Cayley graphs of given degree and diameters 3, 4 and 5

Tomáš Vetrík

Department of Mathematics and Applied Mathematics
University of Pretoria, Pretoria, South Africa
tomas.vetrik@gmail.com

Abstract

Let $C_{d, k}$ be the largest number of vertices in a Cayley graph of degree d and diameter k. We show that $C_{d, 3} \geq \frac{3}{16}(d-3)^{3}$ and $C_{d, 5} \geq 25\left(\frac{d-7}{4}\right)^{5}$ for any $d \geq 8$, and $C_{d, 4} \geq 32\left(\frac{d-8}{5}\right)^{4}$ for any $d \geq 10$. For sufficiently large d our graphs are the largest known Cayley graphs of degree d and diameters 3, 4 and 5 .

Keywords: Cayley graph, degree, diameter
A Cayley graph $C(G, X)$ is specified by a group G and a unit-free generating set X for this group such that $X=X^{-1}$. The vertices of $C(G, X)$ are the elements of G and there is an edge between two vertices u and v in $C(G, X)$ if and only if there is a generator $a \in X$ such that $v=u a$.

The degree-diameter problem for Cayley graphs is to determine the largest number of vertices in Cayley graphs of given degree and diameter. Let $C_{d, k}$ be the largest order of a Cayley graph of degree d and diameter k. The number of vertices in a graph of maximum degree d and diameter k can not exceed the Moore bound $M_{d, k}=1+d+d(d-1)+\ldots+d(d-1)^{k-1}$. In [1] and [2] Bannai and Ito improved the upper bound and showed that for any $d, k \geq 3$ there are no graphs of order greater than $M_{d, k}-2$, therefore $C_{d, k} \leq M_{d, k}-2$ for such d and k. Since the Moore graphs of diameter 2 and degree 3 or 7 , and the potential Moore graph(s) of diameter 2 and degree 57 are non-Cayley (see [3]), Cayley graphs of order equal to the Moore bound exist only in the trivial cases when $d=2$ or $k=1$.

We focus on constructions of Cayley graphs of small diameter. The case $k=2$ and $d \rightarrow \infty$ has been widely studied. The best known construction of diameter 2 was recently found by Šiagiová and Širáň [8] who showed that $C_{d, 2} \geq d^{2}-6 \sqrt{2} d^{\frac{3}{2}}$ for an infinite set of degrees d. Macbeth et. al. [7] presented large Cayley graphs giving the bound $C_{d, k} \geq k\left(\frac{d-3}{3}\right)^{k}$ for any diameter $k \geq 3$ and degree $d \geq 5$. Let us also mention the Faber-Moore-Chen graphs [4] of odd degree $d \geq 5$, diameter k, such that $3 \leq k \leq \frac{d+1}{2}$, and order
$\left(\frac{d+3}{2}\right)!/\left(\frac{d+3}{2}-k\right)!$. These graphs are vertex-transitive and in $[7]$ it is proved that for any $k \geq 4$ and sufficiently large d the Faber-Moore-Chen graphs are not Cayley. Large Cayley graphs of given degree d and diameter k, where both d and k are small, were obtained by use of computers, see [5] and [6].

For diameters 3, 4 and 5 we present Cayley graphs which yield the bounds $C_{d, 3} \geq \frac{3}{16}(d-3)^{3}$ and $C_{d, 5} \geq 25\left(\frac{d-7}{4}\right)^{5}$ for any $d \geq 8$, and $C_{d, 4} \geq 32\left(\frac{d-8}{5}\right)^{4}$ for any $d \geq 10$, improving thus the corresponding bounds of [7] for large d. Particularly for diameter 3 we improve the lower bound considerably. It can be easily checked that the graphs of Faber, Moore and Chen are smaller than our graphs for diameter 3 and large degree, and they are larger than our graphs for diameters 4 and 5 . However, for $k=4$ and $d \geq 21$, and for $k=5$ and $d \geq 23$, the Faber-Moore-Chen graphs are non-Cayley. To the best of our knowledge, for sufficiently large d there is no construction of Cayley graphs of degree d and diameter 3,4 or 5 of order greater than the order of our graphs.

Now we describe the groups G which we use to produce large Cayley graphs. Let H be a group of order $m \geq 2$ with unit element e. We denote by H^{k} the product $H \times H \times \ldots \times H$, where H appears k times. Let α be the automorphism of the group H^{k} which shifts coordinates by one to the right, that is, $\alpha\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\left(x_{k}, x_{1}, x_{2}, \ldots, x_{k-1}\right)$. The cyclic group of order p will be denoted by Z_{p}.

