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Abstract

Let Cd,k be the largest number of vertices in a Cayley graph of degree d and
diameter k. We show that Cd,3 ≥ 3

16
(d − 3)3 and Cd,5 ≥ 25(d−7

4
)5 for any

d ≥ 8, and Cd,4 ≥ 32(d−8
5

)4 for any d ≥ 10. For sufficiently large d our graphs
are the largest known Cayley graphs of degree d and diameters 3, 4 and 5.
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A Cayley graph C(G,X) is specified by a group G and a unit-free gen-
erating set X for this group such that X = X−1. The vertices of C(G,X)
are the elements of G and there is an edge between two vertices u and v in
C(G,X) if and only if there is a generator a ∈ X such that v = ua.

The degree-diameter problem for Cayley graphs is to determine the largest
number of vertices in Cayley graphs of given degree and diameter. Let Cd,k

be the largest order of a Cayley graph of degree d and diameter k. The
number of vertices in a graph of maximum degree d and diameter k can not
exceed the Moore bound Md,k = 1 + d + d(d − 1) + . . . + d(d − 1)k−1. In
[1] and [2] Bannai and Ito improved the upper bound and showed that for
any d, k ≥ 3 there are no graphs of order greater than Md,k − 2, therefore
Cd,k ≤Md,k − 2 for such d and k. Since the Moore graphs of diameter 2 and
degree 3 or 7, and the potential Moore graph(s) of diameter 2 and degree 57
are non-Cayley (see [3]), Cayley graphs of order equal to the Moore bound
exist only in the trivial cases when d = 2 or k = 1.

We focus on constructions of Cayley graphs of small diameter. The case
k = 2 and d → ∞ has been widely studied. The best known construction
of diameter 2 was recently found by Šiagiová and Širáň [8] who showed that

Cd,2 ≥ d2 − 6
√

2d
3
2 for an infinite set of degrees d. Macbeth et. al. [7]

presented large Cayley graphs giving the bound Cd,k ≥ k(d−3
3

)k for any di-
ameter k ≥ 3 and degree d ≥ 5. Let us also mention the Faber-Moore-Chen
graphs [4] of odd degree d ≥ 5, diameter k, such that 3 ≤ k ≤ d+1

2
, and order
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(d+3
2

)!/(d+3
2
− k)!. These graphs are vertex-transitive and in [7] it is proved

that for any k ≥ 4 and sufficiently large d the Faber-Moore-Chen graphs are
not Cayley. Large Cayley graphs of given degree d and diameter k, where
both d and k are small, were obtained by use of computers, see [5] and [6].

For diameters 3, 4 and 5 we present Cayley graphs which yield the bounds
Cd,3 ≥ 3

16
(d − 3)3 and Cd,5 ≥ 25(d−7

4
)5 for any d ≥ 8, and Cd,4 ≥ 32(d−8

5
)4

for any d ≥ 10, improving thus the corresponding bounds of [7] for large
d. Particularly for diameter 3 we improve the lower bound considerably. It
can be easily checked that the graphs of Faber, Moore and Chen are smaller
than our graphs for diameter 3 and large degree, and they are larger than
our graphs for diameters 4 and 5. However, for k = 4 and d ≥ 21, and for
k = 5 and d ≥ 23, the Faber-Moore-Chen graphs are non-Cayley. To the best
of our knowledge, for sufficiently large d there is no construction of Cayley
graphs of degree d and diameter 3, 4 or 5 of order greater than the order of
our graphs.

Now we describe the groups G which we use to produce large Cayley
graphs. Let H be a group of order m ≥ 2 with unit element e. We denote
by Hk the product H×H× . . .×H, where H appears k times. Let α be the
automorphism of the group Hk which shifts coordinates by one to the right,
that is, α(x1, x2, . . . , xk) = (xk, x1, x2, . . . , xk−1). The cyclic group of order p
will be denoted by Zp.

