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Edge Covering Pseudo-outerplanar Graphs with Forests∗
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Abstract

A graph is called pseudo-outerplanar if each block has an embedding on the plane in such a way that the

vertices lie on a fixed circle and the edges lie inside the disk of this circle with each of them crossing at most one

another. In this paper, we prove that each pseudo-outerplanar graph admits edge decompositions into a linear

forest and an outerplanar graph, or a star forest and an outerplanar graph, or two forests and a matching, or

max{∆(G), 4} matchings, or max{⌈∆(G)/2⌉, 3} linear forests. These results generalize some ones on outerplanar

graphs and K2,3-minor-free graphs, since the class of pseudo-outerplanar graphs is a larger class than the one

of K2,3-minor-free graphs.

Keywords: pseudo-outerplanar graphs; edge decomposition; edge chromatic number; linear arboricity.

1 Introduction

In this paper, all graphs considered are finite, simple and undirected. We use V (G), E(G), δ(G) and ∆(G) to

denote the vertex set, the edge set, the minimum degree and the maximum degree of a graph G, respectively. Let

dG(v) (or d(v) for simplicity) denote the degree of a vertex v ∈ V (G). A block is a maximal 2-connected subgraph

of a given graph G. A graph H is a minor of a graph G if a copy of H can be obtained from G via repeated edge

deletion and/or edge contraction. For a subset S ⊆ V (G) ∪ E(G), G[S] denotes the subgraph of G induced by S.

The vertex connectivity of a graph G, denoted by κ(G), is the minimum number of vertices whose deletion from G

disconnects it. For other undefined concepts we refer the readers to [3].

An outerplanar graph is a graph that can be embedded on the plane in such a way that it has no crossings

and that all its vertices lie on the outer face. In this paper, we aim to introduce an extension of this concept. A

graph is called pseudo-outerplanar if each block has an embedding on the plane in such a way that the vertices lie

on a fixed circle and the edges lie inside the disk of this circle with each of them crossing at most one another. In

this embedding, the edges bounding the disk(s) are called boundary edges and a disk is said to be closed or open

according to whether or not it contains the circle that constitutes its boundary. For example, Figure 1 exhibits a

pseudo-outerplanar embedding of a graph with two blocks: one is K4 and the other is K2,3. The drawing of K4 in

this embedding lies inside a closed disk but the one of K2,3 in this embedding lies inside an open disk. In Figure

1, the edges in bold are the boundary edges. A pseudo-outerplanar graph is maximal if it is not possible to add

an edge such that the resulting graph is still pseudo-outerplanar. Thus K2,3 is not a maximal pseudo-outerplanar

graph, since we can possibly add two edges to K2,3 and remain its pseudo-outerplanarity. One can easily check

that each pseudo-outerplanar graph has a planar embedding by its definition. So the class of pseudo-outerplanar

graphs forms a subclass of planar graphs. Actually, the definition of pseudo-outerplanar graphs are similar to that

of 1-planar graphs (i.e. graphs that can be drawn on the plane so that each edge is crossed by at most one other

edge), which was introduced by Ringel [10].

Many classic problems in graph theory are considered for the class of planar graphs and its subclasses, such as

the class of series-parallel graphs and the one of outerplanar graphs. Taking the problem of covering graphs with
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Figure 1: An example of pseudo-outerplanar

forests and a graph of bounded maximum degree for example, we say that a graph is (t, d)-coverable if its edges

can be covered by at most t forests and a graph of maximum degree d. In [2], Balogh et al. conjectured that every

simple planar graph is (2, 4)-coverable and gave a example to show that there are infinitely many planar graphs

that are not (2, 3)-coverable. This conjecture was recently confirmed by Gonçalves in [5]. In [2], it is also proved

that every series-parallel graph is (2, 0)-coverable and that every K2,3-minor-free graph is both (1, 3)-coverable and

(2, 0)-coverable. Since a graph is outerplanar if and only if it is {K4,K2,3}-minor-free [8], every outerplanar graph

is both (1, 3)-coverable and (2, 0)-coverable. It is interesting to know what can be said about pseudo-outerplanar

graphs, another larger class than outerplanar graphs.

Edge-coloring is another classic problem in graph theory. In fact, we can regard edge-coloring problems as a

covering problem. When we color the edges of a graph G, our actual task is to decompose the edge set E(G) into

some parts such that the graph induced by each part satisfies a property P . Different properties P correspond

to different types of edge-coloring. For example, a proper k-edge-coloring of G is a decomposition of E(G) into k

subsets such that the graph induced by each subset is a matching in G. The minimum integer k such that G has

a proper k-edge-coloring, denoted by χ′(G), is the edge chromatic number of G. Vizing’s Theorem states that for

any graph G, ∆(G) ≤ χ′(G) ≤ ∆(G) + 1. A graph G is said to be of class 1 if χ′(G) = ∆(G), and of class 2 if

χ′(G) = ∆(G) + 1. To determine whether a planar graph is of class 1 is an interesting problem. Sanders and Zhao

[11] showed that each planar graph with maximum degree at least 7 is of class 1. Juvan, Mohar and Thomas [9]

proved that each series-parallel graph with maximum degree at least 3 is of class 1, and thus holds for outerplanar

graphs. It is open whether each pseudo-outerplanar graph with large maximum degree is of class 1.

On the other hand, one can consider improper edge-colorings. Concerning this topic, Harary [7] introduced

the concept of linear arboricity. A linear forest is a forest in which every connected component is a path. A

k-tree-coloring of G is a decomposition of E(G) into k subsets such that the graph induced by each subset is a

linear forest. The linear arboricity la(G) of a graph G is the minimum integer k such that G has a k-tree-coloring.

Akiyama, Exoo and Harary [1] conjectured that la(G) = ⌈(∆(G)+1)/2⌉ for any regular graph G. It is obvious that

la(G) ≥ ⌈∆(G)/2⌉ for any graph G and la(G) ≥ ⌈(∆(G) + 1)/2⌉ for any regular graph G. Hence the conjecture is

equivalent to the following one.

Conjecture 1.1 (Linear Arboricity Conjecture). For any graph G, ⌈∆(G)
2 ⌉ ≤ la(G) ≤ ⌈∆(G)+1

2 ⌉.

Now Conjecture 1.1 has been proved true for all planar graphs (see [13, 15]). However, it is still interesting to

determine which kinds of planar graphs satisfy la(G) = ⌈∆(G)/2⌉. Wu [13] proved that it holds for planar graphs

with maximum degree at least 13. And the bound 13 was later improved to 9 by Cygan et al. [4]. For subclasses of

planar graphs, Wu [14] proved that la(G) = ⌈∆(G)/2⌉ for all series-parallel graphs (hence also for all outerplanar

graphs) with maximum degree at least 3. Can the same conclusion extend to the class of pseudo-outerplanar

graphs?

In Section 2, we give some relationships among three classes containing the outerplanar graphs; they are the

K2,3-minor-free graphs, the series-parallel graphs and the pseudo-outerplanar graphs. In Section 3, we investigate

the problem of covering pseudo-outerplanar graphs with forests and a graph of bounded maximum degree. In

Section 4, some unavoidable structures of pseudo-outerplanar graphs are obtained. These structures will be applied
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Figure 2: Each hamiltonian pseudo-outerplanar graphs has a hamiltonian diagram

to determine the edge chromatic number and linear arboricity of pseudo-outerplanar graphs in Section 5.

2 Basic Properties

Let G be a pseudo-outerplanar graph. In the following of this paper, we always assume that G has been drawn on

the plane such that (1) for each block B of G, the vertices of B lie on a fixed circle and the edges of B lie inside

the disk of this circle with each of them crossing at most one another; (2) the number of crossings in G is as small

as possible. This drawing is called a pseudo-outerplanar diagram of G. Let G be a pseudo-outerplanar diagram

and let B be a block of G. Denote by v1, v2, · · · , v|B| the vertices of B, which are lying in a clockwise sequence.

Let V [vi, vj ] = {vi, vi+1, · · · , vj} and V(vi, vj) = V [vi, vj ]\{vi, vj}, where the subscripts and the additions are taken

modular |B|.

Lemma 2.1. [8] Let G be an outerplanar graph. Then

(a) δ(G) ≤ 2,

(b) κ(G) ≤ 2.

Theorem 2.2. Let G be a pseudo-outerplanar graph. Then

(a) δ(G) ≤ 3,

(b) κ(G) ≤ 2 unless G ≃ K4.