We study the semidirect products $G=H^{k} \rtimes Z_{p}$, where p is a multiple of k, with multiplication given by

$$
\begin{equation*}
(x, y)\left(x^{\prime}, y^{\prime}\right)=\left(x \alpha^{y}\left(x^{\prime}\right), y+y^{\prime}\right), \tag{1}
\end{equation*}
$$

where α^{y} is the composition of α with itself y times, $x, x^{\prime} \in H^{k}$ and $y, y^{\prime} \in$ Z_{p}. Elements of G will be written in the form $\left(x_{1}, x_{2}, \ldots, x_{k} ; y\right)$, where $x_{1}, x_{2}, \ldots, x_{k} \in H$ and $y \in Z_{p}$.

We consider generating sets X which consist of classes of elements of the form $\left(x_{1}, x_{2}, \ldots, x_{k} ; y\right)$ where $x_{i}, 1 \leq i \leq k$, is either e or g for any $g \in H$. In the case of diameters 3 and 5 we found generating sets for large Cayley graphs using four such classes, whereas for diameter 4 we needed five classes. In our search for relatively small generating sets (to result in large Cayley graphs in terms of their degree) it proved efficient to consider generating sets containing $(k+1)$-tuples as above with at most two non-identity entries among the first k coordinates; increasing this number did not yield better graphs.

We now state and prove our main result.

Theorem 1.

(i) $C_{d, 3} \geq \frac{3}{16} d^{3}$ for $d \geq 8$ such that d is a multiple of 4 .
(ii) $C_{d, 4} \geq 32\left(\frac{d}{5}\right)^{4}$ for $d \geq 10$ such that d is a multiple of 5 .
(iii) $C_{d, 5} \geq 25\left(\frac{d}{4}\right)^{5}$ for $d \geq 8$ such that d is a multiple of 4 .

Proof. We use the group G with multiplication (1) defined earlier.
(i) Let $G=H^{3} \rtimes Z_{12}$ and $X=\left\{a_{g}, \bar{a}_{g^{\prime}}, b_{h}, \bar{b}_{h^{\prime}} \mid\right.$ for any $\left.g, g^{\prime}, h, h^{\prime} \in H\right\}$ where $a_{g}=(g, g, e ; 1), \bar{a}_{g^{\prime}}=\left(g^{\prime}, e, g^{\prime} ;-1\right), b_{h}=(h, e, e ; 8)$ and $\bar{b}_{h^{\prime}}=\left(e, h^{\prime}, e ; 4\right)$. Since $a_{g}^{-1}=\bar{a}_{g^{-1}}$ and $b_{h}^{-1}=\bar{b}_{h^{-1}}$, we have $X=X^{-1}$. The Cayley graph $C(G, X)$ is of degree $d=|X|=4 m, m \geq 2$ and order $|G|=12 m^{3}=$ $12\left(\frac{d}{4}\right)^{3}=\frac{3}{16} d^{3}$.

We show that the diameter of $C(G, X)$ is at most 3 , which is equivalent to showing that each element of G can be obtained as a product of at most 3 generators of X. For any $x_{1}, x_{2}, x_{3} \in H$ we have

$$
\begin{aligned}
& \left(x_{1}, x_{2}, x_{3} ; 0\right)=\left(x_{1}, e, e ; 8\right)\left(x_{3}, e, e ; 8\right)\left(x_{2}, e, e ; 8\right), \\
& \left(x_{1}, x_{2}, x_{3} ; 1\right)=\left(x_{1} x_{3}^{-1}, e, e ; 8\right)\left(x_{3}, x_{3}, e ; 1\right)\left(e, x_{2}, e ; 4\right), \\
& \left(x_{1}, x_{2}, x_{3} ; 2\right)=\left(x_{1}, e, x_{1} ;-1\right)\left(x_{2}, e, x_{2} ;-1\right)\left(e, x_{2}^{-1} x_{1}^{-1} x_{3}, e ; 4\right), \\
& \left(x_{1}, x_{2}, x_{3} ; 3\right)=\left(x_{1} x_{2}^{-1}, e, e ; 8\right)\left(x_{3}, e, e ; 8\right)\left(x_{2}, e, x_{2} ;-1\right), \\
& \left(x_{1}, x_{2}, x_{3} ; 4\right)=\left(x_{3}, e, x_{3} ;-1\right)\left(e, x_{3}^{-1} x_{1} x_{2}^{-1}, e ; 4\right)\left(x_{2}, x_{2}, e ; 1\right), \\
& \left(x_{1}, x_{2}, x_{3} ; 5\right)=\left(x_{1}, e, e ; 8\right)\left(x_{3} x_{2}^{-1}, e, e ; 8\right)\left(x_{2}, x_{2}, e ; 1\right), \\
& \left(x_{1}, x_{2}, x_{3} ; 6\right)=\left(x_{2} x_{3}^{-1}, x_{2} x_{3}^{-1}, e ; 1\right)\left(x_{3}, x_{3}, e ; 1\right)\left(e, x_{3} x_{2}^{-1} x_{1}, e ; 4\right) .
\end{aligned}
$$