We study the semidirect products G = Hk o Zp, where p is a multiple of
k, with multiplication given by

(x, y)(x′, y′) = (xαy(x′), y + y′), (1)

where αy is the composition of α with itself y times, x, x′ ∈ Hk and y, y′ ∈
Zp. Elements of G will be written in the form (x1, x2, . . . , xk; y), where
x1, x2, . . . , xk ∈ H and y ∈ Zp.

We consider generating sets X which consist of classes of elements of the
form (x1, x2, . . . , xk; y) where xi, 1 ≤ i ≤ k, is either e or g for any g ∈ H.
In the case of diameters 3 and 5 we found generating sets for large Cayley
graphs using four such classes, whereas for diameter 4 we needed five classes.
In our search for relatively small generating sets (to result in large Cayley
graphs in terms of their degree) it proved efficient to consider generating
sets containing (k+ 1)-tuples as above with at most two non-identity entries
among the first k coordinates; increasing this number did not yield better
graphs.
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We now state and prove our main result.

Theorem 1.
(i) Cd,3 ≥ 3

16
d3 for d ≥ 8 such that d is a multiple of 4.

(ii) Cd,4 ≥ 32(d
5
)4 for d ≥ 10 such that d is a multiple of 5.

(iii) Cd,5 ≥ 25(d
4
)5 for d ≥ 8 such that d is a multiple of 4.

Proof. We use the group G with multiplication (1) defined earlier.
(i) Let G = H3oZ12 and X = {ag, āg′ , bh, b̄h′ | for any g, g′, h, h′ ∈ H} where
ag = (g, g, e; 1), āg′ = (g′, e, g′;−1), bh = (h, e, e; 8) and b̄h′ = (e, h′, e; 4).
Since a−1g = āg−1 and b−1h = b̄h−1 , we have X = X−1. The Cayley graph
C(G,X) is of degree d = |X| = 4m, m ≥ 2 and order |G| = 12m3 =
12(d

4
)3 = 3

16
d3.

We show that the diameter of C(G,X) is at most 3, which is equivalent
to showing that each element of G can be obtained as a product of at most
3 generators of X. For any x1, x2, x3 ∈ H we have

(x1, x2, x3; 0) = (x1, e, e; 8)(x3, e, e; 8)(x2, e, e; 8),

(x1, x2, x3; 1) = (x1x
−1
3 , e, e; 8)(x3, x3, e; 1)(e, x2, e; 4),

(x1, x2, x3; 2) = (x1, e, x1;−1)(x2, e, x2;−1)(e, x−12 x−11 x3, e; 4),

(x1, x2, x3; 3) = (x1x
−1
2 , e, e; 8)(x3, e, e; 8)(x2, e, x2;−1),

(x1, x2, x3; 4) = (x3, e, x3;−1)(e, x−13 x1x
−1
2 , e; 4)(x2, x2, e; 1),

(x1, x2, x3; 5) = (x1, e, e; 8)(x3x
−1
2 , e, e; 8)(x2, x2, e; 1),

(x1, x2, x3; 6) = (x2x
−1
3 , x2x

−1
3 , e; 1)(x3, x3, e; 1)(e, x3x

−1
2 x1, e; 4).

It is easy to see that if (x1, x2, x3; y) = abc, where a, b, c ∈ X and 0 ≤ y ≤ 6,
then

(x−1y (mod 3)+1, x
−1
y+1 (mod 3)+1, x

−1
y+2 (mod 3)+1;−y) = c−1b−1a−1.

Note that the diameter of C(G,X) cannot be smaller than 3, because the
order is greater than the Moore bound for diameter 2.

(ii) Let G′ = H4oZ32 and X ′ = {ag, āg′ , bh, b̄h′ , cj | for any g, g′, h, h′, j ∈
H}, where ag = (g, e, e, e; 1), āg′ = (e, e, e, g′;−1), bh = (e, h, h, e; 7), b̄h′ =
(e, e, h′, h′;−7) and cj = (e, j, e, e; 16). Clearly, X = X−1 since a−1g = āg−1 ,

b−1h = b̄h−1 and c−1j = cj−1 . The Cayley graph C(G′, X ′) has degree d =

|X ′| = 5m and order |G′| = 32m4 = 32(d
5
)4.