Proof. The proof of (a) is left to Corollary 4.3. So we only prove (b) here. If |G| ≤ 4, then this theorem is trivial.

So we assume that G is a pseudo-outerplanar diagram with |G| ≥ 5 and κ(G) ≥ 3. If G has no crossings, then G is

an outerplanar graph and thus by Lemma 2.1, κ(G) ≤ 2, a contradiction. So we assume that there are two chords

vivj and vkvl in G that cross each other, and that vi, vk, vj , vl are lying in a clockwise sequence. Since |G| ≥ 5,

at least one of V(vi, vk), V(vk, vj), V(vj , vl) and V(vl, vi) is nonempty. Without loss of generality, assume that

V(vi, vk) 6= ∅. Since vivj crosses vkvl, there is no edges between the two vertex sets V(vi, vk) and V(vk, vi). So

{vi, vk} separates V(vi, vk) and V(vk, vi), contradicting to κ(G) ≥ 3.

It is well-known that every 2-connected outerplanar graph is hamiltonian. But this result does not hold for 2-

connected pseudo-outerplanar graphs. The complete bipartite graph K2,3 is such a counterexample. A 2-connected

pseudo-outerplanar diagram is called a hamiltonian diagram if it is in such a way that all its vertices lie on a closed

circuit C (i.e. the disk of C is closed). This closed circuit C is called the hamiltonian boundary of the diagram.

By this definition, one can easily see that a non-hamiltonian 2-connected pseudo-outerplanar graph cannot have

a hamiltonian diagram. It seems interesting to answer whether each hamiltonian pseudo-outerplanar graph has a

hamiltonian diagram.

Theorem 2.3. Let G be a pseudo-outerplanar diagram and C be a hamiltonian cycle of G. If C is not the boundary

of G, then G has a hamiltonian diagram such that C is the hamiltonian boundary of this diagram.

3



Proof. We proceed by induction on the order of G. Since G has a hamiltonian cycle C = v1v2 · · · vnv1 that is not

the boundary of the pseudo-outerplanar diagram of G, one can easily deduce that there exists at least one crossing

in the drawing of C (a sub-diagram of G indeed). Suppose that vjvj+1 and vkvk+1 (j<k) cross each other and

that vj follows vk in a clockwise walk around G. Denote respectively by U and W the set of vertices from vj to

vk+1 and from vj+1 to vk in the cyclic clockwise sequence of vertices on the outer boundary of G. Take the first

graph in Figure 2 for example, we have C = v1v2 · · · vnv1, U = {vj, vj−1, · · · , vi+1, v1, · · · , vi, vn, vn−1, · · · , vk+1}

and W = {vj+1, vj+2, · · · , vk−1, vk}. Note that besides vjvj+1 and vkvk+1, there is no other edge uw such that

u ∈ U and w ∈ W by the definition of G. Let G1 = G[U ]+ vjvk+1 and G2 = G[W ]+ vj+1vk. Then G1 is a pseudo-

outerplanar diagram with a hamiltonian cycle C1 = vk+1vk+2 · · · vnv1 · · · vjvk+1 while G2 is a pseudo-outerplanar

diagram with a hamiltonian cycle C2 = vj+1vj+2 · · · vkvj+1. By induction hypothesis, G1, G2 respectively has a

hamiltonian diagram such that C1, C2 is the hamiltonian boundary of each diagram. Now we combine these two

hamiltonian diagrams and add two edges vjvj+1 and vkvk+1 (see the second graph in Fig.2), then we can get a

hamiltonian diagram of G with hamiltonian boundary vk+1vk+2 · · · vnv1 · · · vjvj+1vj+2 · · · vk−1vkvk+1, which is the

cycle C indeed.

Corollary 2.4. Each hamiltonian pseudo-outerplanar graph has a hamiltonian diagram.

We say a graph G quasi-hamiltonian if each block of G is hamiltonian. Denote the class of pseudo-outerplanar

graphs, quasi-hamiltonian pseudo-outerplanar graphs, series-parallel graphs, K2,3-minor-free graphs and outerpla-

nar graphs by P , PH , S, M2,3 and O, respectively. The following basic relationship is obvious.

Remark 2.5. P ⊃ PH ⊃ O, M2,3

⋂
S = O

In the following, we continue to study some more interesting relationships among these five classes of graphs.

Theorem 2.6. PH

⋂
S = O.

Proof. Let G ∈ PH

⋂
S and let B be a block of G. By Corollary 2.4 B has a hamiltonian diagram, and actually

this diagram is outerplanar. If there was a crossing, there would be four vertices u, v, x, y with uv and xy crossing

in B. Since the diagram is hamiltonian, there are four pairwise disjoint paths Pux, Pxv, Pvy and Pyu that connects

u to x, x to v, v to y and y to u. Thus the edges uv and vy and the four paths Pux, Pxv, Pvy, Pyu form a K4-minor,

which is impossible in a series-parallel graph. Hence B is an outerplanar graph.

Lemma 2.7. [6] Let H be a graph obtained from K2,3 by adding an edge joining two vertices of degree 2 and let G

be a H-minor-free graph. Then each block of G is either K4-minor-free or isomorphic to K4.

Corollary 2.8. For any 2-connected graph G ∈ M2,3, either G ∈ O or G ≃ K4.

Proof. Since G ∈ M2,3, G is H-minor-free where H is the graph in Lemma 2.7. Thus by Remark 2.5 and Lemma

2.7 either G ∈ O or G ≃ K4.

Theorem 2.9. M2,3 ⊂ PH .

Proof. The inclusion of M2,3 in PH directly follows from Corollary 2.8. The inequality comes from the graph

(K1

⋃
K2) ∨K2 that belongs to PH but not to M2,3.

3 Decomposability

Let G be a pseudo-outerplanar diagram and let B be a block of G. Denote by v1, v2, · · · , v|B| the vertices of B,

which are lying in a clockwise sequence. The edges of the form vivj (j − i = 1 or |B| − 1) are called boundaries

while the edges of the form vivj (1 < j − i < |B| − 1) are called chords of G. Since G is a pseudo-outerplanar

diagram, all the crossings are generated by one chord crossing another chord. Let C[vi, vj ] be the set of chords xy

with x, y ∈ V [vi, vj ] and let C(G) be the set of crossed chords in G.

4
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Figure 3: Decomposability of pseudo-outerplanar graphs

Theorem 3.1. Let G be a hamiltonian pseudo-outerplanar diagram and C be the hamiltonian boundary of this

diagram. Let y ∈ V (C) and yx, yz ∈ E(C). Then there exists a linear forest T in G such that E(T ) ⊆ C(G),

dT (y) = 0, max{dT (x), dT (z)} ≤ 1, and G− E(T ) is an outerplanar diagram.

Proof. We proceed by induction on the order of G. One can see that the theorem holds for |G| ≤ 4 since the case

G = K4 is trivial. So we assume that |G| ≥ 5. In the following, we also assume that the three vertices x, y, z occur

on C in a clockwise sequence.

First, we consider the case when dG(y) = 2. Let G′ = (G− y)+xz and C′ = (C− y)+xz (note that if the edge

xz already exists in G, we let G′ = G− y and C′ = C − y). Then G′ is a hamiltonian pseudo-outerplanar diagram

with C′ being its hamiltonian boundary. Let xx′ ∈ E(C′) with x′ 6= z (x′ exists because |V (G)| ≥ 5). By induction

on (G′, C′, x′, x, z) (as (G,C, x, y, z), respectively), there exists a linear forest T ′ in G′ such that E(T ′) ⊆ C(G′),

dT ′(x) = 0, max{dT ′(x′), dT ′(z)} ≤ 1, and G′ − E(T ′) is an outerplanar diagram. Note that C(G′) = C(G). Let

T = T ′. Then E(T ) ⊆ C(G), dT (x) = dT (y) = 0 and dT (z) ≤ 1. Furthermore, one can easily see that G− E(T ) is

an outerplanar diagram.

