[v,,vp] contains the configuration G4. Thus we can choose one chord v,v, € S (a < b) such that
Vo U, contains at least one chord, and furthermore, every chord contained in v,v, contains no other chords (this
condition can be easily fulfilled by properly changing the values of a and b if necessary). Let v,v, (m < n) be the
chord contained in v,vp. Then by the similar argument as above, we have to consider the case when n — m = 2,
d(Vm+1) = 2 and min{d(vy, ), d(vy)} > 4. Without loss of generality, assume that n # b. Then there must be a
chord v,v, (n < p <) in S, since d(v,) > 4 and v,,v, can not be contained in a chord in the form vov, (¢ < n)
by the choices of a and b. By the similar argument as before, if G' contains no copies of G; or G, then p —n = 2
and d(vp4+1) = 2. Furthermore, one can similarly prove that d(v,) = 4 by the choices of a and b. Thus we would
find a copy of G4 in the graph induced by V{vn,,vp].

Claim 3. At most one of V{v;, vi], V[vk,v;] and V[v;, v can be non-edge.

If V([v;, vg] and V]v, v;] are non-edge, then it is trivial that v; is a vertex cut of G, contradicting the fact that G
is 2-connected. If V[v;, vg] and V[v;, ;] are non-edge, then we can adjust the drawing of G by replacing the vertices

order {v;, vk, k41, ,Vj—1, V5, v} with {v;,v;,vj-1, -+, Uk41, vk, vi}. This operation can reduce the number of



crossings in the drawing of G’ by one, contradicting the assumption that this diagram minimizes the number of

crossings.
Claim 4. If one of V[v;,vi], V]vk,v;] and Vv, v] is non-edge, then G has a subgraph isomorphic to one of the
configurations {G1, G, Gs}.

Suppose that V[v;, vi] is a non-edge. By Claims 1-3, both V{vg,v;] and V[v;,v;] are paths with 1 < j —k <2
and 1 <1!—j <2 If j—k=2and vyv; € E(G), then it is clear that d(vy) = 3 and d(vk41) = 2, implying that the
configuration Gy occurs. If j — k = 2 but vyv; € E(G), then d(vx) = d(vg41) = 2, implying that the configuration
G1 occurs. So we assume that j = k+ 1. If | = j + 2, then d(v;+1) = 2 whenever v;v; is an chord or not. In this
case the configuration G5 occurs since d(vi) = 2, and moveover, G + v;v; is still pseudo-outerplanar if v;v; & E(G).
So we assume that [ = j+ 1. Now vy, v;, v; form a triangle satisfying d(vi) = 2 and d(v;) = 3. So the configuration
G occurs. The case when V([v;, v;] is a non-edge can be dealt with similarly.

Now suppose that V[vg, v;] is a non-edge. By Claims 1-3, both V[v;, vx] and V]v;, v;] are paths with 1 < k—¢ < 2
and 1 <1—j <2 Ifk—i=2orj—1=2, by the similar argument as before, we either have d(vi_1) = d(vy) = 2
or have d(v;) = d(vj4+1) = 2, implying that the configuration G; occurs. So we assume that k —i =1—j = 1.
In this case the four vertices v;, v, v; and vg form a quadrilateral with d(v;) = d(vx) = 2, which implies that the

configuration G5 occurs in G and furthermore, G + v;v; is still pseudo-outerplanar if v;v; € E(G).

In the following, we assume that V{v;, vi], V[vg, v;] and V]v;, v] are all paths, where max{k—i,j—k,|—j} < 2.
Set X = Clv, vi]\{viv;, vpvi} and x = | X|. It is clear that x < 3.
Claim 5. If x = 0, then G has a subgraph isomorphic to one of the configurations G¢—G11; If t = 1, then G has a
subgraph isomorphic one of the configurations {Gs, G12,G13,G14}; If © = 2, then G has a subgraph isomorphic to
one of the configurations {Gs, G15,G16}; If x = 3, then G has a subgraph isomorphic to the configuration Gy7.

Here, we just show the case when x = 2 and viv;,v;u; € X for example, and leave the discussions about other
cases to the readers since they are quite similar. In fact, if k —¢ = 1 (resp. k — i = 2), then the configuration
G1s (resp. Gs) would occurs in G since d(vy) = 4 and d(vi+1) = d(vkt1) = d(vjy1) = 2, and furthermore the
drawing of the configuration G5 (resp. Gs) in the figure is just a part of the diagram of G with its bending edges

corresponding to the chords.