We show that every element of G′ can be expressed as a product of 4
generators of X ′. For any x1, x2, x3, x4 ∈ H we have
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(x1, x2, x3, x4; 0) = bx2ax4x
−1
3 x2

b̄x−1
2 x3

āx1 ,

(x1, x2, x3, x4; 1) = b̄x4x
−1
1
cx1x

−1
4 x3

b̄x1 āx2 ,

(x1, x2, x3, x4; 2) = ax1cx3ax2cx4 ,

(x1, x2, x3, x4; 3) = ax1x
−1
2 x−1

4
cx3 b̄x4 b̄x2 ,

(x1, x2, x3, x4; 4) = ax1ax2ax3ax4 ,

(x1, x2, x3, x4; 5) = cx2x4x
−1
1 x−1

3
bx3bx1x

−1
4
bx4 ,

(x1, x2, x3, x4; 6) = āx4x
−1
1
āx3bx1ax2 ,

(x1, x2, x3, x4; 7) = cx2 b̄x3 āx1 āx−1
3 x4

,

(x1, x2, x3, x4; 8) = cx2ax1cx3x
−1
4
bx4 ,

(x1, x2, x3, x4; 9) = cx2x
−1
3
āx4 b̄x3ax1 ,

(x1, x2, x3, x4; 10) = bx3ax4ax1ax−1
3 x2

,

(x1, x2, x3, x4; 11) = cx2ax1x
−1
4
b̄x4ax3 ,

(x1, x2, x3, x4; 12) = bx2 āx−1
2 x3

bx4 āx−1
4 x1

,

(x1, x2, x3, x4; 13) = āx4cx1 āx3 āx2 ,

(x1, x2, x3, x4; 14) = ax1x
−1
2
bx3 āx−1

3 x4
bx2 ,

(x1, x2, x3, x4; 15) = cx2x
−1
3 x4

b̄x4 āx1bx−1
4 x3

,

(x1, x2, x3, x4; 16) = ax1x3x
−1
4
ax2bx4x

−1
3
bx3 .

Elements of G′ with the last coordinate y, where 17 ≤ y ≤ 31, can be
obtained as inverses of the above ones, therefore the diameter of C(G′, X ′)
is at most 4. It is easy to show that, for example, no element of G′ with the
last coordinate 4 can be obtained as a product of at most 3 elements of X ′,
hence the diameter of C(G′, X ′) cannot be smaller than 4.

(iii) Let G′′ = H5oZ25 and X ′′ = {ag, āg′ , bh, b̄h′ | for any g, g′, h, h′ ∈ H}
where ag = (g, e, e, e, e; 1), āg′ = (e, e, e, e, g′;−1), bh = (h, e, e, h, e;−4) and
b̄h′ = (e, e, h′, e, h′; 4). The Cayley graph C(G′′, X ′′) is of degree d = |X ′′| =
4m and order |G′′| = 25m5 = 25(d

4
)5.

In order to prove that the diameter of C(G′′, X ′′) is at most 5, it suffices
to show that any element (x1, x2, x3, x4, x5; y) of G′′, where 0 ≤ y ≤ 12, can
be obtained as a product of 5 generators of X ′′. It can be checked that

(x1, x2, x3, x4, x5; 0) = ax1ax2ax3x
−1
5
ax4bx5 ,

(x1, x2, x3, x4, x5; 1) = b̄x3 āx4x
−1
2
bx2ax−1

3 x5
ax1 ,

(x1, x2, x3, x4, x5; 2) = bx4x
−1
2
āx2x

−1
4 x1x

−1
3
āx5 b̄x2 b̄x3 ,

(x1, x2, x3, x4, x5; 3) = ax1bx5ax3ax4x
−1
2 x5

b̄x−1
5 x2

,

(x1, x2, x3, x4, x5; 4) = b̄x5 b̄x2 āx−1
5 x3x

−1
1
bx1ax−1

2 x4
,
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(x1, x2, x3, x4, x5; 5) = ax1ax2ax3ax4ax5 ,