If dG(y) = 3 and xz ∈ E(G), then the edge xz is crossed by another edge yw. Assume first that V(z, w) = ∅,

then zw ∈ E(C). Let G′ = G[V [w, x]] + wx and let C′ be the cycle consisting of the edge xw and the clockwise

subpath around C from w to x. We assume that NC′(x) \ {w} 6= ∅, because otherwise G would have less than five

vertices, a contradiction. Let xx′ ∈ E(C′) with x′ 6= w (see 1st graph of Figure 3). Note that G′ is a hamiltonian

pseudo-outerplanar diagram with C′ being its hamiltonian boundary. By induction on (G′, C′, x′, x, w), there exists

a linear forest T ′ in G′ such that E(T ′) ⊆ C(G′), dT ′(x) = 0, max{dT ′(x′), dT ′(w)} ≤ 1, and G′ − E(T ′) is an

outerplanar diagram. Let T = T ′ + xz. Then E(T ) ⊆ C(G), dT (y) = 0, dT (x) = dT (z) = 1, and G − E(T ) is an

outerplanar diagram. Thus a linear forest T as required has been constructed. So in the following, we assume that

V(z, w) 6= ∅ and V(w, x) 6= ∅. Let zz′ ∈ E(C1) with z′ 6= y, w, and let xx′ ∈ E(C) with x′ 6= y, w (see 2nd graph of

Figure 3). Set G1 = G[V [z, w]] + zw and G2 = G[V [w, x]] + wx. By C1 and C2, we respectively denote the cycle

that consists of the edge wz and the clockwise subpath around C from z to w, and that consists of the edge xw and

the clockwise subpath around C from w to x. Then for i = 1, 2, Gi is a hamiltonian pseudo-outerplanar diagram

with Ci being its hamiltonian boundary. By inductions on (G1, C1, w, z, z
′) and (G2, C2, w, x, x

′), there respectively

exists a linear forest T1 in G1 with E(T1) ∈ C(G1), dT1
(z) = 0, max{dT1

(w), dT1
(z′)} ≤ 1 and G1 −E(T1) being an

outerplanar diagram, and a linear forest T2 in G2 with E(T2) ∈ C(G2), dT2
(x) = 0, max{dT2

(w), dT2
(x′)} ≤ 1 and

G2 − E(T2) being an outerplanar diagram. Let T = T1 ∪ T2 ∪ {xz}. Then we can easily see that E(T ) ⊆ C(G),

dT (y) = 0, dT (x) = dT (z) = 1, dT (w) ≤ 2 and G − E(T ) is an outerplanar diagram. Since T1 and T2 intersect

on at most one vertex, w, of degree at most one in each forest and there is no edges between V (T1) \ {w} and

V (T2) \ {w}, T1 ∪ T2 is a linear forest. Furthermore since x, y and z have degree 0 in T1 ∪ T2, T1 ∪ T2 ∪ {xz} is as

required.

The last case is when dG(y) ≥ 3 and xz 6∈ E(G). We label the neighbors of y by y1, y2, · · · , yk in a clockwise

sequence on C, where y1 = z, yk = x and k ≥ 3. If yy2 is not a crossed chord in G, then set G1 = G[V [y, y2]] and

G2 = G[V [y2, y]]. Denote by C1 (resp. C2) the cycle consisting of the edge yy2 and the clockwise subpath around

C from y to y2 (resp. from y2 to y). Then Gi(i = 1, 2) is a hamiltonian pseudo-outerplanar diagram with Ci being

5



its hamiltonian boundary. By using inductions on (G1, C1, y2, y, z) and (G2, C2, y2, y, x), it is easy to construct a

linear forest as required. So we assume that yy2 is crossed by another edge yL2 y
R
2 in G, where yL2 , y2, y

R
2 are labeled

clockwise. Since there is no edges between V(y, yL2 ) and V(yL2 , y), or between V(y, yR2 ) and V(yR2 , y), we can add

two edges yyL2 and yyR2 to G if they do not really exist so that they do not generate new crossings in G and thus the

resulting graph is still pseudo-outerplanar (see the 3rd graph of Fig. 3). By C1, C2 and C3, we respectively denote

the cycle that consists of the edge yL2 y and the clockwise subpath around C from y to yL2 , and that consists of the

path yR2 yy
L
2 and the clockwise subpath around C from yL2 to yR2 , and that consists of the edge yyR2 and the clockwise

subpath around C from yR2 to y. Let Gi be the subgraph of G contained in the closed disc of Ci(i = 1, 2, 3). Here one

should be careful that if yL2 = y1 (resp. yR2 = yk), then C1 (resp. C3) is not a cycle indeed and then G1 (resp. G3)

is defined to be a null graph. However, G1 and G3 cannot simultaneously be null graphs, since y1yk 6∈ E(G). Hence

any of Gi(i = 1, 2, 3) is a subgraph of G with smaller order. Moreover, every non-null graph Gi is a hamiltonian

pseudo-outerplanar diagram with Ci being its hamiltonian boundary. Without loss of generality, we assume that

none of Gi(i = 1, 2, 3) is null graph. By inductions on (G1, C1, y1, y, y
L
2 ), (G2, C2, y

R
2 , y, y

L
2 ) and (G3, C3, yk, y, y

R
2 ),

there exists a linear forest Ti in Gi such that E(Ti) ∈ C(Gi), dTi
(y) = 0 and Gi − E(Ti) is an outerplanar

diagram (i = 1, 2, 3). Meanwhile, we have max{dT1
(y1), dT1

(yL2 ), dT2
(yL2 ), dT2

(yR2 ), dT3
(yR2 ), dT3

(yk)} ≤ 1. Let

T = T1 ∪T2 ∪T3. Note that there is no edges whose end points are belong to different parts of the vertex partition

[V(y, yL2 ),V(y
L
2 , y

R
2 ),V(y

R
2 , y)] (because otherwise either yy2 or yL2 y

R
2 may be crossed twice). So T is still a forest.

Since dT (y
R
2 ) ≤ dT2

(yR2 )+dT3
(yR2 ) ≤ 2 and dT (y

L
2 ) ≤ dT1

(yL2 )+dT2
(yL2 ) ≤ 2, ∆(T ) ≤ 2. Thus, a linear forest T has

been constructed. Since C(Gi) ⊆ C(G) (i = 1, 2, 3), E(T ) = E(T1)∪E(T2)∪E(T3) ∈ C(G1)∪C(G1)∪C(G3) ∈ C(G).

Meanwhile, dT (y) = dT1
(y)+dT2

(y)+dT3
(y) = 0, dT (x) = dT (yk) = dT3

(yk) ≤ 1 and dT (z) = dT (y1) = dT1
(y1) ≤ 1.

At last since G − E(T ) ⊆
⋃3

i=1(Gi − E(Ti)), G − E(T ) is an outerplanar diagram. Hence we construct a linear

forest T as required in G and completes the proof of the theorem.

A star forest is a graph in which every component is a star. The root of a star is the vertex of maximum degree.

Note that K2 has two roots. The roots of a star forest is the union of the root of each star component. The

following Theorem 3.2 is an analog of Theorem 3.1 (note that the condition max{dT (x), dT (z)} ≤ 1 in Theorem

3.1 is equivalent to that x or z are vertices of T if and only if x or z are leaves of T ), whose proof is almost the

same with that of Theorem 3.1. Actually, we can still proceed by induction on the order of G and split the proofs

into three cases: the first is dG(y) = 2, the second is dG(y) = 3 and xz ∈ E(G), and the last is dG(y) ≥ 3 and

xz 6∈ E(G). In each case we can construct a star forest T as required by the same way as in the proof of Theorem

3.1. The detailed proof of Theorem 3.2 is left to the readers.

Theorem 3.2. Let G be a hamiltonian pseudo-outerplanar diagram and C be the hamiltonian boundary of this

diagram. Let y ∈ V (C) and yx, yz ∈ E(C). Then there exists a star forest T in G such that E(T ) ∈ C(G),

dT (y) = 0, x or z are vertices of T if and only if x or z are roots of T , and G− E(T ) is an outerplanar diagram.

Corollary 3.3. Each pseudo-outerplanar graph can be decomposed into an outerplanar graph and a linear forest,

or an outerplanar graph and a star forest.

Proof. Without loss of generality, let G be a quasi-hamiltonian pseudo-outerplanar diagram. Otherwise we can

add some edges to close the circumferential boundary of each block. In what follows, we proceed by induction on

the number of blocks, ω(G), in G. The base case when ω(G) = 1 follows directly from Theorems 3.1 and 3.2 so we

assume that ω(G) ≥ 2. Choose a block B of G that contains only one cut vertex y (i.e. B is an end-block). By

Theorems 3.1 and 3.2, B can be decomposed into an outerplanar graph H1 and a linear forest T1 with dT1
(y) = 0,

or an outerplanar graph H2 and a star forest T2 with dT2
(y) = 0. Meanwhile, by the induction hypothesis, G−B

can also be decomposed into an outerplanar graph H3 and a linear forest T3, or an outerplanar graph H4 and a star

forest T4. Therefore, G can be covered by the linear forest T = T1 ∪ T3 and the outerplanar graph H = H1 ∪H3,

or the star forest T = T2 ∪ T4 and the outerplanar graph H = H2 ∪H4.