Until now, Claims 1-5 just complete the proof of this theorem for the case when G is 2-connected. Now we
suppose that G has at least two blocks. Let B be an end block and let v, vz, ,v g be the vertices of B that
lies in a clockwise sequence. Without loss of generality, let v; be the unique cut vertex of B.

Claim 6. B 1is an outerplanar graph.

We prove that there is no crossings in B. Suppose, to the contrary, that there is a chord v;v; that crosses
another chord vy, where 1 < ¢ < k < j < I. Note that the chord v;v; satisfies (1) and (2) now. If it does not fulfill
(3) at this stage. Then there must be at least one pair of mutually crossed chords contained in either Clv;, vy], or
Clvg, vj], or C[v;,v;]. We choose one pair v,vp and v.vq among them such that a < ¢ < b < d and there is no other
crossed chords in C[v,, v4] besides v v, and v.vg. Now set i :=a, j :=b, k := ¢ and [ := d. Therefore, in any case
we can find a pair of mutually crossed chords, v;v; and viv;, such that 1 <7 < k < j <[ and the three conditions
at the beginning of the proof are fulfilled. Note that B is an 2-connected pseudo-outerplanar diagram. Thus we
can set v;, vj, v, v; as we did in the 2-connected case. Recall the proofs of Claims 1-5, every time we find a copy of
some configuration the vertices v; and v; cannot be the solid vertices (i.e. the degrees of them in the configuration
shall not necessarily to be confirmed). For a vertex v € V(B) \ {v1}, its degree in B is equal to its degree in G,
since B is an end block and v; is the unique cut vertex of the B. Among the vertices in V|[v;, v;], only v; may be
the cut vertex since 1 < i < k < j < [l. Therefore, the proofs of Claims 1-5 are also valid for this claim and then

the same results would be obtained.

Claim 7. B has a subgraph isomorphic to one of the configurations {G1,Ga, G4} in such a way that vy is not a
solid vertez.

Since B is a 2-connected outerplanar graph, B is hamiltonian. So V[v,vp|] is a path. The proof of Claim 2
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implies that if V[v;, vk| is a path with k —4 > 3 such that there is no crossed edges in C[v;, vx] and no edges between
V(v;,v) and V(vg, v;), then G contains one of {G1, G2, G4} in such a way that v; and vy, are not the solid vertices.
Thus in this claim, if |B| > 4, then we set i := 1, k := |B| and come back to the proof of Claim 2. If |B| < 3, then
it is trivial to see that G; would appear. This contradiction completes the proof of the theorem for the case when
G has cut vertices. O

The following is a straightforward corollary of Theorem

Corollary 4.3. Each pseudo-outerplanar graph contains a vertex of degree at most 3.

5 Edge Chromatic Number and Linear Arboricity

In this section, we aim to consider the problems of covering a pseudo-outerplanar graph G with A(G) matchings
or (#] linear forests. A graph G is x’-critical if x'(G) = A(G) + 1 but x'(H) < A(G) for any proper subgraph

H C G, is la-critical if la(G) > f%] but la(H) < (#] for any proper subgraph H C G.

Lemma 5.1. If G is x'-critical and wv € E(QG), then d(u) + d(v) > A(G) + 2.

Lemma 5.2. If G is la-critical and uwv € E(G), then d(u) + d(v) > Q[ATG)] +2.

The above two lemmas are very classic and useful; their proofs can be found in [3] and [I4] respectively. Given
a coloring ¢ of G, ¢;(v) denotes the number of edges incident with v colored by j. Let CZ(v) = {jlc;(v) = i},
i = 0,1,2. Then CY(v) UCL(v) = {1,2,---,k} if ¢ is a proper k-edge-coloring, and C2(v) U C(v) U C2(v) =
{1,2,--- ,k} if ¢ is a k-tree-coloring. For brevity, in the proof of Theorem we use the notion k-coloring to
replace the statements of proper k-edge-coloring or k-tree-coloring and use the notion PO-graph to replace the
statement of pseudo-outerplanar graph. For a graph G and two distinct vertices u,v € V(G), denote by G + zy
the graph obtained from G by adding an new edge zy if xy € E(G), or G itself if zy € E(G).