It is easy to see that if $\left(x_{1}, x_{2}, x_{3} ; y\right)=a b c$, where $a, b, c \in X$ and $0 \leq y \leq 6$, then

$$
\left(x_{y(\bmod 3)+1}^{-1}, x_{y+1}^{-1}(\bmod 3)+1, x_{y+2}^{-1}(\bmod 3)+1 ;-y\right)=c^{-1} b^{-1} a^{-1} .
$$

Note that the diameter of $C(G, X)$ cannot be smaller than 3, because the order is greater than the Moore bound for diameter 2.
(ii) Let $G^{\prime}=H^{4} \rtimes Z_{32}$ and $X^{\prime}=\left\{a_{g}, \bar{a}_{g^{\prime}}, b_{h}, \bar{b}_{h^{\prime}}, c_{j} \mid\right.$ for any $g, g^{\prime}, h, h^{\prime}, j \in$ $H\}$, where $a_{g}=(g, e, e, e ; 1), \bar{a}_{g^{\prime}}=\left(e, e, e, g^{\prime} ;-1\right), b_{h}=(e, h, h, e ; 7), \bar{b}_{h^{\prime}}=$ $\left(e, e, h^{\prime}, h^{\prime} ;-7\right)$ and $c_{j}=(e, j, e, e ; 16)$. Clearly, $X=X^{-1}$ since $a_{g}^{-1}=\bar{a}_{g^{-1}}$, $b_{h}^{-1}=\bar{b}_{h^{-1}}$ and $c_{j}^{-1}=c_{j^{-1}}$. The Cayley graph $C\left(G^{\prime}, X^{\prime}\right)$ has degree $d=$ $\left|X^{\prime}\right|=5 \mathrm{~m}$ and order $\left|G^{\prime}\right|=32 m^{4}=32\left(\frac{d}{5}\right)^{4}$.

We show that every element of G^{\prime} can be expressed as a product of 4 generators of X^{\prime}. For any $x_{1}, x_{2}, x_{3}, x_{4} \in H$ we have