Theorem 3.4. For every integer n ≥ 12, there exists a 2-connected pseudo-outerplanar graph with order n that

cannot be decomposed into an outerplanar graph and a matching.
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Proof. We show the last graph G in Figure 3 is a graph that cannot be decomposed into an outerplanar graph

and a matching. Otherwise we suppose that E(G) = E(H) ∪ E(M), where H is an outerplanar and M is

matching. Set Si = {vivi+1, vivi+2, vivi+3, vi+1vi+3, vi+2vi+3} (mod 12) (i = 1, 4, 7, 10). We then claim that

there exists an edge set Si that is contained in E(H). Suppose not, assume first that v1v2 ∈ E(M). Then

v1vk ∈ E(H) (k = 3, 4, 7, 10, 11, 12) and exactly one of v10v11 and v10v12 should be contained in E(M), say v10v11.

Then vkv10 ∈ E(H) (k = 4, 7, 12). However, the five vertices {v1, v4, v7, v10, v12} and the three disjoint paths

{v1v4v10, v1v7v10, v1v12v10} form a copy of K2,3 in H ; this is a contradiction. Now assume that v1v4 ∈ E(M).

Then v1v2, v1v3, v1v7, v2v4, v3v4, v4v7 ∈ E(H) and thus the graph induced by {v1, v2, v3, v4, v7} is a K2,3, which is

impossible in an outerplanar graph. Hence in the following we assume that S1 ⊆ E(H). If {v1v7, v4v7} ⊆ E(H),

then the five vertices {v1, v2, v3, v4, v7} and the three disjoint paths {v1v2v4, v1v3v4, v1v7v4} form a copy of K2,3 in H ,

a contradiction. So exactly one of v1v7 and v4v7 should be contained in E(M), say v1v7. Similarly, {v1v10, v4v10} 6⊆

E(H). Thus v1v10 ∈ E(H), v4v10 ∈ E(M) and v7v10 ∈ E(H). Now the six vertices {v1, v2, v3, v4, v7, v10} and the

three disjoint paths {v1v3v4, v1v2v4, v1v10v7v4} form a K2,3-minor in H . This contradiction completes the proof of

this theorem.

Theorem 3.5. Every maximal pseudo-outerplanar graph G is obtained from a maximal pseudo-outerplanar diagram

H by gluing a K3 or a K4 along a boundary edge of H.

Proof. Without loss of generality, we assume that G is a 2-connected maximal pseudo-outerplanar diagram. Since

G is maximal, G is hamiltonian and G has at least one chord. Let C = {v1v2 · · · v|G|} be the hamiltonian boundary

of the diagram of G. Now we split the proof into two cases.

Case 1. There exists a crossed chord in G.

Let vivj be a chord in G that crosses another chord vkvl (1 ≤ i < k < j < l ≤ |G|). Actually, we can properly

choose i and j such that there is no pair of mutually crossed chords in C[vi, vl] \ {vivj , vkvl}, because otherwise we

can change the value of i or j to meet this condition.

Assume first that there is no non-crossed chord in C[vi, vl] \ {vivl}. Then we shall have k = i + 1. Otherwise,

since vivk 6∈ E(G) by our assumption, we can add vivk to G so that G is still pseudo-outerplanar, contradicting

the fact that G is maximal. Similarly, j = k+1, l = j +1 and vivl ∈ E(G) by the maximality of G. Furthermore,

d(vk) = d(vj) = 3. Now remove the vertices vk and vj from G and denote the resulting graph by H . Then H is

a maximal pseudo-outerplanar diagram. Otherwise we can add an edge e = vavb 6∈ E(H) (a, b 6= k or j) to H so

that H + e is pseudo-outerplanar. Therefore, e 6∈ E(G) and G + e is a pseudo-outerplanar graph, contradicting

the fact that G is maximal. At this stage, one can easily see that G is obtained from H by gluing a K4 along the

boundary edge vivl of H .

Second, assume that there is a non-crossed chord vrvs in C[vi, vl] \ {vivl}. Since there is no crossed chords

in C[vr, vs] by assumption, we can properly choose r and s such that C[vr, vs] \ {vrvs} = ∅. By the maximality

of G, we have s = r + 2, otherwise we can add an edge vrvr+2 to G so that the resulting graph is still pseudo-

outerplanar, a contradiction. Since vrvs is a non-crossed chord, d(vr+1) = 2. Now remove the vertex vr+1 from G

and denote the resulting graph by H ′. Then by a similar argument as before one can prove that H ′ is a maximal

pseudo-outerplanar diagram. Furthermore, one can easily see that G is obtained from H ′ by gluing a K3 along the

boundary edge vrvr+2 of H .

Case 2. There exists a non-crossed chord in G.

Let vivj (1 ≤ i < j ≤ |G|) be a non-crossed chord in G. In this case we shall assume that there is no crossed chord

in C[vi, vj ], because otherwise we are in Case 1. We can also properly choose i and j such that C[vi, vj ]\{vivj} = ∅.

Therefore, we are now in the second subcase of Case 1, where we can set r := i and s := j.

Corollary 3.6. Each pseudo-outerplanar graph can be decomposed into two forests and a matching.

Proof. Let G be a pseudo-outerplanar graph. In the following, we proceed by induction on the size of G and

assume that G is a maximal pseudo-outerplanar diagram. By Theorem 3.5, there respectively exists a K3 = [xyz]

or a K4 = [xyuv] contained in G such that H = G − {xz, yz} or H = G − {xu, xv, yu, yv, uv} is a maximal
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pseudo-outerplanar graph with xy being its boundary edge. By induction on H , there exists two forests F1, F2

and a matching M such that E(H) = E(F1) ∪E(F2) ∪E(M). In the former case, let F ′
1 = F1 + xz, F ′

2 = F2 + yz

and M ′ = M ; and in the latter case, let F ′
1 = F1 + {xu, xv}, F ′

2 = F2 + {yu, yv} and M ′ = M +uv. One can easily

check that the two forests F ′
1, F

′
2 and the matching M ′ are the desired decomposition of G.

Theorem 3.7. For every integer n ≥ 6, there exists a 2-connected pseudo-outerplanar graph with order n that

cannot be decomposed into two forests.

Proof. Let C = v1 · · · vnv1(n ≥ 6) be a cycle with n vertices. We add edges v1vi for all 3 ≤ i ≤ n − 1 and

edges v2iv2i+2 for all 1 ≤ i ≤ ⌊n
2 ⌋ − 1. One can easily check that the resulted graph Gn is a 2-connected pseudo-

outerplanar graph with order n and size ⌊ 5
2n⌋ − 4. If Gn can be decomposed into two forests F1 and F2, then

|E(Gn)| = |E(F1)|+ |E(F2)| ≤ |V (F1)|+ |V (F2)| − 2 ≤ 2n− 2. However, for n ≥ 6, |E(Gn)| = ⌊ 5
2n⌋ − 4 > 2n− 2.

Hence, the graph Gn(n ≥ 6) cannot be covered by two forests.

From Corollary 3.6 and Theorem 3.7, we directly have the following two corollaries.

Corollary 3.8. Every pseudo-outerplanar graph is (2, 1)-coverable; the two parameters given here are best possible.

Corollary 3.9. The arboricity of a pseudo-outerplanar graph is at most 3; and this bound is sharp.

4 Unavoidable Structures

In this section, a vertex set V [vi, vj ] (i < j) is called a non-edge if j = i + 1 and vivj 6∈ E(G), called a path if

vkvk+1 ∈ E(G) for all i ≤ k < j and called a subpath if j > i + 1 and some edges in the form vkvk+1 (i ≤ k < j)

are missing. We say a chord vkvl (k < l) is contained in a chord vivj (i < j) if i ≤ k and l ≤ j. In any figure of

this section, the solid vertices have no edges of G incident with them other than those shown.