Theorem 5.3. Let G be a pseudo-outerplanar graph. If A(G) > 4, then X'(G) = A(G).

Proof. Suppose for a contradiction that there exists a minimal (in terms of the size) pseudo-outerplanar diagram
G with A(G) > 4 that has no A(G)-coloring. One can easily observe that G is 2-connected and y’-critical. By
Theorem and Lemma B} G contains at least one of the configurations {Gs, G4, G5, Gg, G12, G13, G16, G17}-
Set S ={1,2,--- ,A(G)}.

If G O G3, then the pseudo-outerplanar graph G’ = G\{u, v} admits a A(G)-coloring ¢ by induction hypothesis
(when A(G’') = A(G)) or Vizing’s Theorem (when A(G’) < A(G) — 1). Construct a A(G)-coloring ¢ of G as
follows. If C}(x) = Cj(y) := L (notice that |L| = A(G) — 2 by Lemma [5.1)), then let p(uz) = ¢(yv) € S\ L and
p(uy) = p(zv) € S\ (LU {p(un)}). T CY(x) £ Cl(y), then (8 \ CL(x)) N Ch(y) £ 0 since d(x) = d(y) = A(G) by
Lemma 1) Let (uz) € (5'\ C3(x)) N CLu). ¢(av) € S\ (CH(a) U {p(us)}). plon) € 5\ (CH(5) U {i(av)}) and
e(uy) € S\ (C4(y) U{e(yv)}). In each case, we color the remain edges of G by the same colors used in ¢. Thus,
we have constructed a A(G)-coloring ¢ of G from the A(G)-coloring ¢ of G’. In the next cases, while constructing
a coloring ¢ of G from the coloring ¢ of G’, we only give the colorings for the edges in E(G) \ E(G’), since for
every edge e € E(G) N E(G’) we always let p(e) = ¢(e).

If G O G4, we shall assume that d(v) = d(w) = A(G) = 4 because of Lemma [l Then the PO-graph
G' =G\ {z,y,u} admits a 4-coloring ¢. Construct a 4-coloring ¢ of G as follows, where two cases are considered
without loss of generality (wlog. for short). If Cj(v) = Cj(w) = {1,2}, then let p(uy) = 1, p(uzx) = 2, p(uw) =
p(vz) = 3 and p(uv) = p(wy) = 4. If C(v) = {1,2}, 1 ¢ C§(w) and 3 € Cj(w), then let p(uw) = 1, p(uzx) = 2,
p(av) = p(uy) = 3, p(uv) = 4 and p(wy) € {2,3,4} \ Cf(w).

If G 2 G5, we shall assume that d(v) = A(G) = 4 because of Lemma [5Il Then the PO-graph G’ = G \ {u}
admits a 4-coloring ¢. One can easily see that (C}(v) N Cj(w)) \ {#(vw)} # 0, because otherwise vw would be
incident with four colors under ¢. Assume that C}(v) = {1,2,3} and ¢(vw) = 3 wlog. If Cj(w) # C§(v), then
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assume that C§(w) = {1,3,4} wlog. Whereafter, we can extend ¢ to a 4-coloring of ¢ of G' by taking p(uv) = 4
and p(uw) = 2. If Cj(w) = C}(v), then we consider two subcases. If ¢(xz) = 4, then construct a 4-coloring of
G by recoloring wx and wv with 3 and 4, and coloring uv and uw with 3 and 2, respectively. If ¢(xz) # 4, then
construct a 4-coloring of G by recoloring wx with 4 and coloring uv and uw with 4 and 2, respectively.