$$
\begin{aligned}
& \left(x_{1}, x_{2}, x_{3}, x_{4} ; 0\right)=b_{x_{2}} a_{x_{4} x_{3}^{-1} x_{2}} \bar{b}_{x_{2}^{-1} x_{3}} \bar{a}_{x_{1}}, \\
& \left(x_{1}, x_{2}, x_{3}, x_{4} ; 1\right)=\bar{b}_{x_{4} x_{1}^{-1}} c_{x_{1} x_{4}^{-1} x_{3}} \bar{b}_{x_{1}} \bar{a}_{x_{2}}, \\
& \left(x_{1}, x_{2}, x_{3}, x_{4} ; 2\right)=a_{x_{1}} c_{x_{3}} a_{x_{2}} c_{x_{4}}, \\
& \left(x_{1}, x_{2}, x_{3}, x_{4} ; 3\right)=a_{x_{1} x_{2}^{-1} x_{4}^{-1}} c_{x_{3}} \bar{b}_{x_{4}} \bar{b}_{x_{2}}, \\
& \left(x_{1}, x_{2}, x_{3}, x_{4} ; 4\right)=a_{x_{1}} a_{x_{2}} a_{x_{3}} a_{x_{4}}, \\
& \left(x_{1}, x_{2}, x_{3}, x_{4} ; 5\right)=c_{x_{2} x_{4} x_{1}^{-1} x_{3}^{-1}} b_{x_{3}} b_{x_{1} x_{4}^{-1}} b_{x_{4}}, \\
& \left(x_{1}, x_{2}, x_{3}, x_{4} ; 6\right)=\bar{a}_{x_{4} x_{1}^{-1}} \bar{a}_{x_{3}} b_{x_{1}} a_{x_{2}}, \\
& \left(x_{1}, x_{2}, x_{3}, x_{4} ; 7\right)=c_{x_{2}} \bar{b}_{x_{3}} \bar{a}_{x_{1}} \bar{a}_{x_{3}^{-1} x_{4}}, \\
& \left(x_{1}, x_{2}, x_{3}, x_{4} ; 8\right)=c_{x_{2}} a_{x_{1}} c_{x_{3} x_{4}^{-1}} b_{x_{4}} \text {, } \\
& \left(x_{1}, x_{2}, x_{3}, x_{4} ; 9\right)=c_{x_{2} x_{3}^{-1}} \bar{a}_{x_{4}} \bar{b}_{x_{3}} a_{x_{1}}, \\
& \left(x_{1}, x_{2}, x_{3}, x_{4} ; 10\right)=b_{x_{3}} a_{x_{4}} a_{x_{1}} a_{x_{3}^{-1} x_{2}}, \\
& \left(x_{1}, x_{2}, x_{3}, x_{4} ; 11\right)=c_{x_{2}} a_{x_{1} x_{4}^{-1}} \bar{b}_{x_{4}} a_{x_{3}}, \\
& \left(x_{1}, x_{2}, x_{3}, x_{4} ; 12\right)=b_{x_{2}} \bar{a}_{x_{2}^{-1} x_{3}} b_{x_{4}} \bar{a}_{x_{4}^{-1} x_{1}}, \\
& \left(x_{1}, x_{2}, x_{3}, x_{4} ; 13\right)=\bar{a}_{x_{4}} c_{x_{1}} \bar{a}_{x_{3}} \bar{a}_{x_{2}}, \\
& \left(x_{1}, x_{2}, x_{3}, x_{4} ; 14\right)=a_{x_{1} x_{2}^{-1}} b_{x_{3}} \bar{a}_{x_{3}^{-1} x_{4}} b_{x_{2}}, \\
& \left(x_{1}, x_{2}, x_{3}, x_{4} ; 15\right)=c_{x_{2} x_{3}^{-1} x_{4}} \bar{b}_{x_{4}} \bar{a}_{x_{1}} b_{x_{4}^{-1} x_{3}}, \\
& \left(x_{1}, x_{2}, x_{3}, x_{4} ; 16\right)=a_{x_{1} x_{3} x_{4}^{-1}} a_{x_{2}} b_{x_{4} x_{3}^{-1}} b_{x_{3}} .
\end{aligned}
$$

Elements of G^{\prime} with the last coordinate y, where $17 \leq y \leq 31$, can be obtained as inverses of the above ones, therefore the diameter of $C\left(G^{\prime}, X^{\prime}\right)$ is at most 4. It is easy to show that, for example, no element of G^{\prime} with the last coordinate 4 can be obtained as a product of at most 3 elements of X^{\prime}, hence the diameter of $C\left(G^{\prime}, X^{\prime}\right)$ cannot be smaller than 4.
(iii) Let $G^{\prime \prime}=H^{5} \rtimes Z_{25}$ and $X^{\prime \prime}=\left\{a_{g}, \bar{a}_{g^{\prime}}, b_{h}, \bar{b}_{h^{\prime}} \mid\right.$ for any $\left.g, g^{\prime}, h, h^{\prime} \in H\right\}$ where $a_{g}=(g, e, e, e, e ; 1), \bar{a}_{g^{\prime}}=\left(e, e, e, e, g^{\prime} ;-1\right), b_{h}=(h, e, e, h, e ;-4)$ and $\bar{b}_{h^{\prime}}=\left(e, e, h^{\prime}, e, h^{\prime} ; 4\right)$. The Cayley graph $C\left(G^{\prime \prime}, X^{\prime \prime}\right)$ is of degree $d=\left|X^{\prime \prime}\right|=$ $4 m$ and order $\left|G^{\prime \prime}\right|=25 m^{5}=25\left(\frac{d}{4}\right)^{5}$.