(x1, x2, x3, x4, x5; 6) = b̄x3 b̄x2ax−1
2 x4x

−1
1
ax−1

3 x5
bx1 ,

(x1, x2, x3, x4, x5; 7) = ax1x2x
−1
4
b̄x4x

−1
2
āx5 b̄x2 āx3 ,

(x1, x2, x3, x4, x5; 8) = āx5x
−1
2 x−1

4 x1x
−1
3
bx3x

−1
1 x4

bx4bx2bx4
−1x1

,

(x1, x2, x3, x4, x5; 9) = āx5 b̄x2 b̄x1ax−1
1 x3

ax−1
2 x4

,

(x1, x2, x3, x4, x5; 10) = b̄x5 b̄x4 b̄x−1
5 x3

āx−1
4 x2

āx−1
3 x5x1

,

(x1, x2, x3, x4, x5; 11) = b̄x3 b̄x2ax−1
2 x4

ax−1
3 x5

ax1 ,

(x1, x2, x3, x4, x5; 12) = ax1x2x
−1
4
b̄x4x

−1
2
b̄x5 b̄x2 āx−1

5 x3
.

Hence, Cd,5 ≥ 25(d
4
)5 for any d ≥ 8 such that d is a multiple of 4. 2

By adding new elements to the generating sets, we get Cayley graphs of
any degree d ≥ 10 if k = 4, and d ≥ 8 if k = 3 or 5.

Theorem 2.
(i) Cd,3 ≥ 3

16
(d− 3)3 for any d ≥ 8.

(ii) Cd,4 ≥ 32(d−8
5

)4 for any d ≥ 10.

(iii) Cd,5 ≥ 25(d−7
4

)5 for any d ≥ 8.

Proof. We use the notation of the proof of Theorem 1.
(i) By Theorem 1, Cd,3 ≥ 3

16
d3 for d = 4m, where m ≥ 2. Let u be

an element of G such that u /∈ X and u 6= u−1. Let X1 = X ∪ {v}, X2 =
X∪{u, u−1} and X3 = X∪{u, u−1, v} where v = (e, e, e, 6). Then the Cayley
graph C(G,Xi) has degree d = |Xi| = 4m + i, diameter at most k = 3 and
order |G| = 12m3 = 3

16
(d− i)3, where i = 1, 2, 3. Hence Cd,3 ≥ 3

16
(d− 3)3 for

any d ≥ 8.
(ii) We know that Cd,4 ≥ 32(d

5
)4 for d = 5m, m ≥ 2. Let ui, i =

1, 2, 3, 4, be non-involuntary elements of G′ such that ui /∈ X ′. Let X ′i = X ′∪
{u1, . . . , ui, u−11 , . . . , u−1i } where i = 1, 2, 3, 4. The Cayley graph C(G′, X ′i)
has degree d = |X ′i| = 5m + 2i and order |G′| = 32m4 = 32(d−2i

5
)4. It

remains to show that Cd,4 ≥ 32(d−8
5

)4 for d = 11 and 13. However, if m = 2,
then G′ has an involution which is not in X ′. By using this involution, we
can obtain Cayley graphs of order 32(10

5
)4 = 29 and degree 11 or 13.

(iii) Let m ≥ 2 be even. Then the order of H is even and G′′ must contain
an involution, say v, other than the identity. Let X ′′0 = X ′′ ∪ {v} and X ′′i =
X ′′ ∪ {v, u1, . . . , ui, u−11 , . . . , u−1i } for i = 1, 2, 3, where ui 6= u−1i , ui /∈ X ′′.
The graph C(G′′, X ′′i ), i = 0, 1, 2, 3, is of degree |X ′′i | = 4m+2i+1, diameter
at most k = 5 and order |G′′| = 25m5 = 25(d−2i−1

4
)5.

5



Since for any m ≥ 2 we can obtain a Cayley graph of degree 4m+ 2 and
order 25(d−2

4
)5 by adjoining u1 and u−11 to X ′′, we have Cd,5 ≥ 25(d−7

4
)5 for

any d ≥ 8 as desired. 2
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