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Hamming Weights in Irreducible Cyclic Codes
Cunsheng Ding, Jing Yang

Abstract

Irreducible cyclic codes are an interesting type of codes and have applications in space communications. They
have been studied for decades and a lot of progress has been made. The objectives of this paper are to survey
and extend earlier results on the weight distributions of irreducible cyclic codes, present a divisibility theorem and
develop bounds on the weights in irreducible cyclic codes.
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I. INTRODUCTION

Throughout this paper, letp be a prime,q = ps for a positive integers, andr = qm for a positive integer
m. A linear [n, k, d] code overGF(q) is ak-dimensional subspace ofGF(q)n with minimum (Hamming)
distanced. Let Ai denote the number of codewords with Hamming weighti in a codeC of lengthn. The
weight enumeratorof C is defined by

1 + A1x+ A2x
2 + · · ·+ Anx

n.

A linear [n, k] code C over the finite fieldGF(q) is called cyclic if (c0, c1, · · · , cn−1) ∈ C implies
(cn−1, c0, c1, · · · , cn−2) ∈ C. Let gcd(n, q) = 1. By identifying any vector(c0, c1, · · · , cn−1) ∈ GF(q)n

with
c0 + c1x+ c2x

2 + · · ·+ cn−1x
n−1 ∈ GF(q)[x]/(xn − 1),

any codeC of lengthn overGF(q) corresponds a subset ofGF(q)[x]/(xn−1). The linear codeC is cyclic
if and only if the corresponding subset inGF(q)[x]/(xn − 1) is an ideal of the ringGF(q)[x]/(xn − 1).

Note that every idea ofGF(q)[x]/(xn − 1) is principal. LetC = (g(x)) be a cyclic code. Theng(x) is
called thegenerator polynomialandh(x) = (xn − 1)/g(x) is referred to as theparity-checkpolynomial
of C.

Let N > 1 be an integer dividingr−1, and putn = (r−1)/N . Let α be a primitive element ofGF(r)
and letθ = αN . The set

C(r,N) = {(Trr/q(β),Trr/q(βθ), ...,Trr/q(βθn−1)) : β ∈ GF(r)} (1)

is called anirreducible cyclic [n,m0] codeover GF(q), whereTrr/q is the trace function fromGF(r)
ontoGF(q), m0 is the multiplicative order ofq modulon andm0 dividesm.

Irreducible cyclic codes have been an interesting subject of study for many years. The celebrated Golay
code is an irreducible cyclic code and was used on the MarinerJupiter-Saturn Mission. They form a special
class of codes and are interesting in theory as they are minimal cyclic codes. The weight distribution,
i.e., the vector(1, A1, A2, · · · , An−1), of the irreducible cyclic codes has been determined for a small
number of special cases. The objectives of this paper are to survey and extend earlier results on the
weight distributions of irreducible cyclic codes, presenta divisibility theorem and develop bounds on the
weights in irreducible cyclic codes.
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Kong, China. Email: cding@ust.hk

J. Yang, the corresponding author, is with the Department ofMathematical Sciences, Tsinghua University, Beijing, 100084, China. Email:
jingyang@math.tsinghua.edu.cn
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II. GROUP CHARACTERS, CYCLOTOMY, AND GAUSSIAN PERIODS

In this section, we present results on group characters, cyclotomy and Gaussian sums which will be
needed in the sequel.

A. Group characters and Gaussian sums

Let Trq/p denote the trace function fromGF(q) to GF(p). An additive characterof GF(q) is a nonzero
function χ from GF(q) to the set of complex numbers such thatχ(x + y) = χ(x)χ(y) for any pair
(x, y) ∈ GF(q)2. For eachb ∈ GF(q), the function

χb(c) = e2π
√
−1Trq/p(bc)/p for all c ∈ GF(q) (2)

defines an additive character ofGF(q). Whenb = 0, χ0(c) = 1 for all c ∈ GF(q), and is called thetrivial
additive characterof GF(q). The characterχ1 in (2) is called thecanonical additive characterof GF(q).