In order to prove that the diameter of $C\left(G^{\prime \prime}, X^{\prime \prime}\right)$ is at most 5 , it suffices to show that any element $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5} ; y\right)$ of $G^{\prime \prime}$, where $0 \leq y \leq 12$, can be obtained as a product of 5 generators of $X^{\prime \prime}$. It can be checked that

$$
\begin{aligned}
\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5} ; 0\right) & =a_{x_{1}} a_{x_{2}} a_{x_{3} x_{5}^{-1}} a_{x_{4}} b_{x_{5}} \\
\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5} ; 1\right) & =\bar{b}_{x_{3}} \bar{a}_{x_{4} x_{2}^{-1}} b_{x_{2}} a_{x_{3}^{-1} x_{5}} a_{x_{1}} \\
\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5} ; 2\right) & =b_{x_{4} x_{2}^{-1}} \bar{a}_{x_{2} x_{4}^{-1} x_{1} x_{3}^{-1}} \bar{a}_{x_{5}} \bar{b}_{x_{2}} \bar{b}_{x_{3}} \\
\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5} ; 3\right) & =a_{x_{1}} b_{x_{5}} a_{x_{3}} a_{x_{4} x_{2}^{-1} x_{5}} \bar{b}_{x_{5}^{-1} x_{2}} \\
\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5} ; 4\right) & =\bar{b}_{x_{5}} \bar{b}_{x_{2}} \bar{a}_{x_{5}^{-1} x_{3} x_{1}-1} b_{x_{1}} a_{x_{2}^{-1} x_{4}}
\end{aligned}
$$

$$
\begin{aligned}
& \left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5} ; 5\right)=a_{x_{1}} a_{x_{2}} a_{x_{3}} a_{x_{4}} a_{x_{5}} \\
& \left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5} ; 6\right)=\bar{b}_{x_{3}} \bar{b}_{x_{2}} a_{x_{2}^{-1} x_{4} x_{1}^{-1}} a_{x_{3}^{-1} x_{5}} b_{x_{1}}, \\
& \left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5} ; 7\right)=a_{x_{1} x_{2} x_{4}^{-1}} \bar{b}_{x_{4} x_{2}^{-1}} \bar{a}_{x_{5}} \bar{b}_{x_{2}} \bar{a}_{x_{3}}, \\
& \left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5} ; 8\right)=\bar{a}_{x_{5} x_{2}^{-1} x_{4}^{-1} x_{1} x_{3}^{-1} b_{x_{3} x_{1}^{-1} x_{4}} b_{x_{4}} b_{x_{2}} b_{x_{4}-1 x_{1}}}, \\
& \left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5} ; 9\right)=\bar{a}_{x_{5}} \bar{b}_{x_{2}} \bar{b}_{x_{1}} a_{x_{1}^{-1} x_{3}} a_{x_{2}^{-1} x_{4}} \\
& \left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5} ; 10\right)=\bar{b}_{x_{5}} \bar{x}_{x_{4}} \bar{b}_{x_{5}^{-1} x_{3}} \bar{a}_{x_{4}^{-1} x_{2}} \bar{a}_{x_{3}^{-1} x_{5} x_{1}}, \\
& \left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5} ; 11\right)=\bar{b}_{x_{3}} \bar{b}_{x_{2}} a_{x_{2}^{-1} x_{4}} a_{x_{3}^{-1} x_{5}} a_{x_{1}}, \\
& \left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5} ; 12\right)=a_{x_{1} x_{2} x_{4}^{-1}}^{\bar{b}} x_{x_{4} x_{2}^{-1}} \bar{b}_{x_{5}} \bar{b}_{x_{2}} \bar{a}_{x_{5}^{-1} x_{3}} .
\end{aligned}
$$

Hence, $C_{d, 5} \geq 25\left(\frac{d}{4}\right)^{5}$ for any $d \geq 8$ such that d is a multiple of 4 .
By adding new elements to the generating sets, we get Cayley graphs of any degree $d \geq 10$ if $k=4$, and $d \geq 8$ if $k=3$ or 5 .

Theorem 2.

(i) $C_{d, 3} \geq \frac{3}{16}(d-3)^{3}$ for any $d \geq 8$.
(ii) $C_{d, 4} \geq 32\left(\frac{d-8}{5}\right)^{4}$ for any $d \geq 10$.
(iii) $C_{d, 5} \geq 25\left(\frac{d-7}{4}\right)^{5}$ for any $d \geq 8$.