If G DO G, we shall assume that min{d(xo),d(yo)} > 3 and A(G) = 4 by Lemma[51l Assume first that d(zo) =
d(yo) = 4. If zoyo & E(G), then let N(zg) = {u,v, 1,22} and N(yo) = {u,v,y1,y2}. Let G = G\ {u, v} + zoyo.
By Lemmal[£.2] the configuration Gg is a part of the pseudo-outerplanar diagram of G. Thus G’ can also be a PO-
graph and thus G’ admits a 4-coloring ¢ by the minimality of G. Set M = {¢(xoz1), d(zox2), d(yoy1), ¢(yoy2)} and
m = |M|. Since the colors used in ¢ is at most four and zoyo € E(G’), m < 3 (otherwise the edge zoyo cannot be
colored under ¢ because it is already incident with four colored edges). If m = 3, assume that ¢(zox1) = ¢(yoy1) =
1, ¢(zox2) = 2 and ¢(yoy2) = 3 wlog. Now we can extend ¢ to a 4-coloring ¢ of G by taking o(uv) =1, p(vyg) = 2,
o(uxg) = 3 and p(vzg) = p(uyo) = 4. If m < 2, assume that ¢(xoz1) = d(yoy1) = 1 and P(xox2) = d(yoy2) = 2
wlog. Now we can also extend ¢ to a 4-coloring ¢ of G by taking ¢(uv) = 1, p(vye) = p(uxg) = 3 and p(vag) =
¢©(uyo) = 4. On the other hand, if zoyo € E(G), let N(zo) = {u, v,y0,21} and N(y) = {u,v,x0,y1}. Then z1 # y1,
otherwise by the 2-connectivity of G we have G ~ G[{u,v, zo, yo,x1}], which can be 4-colorable. Consider the
graph G’ = G\ {u,v} — zoyo, which admits a 4-coloring ¢ by the minimality of G. If ¢(zox1) = ¢(yoy1) = 1, then
let (uv) =1, p(zoyo) = 2, p(uzo) = @(vyo) = 3 and @(vao) = @(uye) = 4. If ¢(zoz1) =1 and ¢(yoy1) = 2,
then let p(vyo) = 1, p(uxo) = 2, p(uv) = w(xoyo) = 3 and p(vre) = @(uye) = 4. Second, assume that one
of zp and yo has degree three. Assume that d(xzg) = 3 wlog. Let N(z¢) = {u,v,w}. Consider the PO-graph
G’ = G — uzg. By the minimality of G, G’ has a 4-coloring ¢. If A := S\ {¢(vzo), p(wxp), p(uv), p(uye)} # 0
(recall that S = {1,2,3,4}), then let ¢(uzg) € A. Otherwise, assume that ¢(vag) = 1, ¢(wzg) = 2, ¢(uv) = 3 and
¢(uyo) = 4 wlog. Since d(v) = 3, ¢p(uyo) = 4 and vyy € E(G’), v is not incident with the color 4 under ¢. Thus we
can extend ¢ to a 4-coloring of G by recoloring vz with 4 and then coloring uxy with 1.

If G O Gi2, we shall assume that A(G) = 4 because of Lemma [l Assume first that d(z) = d(y) = 4. If
xy € E(G), then denote N(z) = {v,w,z1,22} and N(y) = {v,w,y1,y2}. Consider the graph G' = G \ {v,w} +
zy + ux + uy. Since the configuration Gis is a part of the pseudo-outerplanar diagram of G' by Lemma 4.2, we
can properly add three edges zy, ux and uy to G \ {v,w} such that G’ is still a PO-graph. Thus G’ admits a
4-coloring ¢ by the minimality of G. One can see that {¢(zz1), p(zx2)} # {d(yy1), ¢(yy2)} (otherwise we cannot
properly color the triangle uzy under ¢) and {¢(xz1), p(zx2)} N {P(yy1), d(yy2)} # O (otherwise we cannot color
the edge xy under ¢). Assume that ¢(zz1) =1, ¢(za2) = d(yy1) = 2 and ¢(yy2) = 3 wlog. Then we can construct
a 4-coloring ¢ of G by taking p(uv) = p(wy) = 1, p(vw) = 2, p(uw) = e(va) = 3 and p(wzx) = p(vy) = 4. If
xy € E(Q), then denote N(z) = {v,w,y, 21} and N(y) = {v,w, x,y1 }. We shall also assume that x; # y; because
otherwise G ~ G[{u, v, w,z,y,z1}] by the 2-connectivity of G, which admits a 4-coloring. Now we remove u, v and
w from the diagram of G. Denote by G” the resulting diagram. Then G” is a PO-graph so that both x and y has
degree two in G”. Since the diagram of G minimizes the number of crossings, xz; does not cross yy; in G (and
thus in G”). Denote by G’ the graph obtained from G” by contracting the edge xy. From the above arguments,
one can see that G’ is still a PO-graph with E(G) \ E(G’) = {uv, vw, vw, v, wx, vy, wy, zy}. Furthermore, by the
minimality of G, G’ admits a 4-coloring ¢ with ¢(zz1) # ¢(yy1). Suppose that ¢(zx;) = 1 and ¢(yy1) = 2. Then
we can construct a 4-coloring ¢ of G by taking ¢(uw) = p(vy) = 1, p(uv) = p(wz) = 2, p(vw) = p(zy) = 3 and
p(vz) = p(wy) = 4. Second, assume that one of z and y, say = wlog., has degree at most three. If d(z) < 2, then
it is easy to see that G ~ G[{u,v,w, z,y}| by the 2-connectivity of G, which admits a 4-coloring. If d(x) = 3, then
denote N(z) = {v,w,z1}. Consider the PO-graph G’ = G — uv, which admits a 4-coloring ¢ by the minimality
of G. If A := 85\ {¢(uw), p(vw), p(vy), p(vz)} # O (recall that S = {1,2,3,4}), then let p(uv) € A. Otherwise,
assume that ¢(uw) = 1, ¢(vw) = 2, ¢(vy) = 3 and ¢(vz) = 4 wlog. It follows that ¢(wz) = 3 and ¢(wy) = 4. If
¢(xx1) = 1, then we can construct a 4-coloring of G by recoloring vz and ww with 2, recoloring vw with 1 and
coloring uv with 4. If ¢(zx;) = 2, then we can again construct a 4-coloring of G by recoloring vz with 1 and
coloring uv with 4.