A multiplicative characterof GF(q) is a nonzero functionψ from GF(q)∗ to the set of complex numbers
such thatψ(xy) = ψ(x)ψ(y) for all pairs (x, y) ∈ GF(q)∗ ×GF(q)∗. Let g be a fixed primitive element
of GF(q). For eachj = 0, 1, . . . , q − 2, the functionψj with

ψj(g
k) = e2π

√
−1jk/(q−1) for k = 0, 1, . . . , q − 2 (3)

defines a multiplicative character with orderk of GF(q). Whenj = 0, ψ0(c) = 1 for all c ∈ GF(q)∗, and
is called thetrivial multiplicative characterof GF(q).

Let q be odd andj = (q− 1)/2 in (3), we then get a multiplicative characterη such thatη(c) = 1 if c
is the square of an element andη(c) = −1 otherwise. Thisη is called thequadratic characterof GF(q).

Let ψ be a multiplicative character with orderk wherek|(q− 1) andχ an additive character ofGF(q).
Then theGaussian sumG(ψ, χ) of orderk is defined by

G(ψ, χ) =
∑

c∈GF(q)∗

ψ(c)χ(c).

SinceG(ψ, χb) = ψ̄(b)G(ψ, χ1), we just considerG(ψ, χ1), briefly denoted asG(ψ), in the sequel. If
ψ 6= ψ0 , then

|G(ψ)| = q1/2. (4)

Generally, to explicitly determine the value of Gaussian sums is a challenging task. At present, they
can be determined in a few cases. Among them is the following case ofk = 2.

If q = ps, wherep is an odd prime ands is a positive integer, then

G(η) =

{

(−1)s−1q1/2 if p ≡ 1 (mod 4),
(−1)s−1(

√
−1)sq1/2 if p ≡ 3 (mod 4).

(5)

The following result ([18]) is useful in the sequel.

Lemma 1. Letχ be a nontrivial additive character ofGF(q) with q odd, and letf(x) = a2x
2+a1x+a0 ∈

GF(q)[x] with a2 6= 0. Then
∑

c∈GF(q)

χ(f(c)) = χ(a0 − a21(4a2)
−1)η(a2)G(η). (6)

The Gaussian sums of small order, such ask = 3, 4, 5, 6, and 12, can be also determined, see [2].
In another special case, called “semi-primitive” case, theGaussian sums are known and given in the
following two lemmas [2].
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Lemma 2. Assume thatN 6= 2 and there exists a positive integerj such thatpj ≡ −1 (mod N), and
the j is the least such. Letq = p2jγ for some integerγ. Then the Gaussian sums of orderN overGF(q)
are given by

G(ψ) =

{

(−1)γ−1√q, if p = 2,

(−1)γ−1+ γ(pj+1)
N

√
q, if p > 3.

Lemma 3. Let notations be defined as in Lemma 2. For1 6 i 6 N − 1, the Gaussian sumsG(ψi) are
given by

G(ψi) =

{

(−1)i
√
q, if N is even,p, γ and pj+1

N
are odd;

(−1)γ−1√q, otherwise.

If p generates a subgroup of group(Z/NZ)∗ with index [(Z/NZ)∗ : 〈p〉] = 2 and−1 6∈ 〈p〉 ⊂ (Z/NZ)∗,
which is the so-called “quadratic residues” or “ index 2” case, Gaussian sums are also explicitly determined.
See [33] and its references for details. We list one of the results [33] in the index 2 case below, which is
useful in the sequel.

Lemma 4. Let N1 = lλ where 3 6= l ≡ 3 (mod 4) is a prime andλ is a positive integer. Letf =
ordN1(p), r = pfs for some positive integers, andψ be a primitive multiplicative character of orderN1

over GF(r)∗. Assume thatf = ϕ(N1)
2

, which means thatp generates the quadratic residues moduloN1,
then, for1 6 t 6 λ, we have that

G(ψλ−t) = (−1)s−1 · p s(f−hlλ−t)
2 ·

(

a+b
√
−l

2

)slλ−t

:= P
(s,λ)
t

(

A
(s,λ)
t +B

(s,λ)
t

√
−l

)

,

whereh is the ideal class number ofQ(
√
−l), the integersa, b are given by

{

a2 + lb2 = 4ph

a ≡ −2p
l−1+2h

4 (mod l),

andP (s,λ)
t , A

(s,λ)
t , B

(s,λ)
t ∈ Z are defined as

P
(s,λ)
t = (−1)s−1 · p s(f−hlλ−t)

2 ;

A
(s,λ)
t = Re

(

a+b
√
−l

2

)slλ−t

; B
(s,λ)
t = Im

(

a+b
√
−l

2

)slλ−t /√
l.