Lemma 4.1. [12] Let G be a 2-connected outerplanar graph. Then

(1) G has two adjacent 2-vertices u and v, or

(2) G has a 3-cycle uwxu such that d(u) = 2 and d(w) = 3, or

(3) G has a 4-vertex w, where N(w) = {u, v, x, y}, such that d(u) = d(v) = 2, N(u) = {w, x} and N(v) = {w, y}.

For the class of pseudo-outerplanar graphs, we have a similar structural theorem as Lemma 4.1. But it seems

much more complex since crossings are permitted in a pseudo-outerplanar graph.

Theorem 4.2. Let G be a pseudo-outerplanar diagram with δ(G) ≥ 2. Then G contains one of the following

configurations G1–G17. Moreover,

(a) if G contains some configuration among G6–G17, then the drawing of this configuration in the figure is a

part of the diagram of G with its bending edges corresponding to the chords;

(b) if G contains the configuration G3 and xy 6∈ E(G), where x and y are the vertices of G3 as described in the

figure, then we can properly add an edge xy to G so that the resulting diagram is still pseudo-outerplanar.

u v

u

vx

y

u

v
x y

uv

x y

w

u

v w
x

y z

u v0x 0y uv wx y u vwx y u vwx yz u vwx yz u vwx yz a

uv wx y x u v yw u v w u v w u vwx yz u vwx yz a

1G 2G 3G 4G 5G

6G 7G 8G 9G 10G 11G

12G 13G 14G 15G 16G 17G
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Proof. We first consider the case when G is a 2-connected pseudo-outerplanar diagram. Recall that this diagram

minimizes the number of crossings. Let v1, v2, · · · , v|G| be the vertices of this diagram lying in a clockwise sequence.

If there is no crossings in G, then G is an outerplanar graph and thus G satisfies this theorem by Lemma 4.1.

Otherwise, we can properly choose one chord vivj such that

(1) vivj crosses vkvl in G;

(2) vi, vk, vj and vl are lying in a clockwise sequence;

(3) besides vivj and vkvl, there is no crossed chords in C[vi, vl].

The condition (3) can be easily fulfilled, because otherwise we could change the values of i and j to meet this

condition (note that the values of k and l are determined by i and j). Without loss of generality, assume that

1 ≤ i < k < j < l ≤ |G|, because otherwise we can adjust the labellings of the vertices in G to meet it.

Claim 1. V [vi, vk] is either non-edge or path, and so do V [vk, vj ] and V [vj , vl].

We only need to prove that V [vi, vk] cannot be subpath. Otherwise there exists two vertices vm and vm+1,

where i ≤ m ≤ k − 1, such that vmvm+1 6∈ E(G). If there are chords in the form vavm+1 such that i ≤ a ≤ m− 1,

then we choose one among them such that a is maximum. One can see that va is a vertex cut of G, because

there is no edges between V [va+1, vm] and V [vm+1, va−1] by the choice of a and (3). This contradicts the fact

that G is 2-connected. Thus there is no chords in the form vavm+1 such that i ≤ a ≤ m − 1. Similarly, there

is no chords in the form vmvb such that m + 2 ≤ b ≤ k. Let p = max{n|vm+1vn ∈ E(G),m + 1 < n ≤ k} and

q = min{n|vnvm ∈ E(G), i ≤ n < m}. Since V [vi, vk] is neither non-edge nor path, we have k − i ≥ 2 and thus

at least one of the integers p and q exists. Without loss of generality suppose that p exists. Then vp is a vertex

cut of G, because there is no edges between V [vm+1, vp−1] and V [vp+1, vm] by the choices of m, p and by (3). This

contradiction completes the proof of Claim 1.

Claim 2. If V [vi, vk] is a path and k − i ≥ 3, then G has a subgraph isomorphic to one of the configurations

{G1, G2, G4}. This result also holds for V [vk, vj ] and V [vj , vl] if j − k ≥ 3 and l − j ≥ 3, respectively.

Suppose that there is no other chord except vivk (if exists) in V [vi, vk], then the configuration G1 occurs, since

k − i ≥ 3. So we assume that S := C[vi, vk] \ {vivk} 6= ∅. Now we prove that there exists at least one chord

in S that contains at least one other chord. Suppose that such a chord does not exist. Then we first choose a

chord vmvn ∈ S (m < n). Without loss of generality, assume that n 6= k. If n −m ≥ 3, then we can easily find

a copy of G1 in G, since vmvn contains no other chords by our assumption. If n − m = 2, then it is trivial to

see that d(vm+1) = 2. Now if min{d(vm), d(vn)} ≤ 3, then a copy of G2 would be found. Thus we shall assume

that min{d(vm), d(vn)} ≥ 4. So there exists another chord vnvp (n < p) in S, since d(vn) ≥ 4 and vmvn cannot

be contained in a chord in the form vqvn (q < n) by the assumption. Similarly, we shall assume that p − n = 2

and d(vn+1) = 2 for otherwise the configuration G1 would be found. Now one can see that d(vn) = 4, because

otherwise there would be chord in S that contains either vmvn or vnvp, a contradiction. Therefore, the graph

induced by V [vm, vp] contains the configuration G4. Thus we can choose one chord vavb ∈ S (a < b) such that

vavb contains at least one chord, and furthermore, every chord contained in vavb contains no other chords (this

condition can be easily fulfilled by properly changing the values of a and b if necessary). Let vmvn (m < n) be the

chord contained in vavb. Then by the similar argument as above, we have to consider the case when n −m = 2,

d(vm+1) = 2 and min{d(vm), d(vn)} ≥ 4. Without loss of generality, assume that n 6= b. Then there must be a

chord vnvp (n < p ≤ b) in S, since d(vn) ≥ 4 and vmvn can not be contained in a chord in the form vqvn (q < n)

by the choices of a and b. By the similar argument as before, if G contains no copies of G1 or G2, then p− n = 2

and d(vn+1) = 2. Furthermore, one can similarly prove that d(vn) = 4 by the choices of a and b. Thus we would

find a copy of G4 in the graph induced by V [vm, vp].

Claim 3. At most one of V [vi, vk], V [vk, vj ] and V [vj , vl] can be non-edge.

If V [vi, vk] and V [vk, vj ] are non-edge, then it is trivial that vl is a vertex cut of G, contradicting the fact that G

is 2-connected. If V [vi, vk] and V [vj , vl] are non-edge, then we can adjust the drawing of G by replacing the vertices

order {vi, vk, vk+1, · · · , vj−1, vj , vl} with {vi, vj , vj−1, · · · , vk+1, vk, vl}. This operation can reduce the number of
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crossings in the drawing of G by one, contradicting the assumption that this diagram minimizes the number of

crossings.

Claim 4. If one of V [vi, vk], V [vk, vj ] and V [vj , vl] is non-edge, then G has a subgraph isomorphic to one of the

configurations {G1, G2, G3}.

Suppose that V [vi, vk] is a non-edge. By Claims 1–3, both V [vk, vj ] and V [vj , vl] are paths with 1 ≤ j − k ≤ 2

and 1 ≤ l− j ≤ 2. If j− k = 2 and vkvj ∈ E(G), then it is clear that d(vk) = 3 and d(vk+1) = 2, implying that the

configuration G2 occurs. If j − k = 2 but vkvj 6∈ E(G), then d(vk) = d(vk+1) = 2, implying that the configuration

G1 occurs. So we assume that j = k + 1. If l = j + 2, then d(vj+1) = 2 whenever vjvl is an chord or not. In this

case the configuration G3 occurs since d(vk) = 2, and moveover, G+vjvl is still pseudo-outerplanar if vjvl 6∈ E(G).

So we assume that l = j+1. Now vk, vj , vl form a triangle satisfying d(vk) = 2 and d(vj) = 3. So the configuration

G2 occurs. The case when V [vj , vl] is a non-edge can be dealt with similarly.

Now suppose that V [vk, vj ] is a non-edge. By Claims 1–3, both V [vi, vk] and V [vj , vl] are paths with 1 ≤ k−i ≤ 2

and 1 ≤ l− j ≤ 2. If k − i = 2 or j − l = 2, by the similar argument as before, we either have d(vk−1) = d(vk) = 2

or have d(vj) = d(vj+1) = 2, implying that the configuration G1 occurs. So we assume that k − i = l − j = 1.

In this case the four vertices vi, vj , vl and vk form a quadrilateral with d(vi) = d(vk) = 2, which implies that the

configuration G3 occurs in G and furthermore, G+ vivl is still pseudo-outerplanar if vivl 6∈ E(G).