If G O Gi3, then we shall assume that d(z) = A(G) = 4 by Lemma 5.l Denote the fourth neighbor of x by

12



Figure 4: Special pseudo-outerplanar graphs

21 and meanwhile assume that d(y) = 4 and N(y) = {v,w,y1,y2} wlog. Then the PO-graph G’ = G \ {u, v, w}
admits a 4-coloring ¢. Wlog. assume that ¢(xx1) = 1. Construct a 4-coloring ¢ of G as follows. If 1 € Cé(y)
(suppose ¢(yy1) = 1 and ¢(yy2) = 2 wlog.), then let p(vw) = 1, p(uv) = p(wz) = 2, p(vx) = p(wy) = 3 and
p(uz) = p(vy) = 4. If 1 & C4(y) (suppose ¢(yy1) = 2 and ¢(yy2) = 3 wlog.), then let p(vy) = 1, p(uz) = p(vw) =
2, p(uv) = p(wzx) = 3 and p(vx) = p(wy) = 4.

If G O Gi6, then we shall assume that d(z) = d(y) = A(G) = 4 by Lemma 51l Denote the fourth neighbor
of x and y by x; and y; respectively. Then the PO-graph G’ = G \ {u,v,w, 2z} admits a 4-coloring ¢. Construct
a 4-coloring ¢ of G as follows. If ¢(xz1) = P(yy1) = 1, then let p(vw) = 1, p(ux) = p(vz) = p(wy) = 2,
p(wz) = p(oy) = 3 and p(uw) = p(vz) = p(yz) = 4. T 1 = $(zz1) £ Byy) = 2, then let p(vz) = p(wy) = 1,
p(ur) = p(wy) = p(vz) = 2, p(wr) = p(vy) = 3 and p(uw) = p(vr) = 4.

If G 2 Gy7, then we shall assume that d(z) = d(y) = A(G) = 5 by Lemma 511 Then the PO-graph G’ =
G\{u,v,w, z,a} admits a 5-coloring ¢. Construct a 5-coloring ¢ of G as follows. If C}(z) = C4(y) = {1,2}, then let
pluw) = plav) =1, p(wz) = p(uv) = 2, p(x2) = p(vw) = play) = 3, p(wz) = p(vy) = 4 and p(vz) = p(wy) = 5.
If |Cé(:v) ﬁqub(y)| =1 (suppose Cé(m) ={1,2} and qub(y) = {1,3} wlog.), then let p(vw) = 1, p(wy) = p(av) = 2,
p(wz) = p(vz) = 3, p(wr) = p(uv) = p(ay) = 4 and p(xz) = p(uw) = p(vy) = 5. If |C4(x) NC(y)| = 0 (suppose
Ci(x) = {1,2} and Cj(y) = {3,4} wlog.), then let p(vw) = p(ay) = 1, p(wz) = p(vy) = 2, p(vz) = Y(uw) = 3,
p(wz) = p(av) = 4 and p(z2) = p(uv) = p(wy) = 5. 0

Theorem 5.4. For each integer n > 1, there exists a 2-connected pseudo-outerplanar G with order 2n + 5 and
A(G) = 3 so that X'(G) = A(G) + 1.