(7)

B. Cyclotomy

Let r − 1 = nN for two positive integersn > 1 andN > 1, and letα be a fixed primitive element
of GF(r). DefineC(N,r)

i = αi〈αN〉 for i = 0, 1, ..., N − 1, where〈αN〉 denotes the subgroup ofGF(r)∗

generated byαN . The cosetsC(N,r)
i are called thecyclotomic classesof orderN in GF(r). Thecyclotomic

numbersof orderN are defined by

(i, j)(N,r) =
∣

∣

∣
(C

(N,r)
i + 1) ∩ C(N,r)

j

∣

∣

∣

for all 0 ≤ i ≤ N − 1 and0 ≤ j ≤ N − 1.
We will need the following lemma ([13]) in the sequel.

Lemma 5. Let r − 1 = nN and letq be a prime power. Then

N−1
∑

u=0

(u, u+ k)(N,r) =

{

n− 1, if k = 0,
n, if k 6= 0.
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To determine the weight distribution of some classes of linear codes in the sequel, we need the following
lemma.

Lemma 6. Let e1 be a positive divisor ofr − 1 and let i be any integer with0 ≤ i < e1. We have the
following multiset equality:

{

xy : y ∈ GF(q)∗, x ∈ C
(e1,r)
i

}

=
(q − 1) gcd((r − 1)/(q − 1), e1)

e1
∗ C(gcd((r−1)/(q−1),e1),r)

i , (8)

where (q−1) gcd((r−1)/(q−1),e1)
e1

∗ C(gcd((r−1)/(q−1),e1),r)
i denotes the multiset in which each element in the set

C
(gcd((r−1)/(q−1),e1),r)
i appears in the multiset with multiplicity(q−1) gcd((r−1)/(q−1),e1)

e1
.

Proof: We need to prove the conclusion fori = 0 only because

C
(gcd((r−1)/(q−1),e1),r)
i = αiC

(gcd((r−1)/(q−1),e1),r)
0 .

Note that everyy ∈ GF(q)∗ can be expressed asy = α
r−1
q−1

ℓ for an uniqueℓ with 0 ≤ ℓ < q− 1 and every
x ∈ C

(e1,r)
0 can be expressed asx = αe1j for an uniquej with 0 ≤ j < (r − 1)/e1. Then we have

xy = α
r−1
q−1

ℓ+e1j .

It follows that

xy = α
r−1
q−1

ℓ+e1j = (αgcd((r−1)/(q−1),e1))
r−1

(q−1) gcd((r−1)/(q−1),e1)
ℓ+

e1
gcd((r−1)/(q−1),e1)

j
.

Note that

gcd

(

r − 1

(q − 1) gcd((r − 1)/(q − 1), e1)
,

e1
gcd((r − 1)/(q − 1), e1)

)

= 1.

Whenℓ ranges over0 ≤ ℓ < q− 1 andj ranges over0 ≤ j < (r− 1)/e1, xy takes on the value1 exactly
q−1
e1

gcd((r − 1)/(q − 1), e1) times.

Let xi1 ∈ C
(e1,r)
0 for i1 = 1 and i1 = 2, and letyi2 ∈ GF(q)∗ for i2 = 1 and i2 = 2. Then x1

x2
∈ C

(e1,r)
0

and y1
y2

∈ GF(q)∗. Note thatx1y1 = x2y2 if and only if x1

x2

y1
y2

= 1. Then the conclusion of the lemma for
the casei = 0 follows from the discussions above.

C. Gaussian periods

The Gaussian periodsare defined by

η
(N,r)
i =

∑

x∈C(N,r)
i

χ(x), i = 0, 1, ..., N − 1,

whereχ is the canonical additive character ofGF(r).
The following lemma presents some basic properties of Gaussian periods, and will be employed later.

Lemma 7. [28] Let symbols be the same as before. Then we have
1)

∑N−1
i=0 ηi = −1.