In the following, we assume that V [vi, vk], V [vk, vj ] and V [vj , vl] are all paths, where max{k− i, j−k, l− j} ≤ 2.

Set X = C[vi, vl]\{vivj , vkvl} and x = |X |. It is clear that x ≤ 3.

Claim 5. If x = 0, then G has a subgraph isomorphic to one of the configurations G6–G11; If x = 1, then G has a

subgraph isomorphic one of the configurations {G5, G12, G13, G14}; If x = 2, then G has a subgraph isomorphic to

one of the configurations {G5, G15, G16}; If x = 3, then G has a subgraph isomorphic to the configuration G17.

Here, we just show the case when x = 2 and vkvj , vjvl ∈ X for example, and leave the discussions about other

cases to the readers since they are quite similar. In fact, if k − i = 1 (resp. k − i = 2), then the configuration

G15 (resp. G5) would occurs in G since d(vk) = 4 and d(vi+1) = d(vk+1) = d(vj+1) = 2, and furthermore the

drawing of the configuration G15 (resp. G5) in the figure is just a part of the diagram of G with its bending edges

corresponding to the chords.

Until now, Claims 1-5 just complete the proof of this theorem for the case when G is 2-connected. Now we

suppose that G has at least two blocks. Let B be an end block and let v1, v2, · · · , v|B| be the vertices of B that

lies in a clockwise sequence. Without loss of generality, let v1 be the unique cut vertex of B.

Claim 6. B is an outerplanar graph.

We prove that there is no crossings in B. Suppose, to the contrary, that there is a chord vivj that crosses

another chord vkvl, where 1 ≤ i < k < j < l. Note that the chord vivj satisfies (1) and (2) now. If it does not fulfill

(3) at this stage. Then there must be at least one pair of mutually crossed chords contained in either C[vi, vk], or

C[vk, vj ], or C[vj, vl]. We choose one pair vavb and vcvd among them such that a < c < b < d and there is no other

crossed chords in C[va, vd] besides vavb and vcvd. Now set i := a, j := b, k := c and l := d. Therefore, in any case

we can find a pair of mutually crossed chords, vivj and vkvl, such that 1 ≤ i < k < j < l and the three conditions

at the beginning of the proof are fulfilled. Note that B is an 2-connected pseudo-outerplanar diagram. Thus we

can set vi, vj , vk, vl as we did in the 2-connected case. Recall the proofs of Claims 1-5, every time we find a copy of

some configuration the vertices vi and vl cannot be the solid vertices (i.e. the degrees of them in the configuration

shall not necessarily to be confirmed). For a vertex v ∈ V (B) \ {v1}, its degree in B is equal to its degree in G,

since B is an end block and v1 is the unique cut vertex of the B. Among the vertices in V [vi, vl], only vi may be

the cut vertex since 1 ≤ i < k < j < l. Therefore, the proofs of Claims 1-5 are also valid for this claim and then

the same results would be obtained.

Claim 7. B has a subgraph isomorphic to one of the configurations {G1, G2, G4} in such a way that v1 is not a

solid vertex.

Since B is a 2-connected outerplanar graph, B is hamiltonian. So V [v1, v|B|] is a path. The proof of Claim 2
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implies that if V [vi, vk] is a path with k− i ≥ 3 such that there is no crossed edges in C[vi, vk] and no edges between

V(vi, vk) and V(vk, vi), then G contains one of {G1, G2, G4} in such a way that vi and vk are not the solid vertices.

Thus in this claim, if |B| ≥ 4, then we set i := 1, k := |B| and come back to the proof of Claim 2. If |B| ≤ 3, then

it is trivial to see that G1 would appear. This contradiction completes the proof of the theorem for the case when

G has cut vertices.

The following is a straightforward corollary of Theorem 4.2.

Corollary 4.3. Each pseudo-outerplanar graph contains a vertex of degree at most 3.

5 Edge Chromatic Number and Linear Arboricity

In this section, we aim to consider the problems of covering a pseudo-outerplanar graph G with ∆(G) matchings

or ⌈∆(G)
2 ⌉ linear forests. A graph G is χ′-critical if χ′(G) = ∆(G) + 1 but χ′(H) ≤ ∆(G) for any proper subgraph

H ⊂ G, is la-critical if la(G) > ⌈∆(G)
2 ⌉ but la(H) ≤ ⌈∆(G)

2 ⌉ for any proper subgraph H ⊂ G.

Lemma 5.1. If G is χ′-critical and uv ∈ E(G), then d(u) + d(v) ≥ ∆(G) + 2.

Lemma 5.2. If G is la-critical and uv ∈ E(G), then d(u) + d(v) ≥ 2⌈∆(G)
2 ⌉+ 2.

The above two lemmas are very classic and useful; their proofs can be found in [3] and [14] respectively. Given

a coloring ϕ of G, cj(v) denotes the number of edges incident with v colored by j. Let Ci
ϕ(v) = {j|cj(v) = i},

i = 0, 1, 2. Then C0
ϕ(v) ∪ C1

ϕ(v) = {1, 2, · · · , k} if ϕ is a proper k-edge-coloring, and C0
ϕ(v) ∪ C1

ϕ(v) ∪ C2
ϕ(v) =

{1, 2, · · · , k} if ϕ is a k-tree-coloring. For brevity, in the proof of Theorem 5.3 we use the notion k-coloring to

replace the statements of proper k-edge-coloring or k-tree-coloring and use the notion PO-graph to replace the

statement of pseudo-outerplanar graph. For a graph G and two distinct vertices u, v ∈ V (G), denote by G + xy

the graph obtained from G by adding an new edge xy if xy 6∈ E(G), or G itself if xy ∈ E(G).

Theorem 5.3. Let G be a pseudo-outerplanar graph. If ∆(G) ≥ 4, then χ′(G) = ∆(G).

Proof. Suppose for a contradiction that there exists a minimal (in terms of the size) pseudo-outerplanar diagram

G with ∆(G) ≥ 4 that has no ∆(G)-coloring. One can easily observe that G is 2-connected and χ′-critical. By

Theorem 4.2 and Lemma 5.1, G contains at least one of the configurations {G3, G4, G5, G6, G12, G13, G16, G17}.

Set S = {1, 2, · · · ,∆(G)}.

If G ⊇ G3, then the pseudo-outerplanar graph G′ = G\{u, v} admits a ∆(G)-coloring φ by induction hypothesis

(when ∆(G′) = ∆(G)) or Vizing’s Theorem (when ∆(G′) ≤ ∆(G) − 1). Construct a ∆(G)-coloring ϕ of G as

follows. If C1
φ(x) = C1

φ(y) := L (notice that |L| = ∆(G) − 2 by Lemma 5.1), then let ϕ(ux) = ϕ(yv) ∈ S \ L and

ϕ(uy) = ϕ(xv) ∈ S \ (L ∪ {ϕ(ux)}). If C1
φ(x) 6= C1

φ(y), then (S \ C1
φ(x)) ∩ C1

φ(y) 6= ∅ since d(x) = d(y) = ∆(G) by

Lemma 5.1. Let ϕ(ux) ∈ (S \ C1
φ(x)) ∩ C1

φ(y), ϕ(xv) ∈ S \ (C1
φ(x) ∪ {ϕ(ux)}), ϕ(vy) ∈ S \ (C1

φ(y) ∪ {ϕ(xv)}) and

ϕ(uy) ∈ S \ (C1
φ(y) ∪ {ϕ(yv)}). In each case, we color the remain edges of G by the same colors used in φ. Thus,

we have constructed a ∆(G)-coloring ϕ of G from the ∆(G)-coloring φ of G′. In the next cases, while constructing

a coloring ϕ of G from the coloring φ of G′, we only give the colorings for the edges in E(G) \ E(G′), since for

every edge e ∈ E(G) ∩ E(G′) we always let ϕ(e) = φ(e).

If G ⊇ G4, we shall assume that d(v) = d(w) = ∆(G) = 4 because of Lemma 5.1. Then the PO-graph

G′ = G \ {x, y, u} admits a 4-coloring φ. Construct a 4-coloring ϕ of G as follows, where two cases are considered

without loss of generality (wlog. for short). If C1
φ(v) = C1

φ(w) = {1, 2}, then let ϕ(uy) = 1, ϕ(ux) = 2, ϕ(uw) =

ϕ(vx) = 3 and ϕ(uv) = ϕ(wy) = 4. If C1
φ(v) = {1, 2}, 1 6∈ C1

φ(w) and 3 ∈ C1
φ(w), then let ϕ(uw) = 1, ϕ(ux) = 2,

ϕ(xv) = ϕ(uy) = 3, ϕ(uv) = 4 and ϕ(wy) ∈ {2, 3, 4} \ C1
φ(w).