Proof. Let C = zg- - zpwyy, - - - yovuzg be a cycle. We add edges z;y; for all 1 < ¢ < n and add another two
edges zov and you to C. Denote the resulting graph by P, (See Figure 4). One can easily check that P, is a
2-connected pseudo-outerplanar graph with |P,| = 2n 4+ 5 and A(P,) = 3. If P, has a 3-coloring ¢, then we shall
have ¢(zov) = d(you) and ¢(zou) = P(yov) (otherwise we cannot color uv properly). Thereby we would deduce
that ¢(z;241) = ¢(yiyiq1) for all 0 < i <n — 1 and then ¢(z,w) = ¢(ynw). This final contradiction implies that
X' (Pn) =A(P,) +1=4. O

Theorem 5.5. Let G be a pseudo-outerplanar graph. If A(G) =3 or A(G) > 5, then la(G) = f@}

Proof. Since conjecture [[LT] has already been proved for planar graphs and every PO-graph is planar (cf. Section

1), this theorem holds trivially when A(G) is odd. Thus in the following we assume that A(G) > 6 and A(G) is

A(G)
2

even. For brevity we write k = . Suppose for a contradiction that there exists a minimal (in terms of the size)
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pseudo-outerplanar graph G that has no k-coloring. One can easily observe that G is 2-connected and la-critical.
By Theorem and Lemma [5.2] G contains the configuration Gs.

If vy ¢ E(QG), then by (b) of Lemma[d2 G’ = G\ {v} + xy is still a PO-graph. Thus by the minimality of
G, G’ admits a k-coloring ¢. Now we can construct a k-coloring ¢ of G by taking ¢(vz) = ¢(vy) = ¢(zy) and
p(e) = ¢(e) for every e € E(G) N E(G").

If zy € E(G), then consider the PO-graph G’ = G \ {v}, which has a k-coloring ¢ by the minimality of G. It is
easy to see that |C}(z)| = [C}(y)| = 1, since d(z) = d(y) = A(G) = 2k by Lemma[5.2l We now construct a coloring
¢ of G by taking p(vz) € C}(x), p(vy) € C4(y) and @(e) = ¢(e) for every e € E(G) N E(G"). If Ci(x) # C4(y),
then it is easy to see that ¢ is a k-coloring. If C}(z) = C§(y), then p(vx) = ¢(vy) and ¢ is also a k-coloring
unless p(zy) = @(vx) or p(ux) = p(uy) = p(vx). I p(zy) = p(ve), then p(vz) € {p(uz), p(uy)} and thus we
can exchange the colors on ux and vx. One can easy to check that the resulting coloring of G is a k-coloring. If
o(ux) = p(uy) = ¢(vx), then we recolor xy with ¢(va) and recolor both v and uy with ¢(zy). The resulting
coloring of G is also a k-coloring. O

Theorem 5.6. For each integer m > 1, there exists a 2-connected pseudo-outerplanar G with order 10m + 5 and
A(G) = 4 s0 that la(G) = [2E)] 4 1.

Proof. Let C' = z1 -+ 29,21 be a cycle and T; = u;v;w;u;(1 < i < n) be triangles. Suppose that they are pairwise
disjoint. Now for each 1 < ¢ < n, add fours edges v;z2;—1, v;22;, w;z2;—1 and w;z9;. Denote the resulting graphs
by Q. (See Figure 4). One can easily check that @, is a 2-connected pseudo-outerplanar graph with A(Q,,) = 4.
Consider the graph Qap,y1(m > 1). It is trivial that |Qam+1] = 10m + 5 and la(Q2m+1) < 3 by Lemma If
Q2m+1 has a 2-coloring ¢, then we shall have ¢(22;—2292;—1) # ¢(22i22i+1) for all 1 < i < 2m + 1, where zg = 2442
and 2443 = 21 (otherwise we cannot properly color the set of edges {w;v;, viw;, wit;, Viza;—1, Vi22, WiZ2;—1, WiZ2; }

for some 7). However, the size of the set {2223, 2425, -+ , Zam+221} 18 2m + 1, which is odd, but there are only two
colors that can be used in ¢. This final contradiction implies that la(Qamy1) = (%1 +1=3. O
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