2)
∑N−1

i=0 ηiηi+k = rθk − n for all k ∈ {0, 1, · · · , N − 1}, where

θk =







1 if n is even andk = 0
1 if n is odd andk = N/2
0 otherwise,

and equivalentlyθk = 1 if and only if−1 ∈ C
(N,r)
k .
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Gaussian periods are closely related to Gaussian sums. By the discrete Fourier transform, it is known
that

η
(N,r)
i =

1

N

N−1
∑

j=0

ζ−ij
N G(ψj) =

1

N

[

−1 +

N−1
∑

j=1

ζ−ij
N G(ψj)

]

, (9)

whereζN = e2π
√
−1/N andψ is a primitive multiplicative character of orderN overGF(r)∗.

From (9), one knows that the values of the Gaussian periods ingeneral are also very hard to compute.
However, they can be computed in a few cases. To present some known results on Gaussian periods, we
need to introduce period polynomials.

The period polynomialsψ(N,r)(X) are defined by

ψ(N,r)(X) =

N−1
∏

i=0

(

X − η
(N,r)
i

)

.

It is known thatψ(N,r)(X) is a polynomial with integer coefficients [24]. We will need the following four
lemmas whose proofs can be found in [24].

Lemma 8. LetN = 3. Let c andd be defined by4r = c2+27d2, c ≡ 1 (mod 3), and, ifp ≡ 1 (mod 3),
thengcd(c, p) = 1. These restrictions determinec uniquely, andd up to sign. Then we have

ψ(3,r)(X) = X3 +X2 − r − 1

3
X − (c+ 3)r − 1

27
.

Lemma 9. Let N = 3. We have the following results on the factorization ofψ(3,r)(X).
(a) If p ≡ 2 (mod 3), thenms is even, and

ψ(3,r)(X) =

{

3−3(3X + 1 + 2
√
r)(3X + 1−√

r)2 if sm/2 even,
3−3(3X + 1− 2

√
r)(3X + 1 +

√
r)2 if sm/2 odd.

(b) If p ≡ 1 (mod 3), and sm 6≡ 0 (mod 3), thenψ(3,r)(X) is irreducible over the rationals.
(c) If p ≡ 1 (mod 3), and sm ≡ 0 (mod 3), then

ψ(3,r)(X) =
1

27
(3X + 1− c1r

1
3 )

(

3X + 1 +
1

2
(c1 + 9d1)r

1
3

)(

3X + 1 +
1

2
(c1 − 9d1)r

1
3

)

,

wherec1 and d1 are given by4psm/3 = c21 + 27d21, c1 ≡ 1 (mod 3) and gcd(c1, p) = 1.

Lemma 10. LetN = 4. Let u and v be defined byr = u2+4v2, u ≡ 1 (mod 4), and, ifp ≡ 1 (mod 4),
thengcd(u, p) = 1. These restrictions determineu uniquely, andv up to sign.

If n is even, then

ψ(4,r)(X) = X4 +X3 − 3r − 3

8
X2 +

(2u− 3)r + 1

16
X +

r2 − (4u2 − 8u+ 6)r + 1

256
.

If n is odd, then

ψ(4,r)(X) = X4 +X3 +
r + 3

8
X2 +

(2u+ 1)r + 1

16
X +

9r2 − (4u2 − 8u− 2)r + 1

256
.

Lemma 11. Let N = 4. We have the following results on the factorization ofψ(4,r)(X).
(a) If p ≡ 3 (mod 4), thenms is even, and

ψ(4,r)(X) =

{

4−4(4X + 1 + 3
√
r)(4X + 1−√

r)3 if sm/2 even,
4−4(4X + 1− 3

√
r)(4X + 1 +

√
r)3 if sm/2 odd.
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(b) If p ≡ 1 (mod 4), and sm is odd, thenψ(4,r)(X) is irreducible over the rationals.
(c) If p ≡ 1 (mod 4), and sm ≡ 2 (mod 4), then

ψ(4,r)(X) = 4−4
(

(4X + 1)2 + 2
√
r(4X + 1)− r − 2

√
ru

)

×
(

(4X + 1)2 − 2
√
r(4X + 1)− r + 2

√
ru

)

,

the quadratics being irreducible, theu is defined in Lemma 10.
(d) If p ≡ 1 (mod 4), and sm ≡ 0 (mod 4), then

ψ(4,r)(X) = 4−4
(

(4X + 1) +
√
r + 2r1/4u1

) (

(4X + 1) +
√
r − 2r1/4u1

)

×
(

(4X + 1)−√
r + 4r1/4v1

) (

(4X + 1)−√
r − 4r1/4v1

)

whereu1 and v1 are given bypsm/2 = u21 + 4v21, u1 ≡ 1 (mod 4) and gcd(u1, p) = 1.