If G ⊇ G5, we shall assume that d(v) = ∆(G) = 4 because of Lemma 5.1. Then the PO-graph G′ = G \ {u}

admits a 4-coloring φ. One can easily see that (C1
φ(v) ∩ C1

φ(w)) \ {φ(vw)} 6= ∅, because otherwise vw would be

incident with four colors under φ. Assume that C1
φ(v) = {1, 2, 3} and φ(vw) = 3 wlog. If C1

φ(w) 6= C1
φ(v), then
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assume that C1
φ(w) = {1, 3, 4} wlog. Whereafter, we can extend φ to a 4-coloring of ϕ of G by taking ϕ(uv) = 4

and ϕ(uw) = 2. If C1
φ(w) = C1

φ(v), then we consider two subcases. If φ(xz) = 4, then construct a 4-coloring of

G by recoloring wx and wv with 3 and 4, and coloring uv and uw with 3 and 2, respectively. If φ(xz) 6= 4, then

construct a 4-coloring of G by recoloring wx with 4 and coloring uv and uw with 4 and 2, respectively.

If G ⊇ G6, we shall assume that min{d(x0), d(y0)} ≥ 3 and ∆(G) = 4 by Lemma 5.1. Assume first that d(x0) =

d(y0) = 4. If x0y0 6∈ E(G), then let N(x0) = {u, v, x1, x2} and N(y0) = {u, v, y1, y2}. Let G′ = G \ {u, v}+ x0y0.

By Lemma 4.2, the configuration G6 is a part of the pseudo-outerplanar diagram of G. Thus G′ can also be a PO-

graph and thus G′ admits a 4-coloring φ by the minimality of G. Set M = {φ(x0x1), φ(x0x2), φ(y0y1), φ(y0y2)} and

m = |M |. Since the colors used in φ is at most four and x0y0 ∈ E(G′), m ≤ 3 (otherwise the edge x0y0 cannot be

colored under φ because it is already incident with four colored edges). If m = 3, assume that φ(x0x1) = φ(y0y1) =

1, φ(x0x2) = 2 and φ(y0y2) = 3 wlog. Now we can extend φ to a 4-coloring ϕ of G by taking ϕ(uv) = 1, ϕ(vy0) = 2,

ϕ(ux0) = 3 and ϕ(vx0) = ϕ(uy0) = 4. If m ≤ 2, assume that φ(x0x1) = φ(y0y1) = 1 and φ(x0x2) = φ(y0y2) = 2

wlog. Now we can also extend φ to a 4-coloring ϕ of G by taking ϕ(uv) = 1, ϕ(vy0) = ϕ(ux0) = 3 and ϕ(vx0) =

ϕ(uy0) = 4. On the other hand, if x0y0 ∈ E(G), let N(x0) = {u, v, y0, x1} and N(y) = {u, v, x0, y1}. Then x1 6= y1,

otherwise by the 2-connectivity of G we have G ≃ G[{u, v, x0, y0, x1}], which can be 4-colorable. Consider the

graph G′ = G \ {u, v} − x0y0, which admits a 4-coloring φ by the minimality of G. If φ(x0x1) = φ(y0y1) = 1, then

let ϕ(uv) = 1, ϕ(x0y0) = 2, ϕ(ux0) = ϕ(vy0) = 3 and ϕ(vx0) = ϕ(uy0) = 4. If φ(x0x1) = 1 and φ(y0y1) = 2,

then let ϕ(vy0) = 1, ϕ(ux0) = 2, ϕ(uv) = ϕ(x0y0) = 3 and ϕ(vx0) = ϕ(uy0) = 4. Second, assume that one

of x0 and y0 has degree three. Assume that d(x0) = 3 wlog. Let N(x0) = {u, v, w}. Consider the PO-graph

G′ = G − ux0. By the minimality of G, G′ has a 4-coloring φ. If A := S \ {φ(vx0), φ(wx0), φ(uv), φ(uy0)} 6= ∅

(recall that S = {1, 2, 3, 4}), then let ϕ(ux0) ∈ A. Otherwise, assume that φ(vx0) = 1, φ(wx0) = 2, φ(uv) = 3 and

φ(uy0) = 4 wlog. Since d(v) = 3, φ(uy0) = 4 and vy0 ∈ E(G′), v is not incident with the color 4 under φ. Thus we

can extend φ to a 4-coloring of G by recoloring vx0 with 4 and then coloring ux0 with 1.

If G ⊇ G12, we shall assume that ∆(G) = 4 because of Lemma 5.1. Assume first that d(x) = d(y) = 4. If

xy 6∈ E(G), then denote N(x) = {v, w, x1, x2} and N(y) = {v, w, y1, y2}. Consider the graph G′ = G \ {v, w} +

xy + ux + uy. Since the configuration G12 is a part of the pseudo-outerplanar diagram of G by Lemma 4.2, we

can properly add three edges xy, ux and uy to G \ {v, w} such that G′ is still a PO-graph. Thus G′ admits a

4-coloring φ by the minimality of G. One can see that {φ(xx1), φ(xx2)} 6= {φ(yy1), φ(yy2)} (otherwise we cannot

properly color the triangle uxy under φ) and {φ(xx1), φ(xx2)} ∩ {φ(yy1), φ(yy2)} 6= ∅ (otherwise we cannot color

the edge xy under φ). Assume that φ(xx1) = 1, φ(xx2) = φ(yy1) = 2 and φ(yy2) = 3 wlog. Then we can construct

a 4-coloring ϕ of G by taking ϕ(uv) = ϕ(wy) = 1, ϕ(vw) = 2, ϕ(uw) = ϕ(vx) = 3 and ϕ(wx) = ϕ(vy) = 4. If

xy ∈ E(G), then denote N(x) = {v, w, y, x1} and N(y) = {v, w, x, y1}. We shall also assume that x1 6= y1 because

otherwise G ≃ G[{u, v, w, x, y, x1}] by the 2-connectivity of G, which admits a 4-coloring. Now we remove u, v and

w from the diagram of G. Denote by G′′ the resulting diagram. Then G′′ is a PO-graph so that both x and y has

degree two in G′′. Since the diagram of G minimizes the number of crossings, xx1 does not cross yy1 in G (and

thus in G′′). Denote by G′ the graph obtained from G′′ by contracting the edge xy. From the above arguments,

one can see that G′ is still a PO-graph with E(G) \E(G′) = {uv, uw, vw, vx, wx, vy, wy, xy}. Furthermore, by the

minimality of G, G′ admits a 4-coloring φ with φ(xx1) 6= φ(yy1). Suppose that φ(xx1) = 1 and φ(yy1) = 2. Then

we can construct a 4-coloring ϕ of G by taking ϕ(uw) = ϕ(vy) = 1, ϕ(uv) = ϕ(wx) = 2, ϕ(vw) = ϕ(xy) = 3 and

ϕ(vx) = ϕ(wy) = 4. Second, assume that one of x and y, say x wlog., has degree at most three. If d(x) ≤ 2, then

it is easy to see that G ≃ G[{u, v, w, x, y}] by the 2-connectivity of G, which admits a 4-coloring. If d(x) = 3, then

denote N(x) = {v, w, x1}. Consider the PO-graph G′ = G − uv, which admits a 4-coloring φ by the minimality

of G. If A := S \ {φ(uw), φ(vw), φ(vy), φ(vx)} 6= ∅ (recall that S = {1, 2, 3, 4}), then let ϕ(uv) ∈ A. Otherwise,

assume that φ(uw) = 1, φ(vw) = 2, φ(vy) = 3 and φ(vx) = 4 wlog. It follows that φ(wx) = 3 and φ(wy) = 4. If

φ(xx1) = 1, then we can construct a 4-coloring of G by recoloring vx and uw with 2, recoloring vw with 1 and

coloring uv with 4. If φ(xx1) = 2, then we can again construct a 4-coloring of G by recoloring vx with 1 and

coloring uv with 4.