Proof. We use the notation of the proof of Theorem 1.
(i) By Theorem $1, C_{d, 3} \geq \frac{3}{16} d^{3}$ for $d=4 m$, where $m \geq 2$. Let u be an element of G such that $u \notin X$ and $u \neq u^{-1}$. Let $X_{1}=X \cup\{v\}, X_{2}=$ $X \cup\left\{u, u^{-1}\right\}$ and $X_{3}=X \cup\left\{u, u^{-1}, v\right\}$ where $v=(e, e, e, 6)$. Then the Cayley graph $C\left(G, X_{i}\right)$ has degree $d=\left|X_{i}\right|=4 m+i$, diameter at most $k=3$ and order $|G|=12 m^{3}=\frac{3}{16}(d-i)^{3}$, where $i=1,2,3$. Hence $C_{d, 3} \geq \frac{3}{16}(d-3)^{3}$ for any $d \geq 8$.
(ii) We know that $C_{d, 4} \geq 32\left(\frac{d}{5}\right)^{4}$ for $d=5 m, m \geq 2$. Let $u_{i}, i=$ $1,2,3,4$, be non-involuntary elements of G^{\prime} such that $u_{i} \notin X^{\prime}$. Let $X_{i}^{\prime}=X^{\prime} \cup$ $\left\{u_{1}, \ldots, u_{i}, u_{1}^{-1}, \ldots, u_{i}^{-1}\right\}$ where $i=1,2,3,4$. The Cayley graph $C\left(G^{\prime}, X_{i}^{\prime}\right)$ has degree $d=\left|X_{i}^{\prime}\right|=5 m+2 i$ and order $\left|G^{\prime}\right|=32 m^{4}=32\left(\frac{d-2 i}{5}\right)^{4}$. It remains to show that $C_{d, 4} \geq 32\left(\frac{d-8}{5}\right)^{4}$ for $d=11$ and 13 . However, if $m=2$, then G^{\prime} has an involution which is not in X^{\prime}. By using this involution, we can obtain Cayley graphs of order $32\left(\frac{10}{5}\right)^{4}=2^{9}$ and degree 11 or 13 .
(iii) Let $m \geq 2$ be even. Then the order of H is even and $G^{\prime \prime}$ must contain an involution, say v, other than the identity. Let $X_{0}^{\prime \prime}=X^{\prime \prime} \cup\{v\}$ and $X_{i}^{\prime \prime}=$ $X^{\prime \prime} \cup\left\{v, u_{1}, \ldots, u_{i}, u_{1}^{-1}, \ldots, u_{i}^{-1}\right\}$ for $i=1,2,3$, where $u_{i} \neq u_{i}^{-1}, u_{i} \notin X^{\prime \prime}$. The graph $C\left(G^{\prime \prime}, X_{i}^{\prime \prime}\right), i=0,1,2,3$, is of degree $\left|X_{i}^{\prime \prime}\right|=4 m+2 i+1$, diameter at most $k=5$ and order $\left|G^{\prime \prime}\right|=25 m^{5}=25\left(\frac{d-2 i-1}{4}\right)^{5}$.

Since for any $m \geq 2$ we can obtain a Cayley graph of degree $4 m+2$ and order $25\left(\frac{d-2}{4}\right)^{5}$ by adjoining u_{1} and u_{1}^{-1} to $X^{\prime \prime}$, we have $C_{d, 5} \geq 25\left(\frac{d-7}{4}\right)^{5}$ for any $d \geq 8$ as desired.

Acknowledgment. The author thanks the referee for valuable comments.

References

[1] E. Bannai and T. Ito, On finite Moore graphs, Journal of the Faculty of Science, University of Tokyo, Section IA, Mathematics 20 (1973) 191208.
[2] E. Bannai and T. Ito, Regular graphs with excess one, Discrete Mathematics 37 (1981) 147-158.
[3] P. Cameron, Permutation groups, London Mathematical Society Student Texts 45, Cambridge University Press (1999) 220 p.
[4] V. Faber, J.W. Moore and W.Y.C. Chen, Cycle prefix digraphs for symmetric interconnection networks, Networks 23 (1993) 641-649.
[5] E. Loz and G. Pineda-Villavicencio, New benchmarks for large scale networks with given maximum degree and diameter, The Computer Journal 53, No. 7 (2010) 1092-1105.
[6] E. Loz and J. Širáň, New record graphs in the degree-diameter problem, Australasian Journal of Combinatorics 41 (2008) 63-80.
[7] H. Macbeth, J. Šiagiová, J. Širáň and T. Vetrík, Large Cayley graphs and vertex-transitive non-Cayley graphs of given degree and diameter, Journal of Graph Theory 64, No. 2 (2010) 87-98.
[8] J. Šiagiová and J. Širáñ, Approaching the Moore bound for diameter two by Cayley graphs, Journal of Combinatorial Theory B 102, No. 2 (2012) 470-473.