If G ⊇ G13, then we shall assume that d(x) = ∆(G) = 4 by Lemma 5.1. Denote the fourth neighbor of x by

12
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Figure 4: Special pseudo-outerplanar graphs

x1 and meanwhile assume that d(y) = 4 and N(y) = {v, w, y1, y2} wlog. Then the PO-graph G′ = G \ {u, v, w}

admits a 4-coloring φ. Wlog. assume that φ(xx1) = 1. Construct a 4-coloring ϕ of G as follows. If 1 ∈ C1
φ(y)

(suppose φ(yy1) = 1 and φ(yy2) = 2 wlog.), then let ϕ(vw) = 1, ϕ(uv) = ϕ(wx) = 2, ϕ(vx) = ϕ(wy) = 3 and

ϕ(ux) = ϕ(vy) = 4. If 1 6∈ C1
φ(y) (suppose φ(yy1) = 2 and φ(yy2) = 3 wlog.), then let ϕ(vy) = 1, ϕ(ux) = ϕ(vw) =

2, ϕ(uv) = ϕ(wx) = 3 and ϕ(vx) = ϕ(wy) = 4.

If G ⊇ G16, then we shall assume that d(x) = d(y) = ∆(G) = 4 by Lemma 5.1. Denote the fourth neighbor

of x and y by x1 and y1 respectively. Then the PO-graph G′ = G \ {u, v, w, z} admits a 4-coloring φ. Construct

a 4-coloring ϕ of G as follows. If φ(xx1) = φ(yy1) = 1, then let ϕ(vw) = 1, ϕ(ux) = ϕ(vz) = ϕ(wy) = 2,

ϕ(wx) = ϕ(vy) = 3 and ϕ(uw) = ϕ(vx) = ϕ(yz) = 4. If 1 = φ(xx1) 6= φ(yy1) = 2, then let ϕ(vz) = ϕ(wy) = 1,

ϕ(ux) = ϕ(wy) = ϕ(vz) = 2, ϕ(wx) = ϕ(vy) = 3 and ϕ(uw) = ϕ(vx) = 4.

If G ⊇ G17, then we shall assume that d(x) = d(y) = ∆(G) = 5 by Lemma 5.1. Then the PO-graph G′ =

G\{u, v, w, z, a} admits a 5-coloring φ. Construct a 5-coloring ϕ of G as follows. If C1
φ(x) = C1

φ(y) = {1, 2}, then let

ϕ(uw) = ϕ(av) = 1, ϕ(wz) = ϕ(uv) = 2, ϕ(xz) = ϕ(vw) = ϕ(ay) = 3, ϕ(wx) = ϕ(vy) = 4 and ϕ(vx) = ϕ(wy) = 5.

If |C1
φ(x)∩C1

φ(y)| = 1 (suppose C1
φ(x) = {1, 2} and C1

φ(y) = {1, 3} wlog.), then let ϕ(vw) = 1, ϕ(wy) = ϕ(av) = 2,

ϕ(wz) = ϕ(vx) = 3, ϕ(wx) = ϕ(uv) = ϕ(ay) = 4 and ϕ(xz) = ϕ(uw) = ϕ(vy) = 5. If |C1
φ(x)∩C1

φ(y)| = 0 (suppose

C1
φ(x) = {1, 2} and C1

φ(y) = {3, 4} wlog.), then let ϕ(vw) = ϕ(ay) = 1, ϕ(wz) = ϕ(vy) = 2, ϕ(vx) = ϕ(uw) = 3,

ϕ(wx) = ϕ(av) = 4 and ϕ(xz) = ϕ(uv) = ϕ(wy) = 5.

Theorem 5.4. For each integer n ≥ 1, there exists a 2-connected pseudo-outerplanar G with order 2n + 5 and

∆(G) = 3 so that χ′(G) = ∆(G) + 1.

Proof. Let C = x0 · · ·xnwyn · · · y0vux0 be a cycle. We add edges xiyi for all 1 ≤ i ≤ n and add another two

edges x0v and y0u to C. Denote the resulting graph by Pn (See Figure 4). One can easily check that Pn is a

2-connected pseudo-outerplanar graph with |Pn| = 2n+ 5 and ∆(Pn) = 3. If Pn has a 3-coloring φ, then we shall

have φ(x0v) = φ(y0u) and φ(x0u) = φ(y0v) (otherwise we cannot color uv properly). Thereby we would deduce

that φ(xixi+1) = φ(yiyi+1) for all 0 ≤ i ≤ n− 1 and then φ(xnw) = φ(ynw). This final contradiction implies that

χ′(Pn) = ∆(Pn) + 1 = 4.

Theorem 5.5. Let G be a pseudo-outerplanar graph. If ∆(G) = 3 or ∆(G) ≥ 5, then la(G) = ⌈∆(G)
2 ⌉.

Proof. Since conjecture 1.1 has already been proved for planar graphs and every PO-graph is planar (cf. Section

1), this theorem holds trivially when ∆(G) is odd. Thus in the following we assume that ∆(G) ≥ 6 and ∆(G) is

even. For brevity we write k = ∆(G)
2 . Suppose for a contradiction that there exists a minimal (in terms of the size)
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pseudo-outerplanar graph G that has no k-coloring. One can easily observe that G is 2-connected and la-critical.

By Theorem 4.2 and Lemma 5.2, G contains the configuration G3.

If xy 6∈ E(G), then by (b) of Lemma 4.2, G′ = G \ {v} + xy is still a PO-graph. Thus by the minimality of

G, G′ admits a k-coloring φ. Now we can construct a k-coloring ϕ of G by taking ϕ(vx) = ϕ(vy) = φ(xy) and

ϕ(e) = φ(e) for every e ∈ E(G) ∩E(G′).

If xy ∈ E(G), then consider the PO-graph G′ = G \ {v}, which has a k-coloring φ by the minimality of G. It is

easy to see that |C1
φ(x)| = |C1

φ(y)| = 1, since d(x) = d(y) = ∆(G) = 2k by Lemma 5.2. We now construct a coloring

ϕ of G by taking ϕ(vx) ∈ C1
φ(x), ϕ(vy) ∈ C1

φ(y) and ϕ(e) = φ(e) for every e ∈ E(G) ∩ E(G′). If C1
φ(x) 6= C1

φ(y),

then it is easy to see that ϕ is a k-coloring. If C1
φ(x) = C1

φ(y), then ϕ(vx) = ϕ(vy) and ϕ is also a k-coloring

unless ϕ(xy) = ϕ(vx) or ϕ(ux) = ϕ(uy) = ϕ(vx). If ϕ(xy) = ϕ(vx), then ϕ(vx) 6∈ {ϕ(ux), ϕ(uy)} and thus we

can exchange the colors on ux and vx. One can easy to check that the resulting coloring of G is a k-coloring. If

ϕ(ux) = ϕ(uy) = ϕ(vx), then we recolor xy with ϕ(vx) and recolor both vx and uy with ϕ(xy). The resulting

coloring of G is also a k-coloring.

Theorem 5.6. For each integer m ≥ 1, there exists a 2-connected pseudo-outerplanar G with order 10m+ 5 and

∆(G) = 4 so that la(G) = ⌈∆(G)
2 ⌉+ 1.

Proof. Let C = z1 · · · z2nz1 be a cycle and Ti = uiviwiui(1 ≤ i ≤ n) be triangles. Suppose that they are pairwise

disjoint. Now for each 1 ≤ i ≤ n, add fours edges viz2i−1, viz2i, wiz2i−1 and wiz2i. Denote the resulting graphs

by Qn (See Figure 4). One can easily check that Qn is a 2-connected pseudo-outerplanar graph with ∆(Qn) = 4.

Consider the graph Q2m+1(m ≥ 1). It is trivial that |Q2m+1| = 10m + 5 and la(Q2m+1) ≤ 3 by Lemma 5.2. If

Q2m+1 has a 2-coloring φ, then we shall have φ(z2i−2z2i−1) 6= φ(z2iz2i+1) for all 1 ≤ i ≤ 2m+1, where z0 = z4m+2

and z4m+3 = z1 (otherwise we cannot properly color the set of edges {uivi, viwi, wiui, viz2i−1, viz2i, wiz2i−1, wiz2i}

for some i). However, the size of the set {z2z3, z4z5, · · · , z4m+2z1} is 2m+ 1, which is odd, but there are only two

colors that can be used in φ. This final contradiction implies that la(Q2m+1) = ⌈∆(Q2m+1)
2 ⌉+ 1 = 3.
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