The following lemma follows from Lemma 1 and (5).

Lemma 12. WhenN = 2, the Gaussian periods are given by the following:

η
(2,r)
0 =

{

−1+(−1)sm−1r1/2

2
if p ≡ 1 (mod 4)

−1+(−1)sm−1(
√
−1)smr1/2

2
if p ≡ 3 (mod 4)

and
η
(2,r)
1 = −1− η

(2,r)
0 .

By Lemma 3 and (9), the Gaussian periods in the semi-primitive case are known and are described in
the following lemma [3], [24] .

Lemma 13. Assume thatN > 2 and there exists a positive integerj such thatpj ≡ −1 (mod N), and
the j is the least such. Letr = p2jγ for some integerγ.

(a) If γ, p and (pj + 1)/N are all odd, then

η
(N,r)
N/2 = (N−1)

√
r−1

N
,

η
(N,r)
k = −

√
r+1
N

for k 6= N/2.

(b) In all other cases,

η
(N,r)
0 = (−1)γ+1(N−1)

√
r−1

N
,

η
(N,r)
k = (−1)γ

√
r−1

N
for k 6= 0.

From Lemma 4 and (9), the Gaussian periods in the so-called quadratic residues (or index 2) case can
be also computed. The results with3 6= N ≡ 3 (mod 4) being odd prime are given by [5], [24].

III. T HE WEIGHTS IN IRREDUCIBLE CYCLIC CODES

Let N > 1 be an integer dividingr−1, and putn = (r−1)/N . Let α be a primitive element ofGF(r)
and letθ = αN . Let Z(r, a) denote the number of solutionsx ∈ GF(r) of the equationTrr/q(axN ) = 0.

Let ζp = e2π
√
−1/p, andχ(x) = ζ

Trr/p(x)
p , whereTrr/p is the trace function fromGF(r) to GF(p). Thenχ
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is an additive character ofGF(r). We have then by Lemma 6

Z(r, a) =
1

q

∑

y∈GF(q)

∑

x∈GF(r)

ζ
Trq/p(yTrr/q(ax

N ))
p

=
1

q

∑

y∈GF(q)

∑

x∈GF(r)

χ(yaxN )

=
1

q



q + r − 1 +
∑

y∈GF(q)∗

∑

x∈GF(r)∗

χ(yaxN)





=
1

q






q + r − 1 +N

∑

y∈GF(q)∗

∑

x∈C(N,r)
0

χ(yax)







=
1

q









q + r − 1 + (q − 1) gcd((r − 1)/(q − 1), N)
∑

z∈C
(gcd( r−1

q−1 ,N),r)
0

χ(az)









(10)

Then the Hamming weight of the codeword

(Trr/q(β),Trr/q(βθ), ...,Trr/q(βθ
n−1))

in the irreducible cyclic code of (1) is equal to

n− Z(r, β)− 1

N
=

(q − 1)

(

r − 1− gcd
(

r−1
q−1

, N
)

η
(gcd( r−1

q−1
,N),r)

k

)

qN
. (11)

The weight expression of (11) is the key observation of this paper and proves that the determination of
the weight distribution of an irreducible cyclic code is equivalent to that of the Gaussian periods of order
N1 = gcd((r− 1)/(q− 1), N). McEliece [21] gave a different proof of (11) by Gaussian sums, and from
(9), we know that the weights of an irreducible cyclic code can be expressed as a linear combination of
Gaussian sums.

Theorem 14. Let N1 = gcd((r − 1)/(q − 1), N). Then, for alli with 0 ≤ i ≤ N1 − 1, we have
(i) η(N1,r)

i ∈ Z;
(ii) N1η

(N1,r)
i + 1 ≡ 0 (mod q); and

(iii)
∣

∣

∣
η
(N1,r)
i + 1

N1

∣

∣

∣
6

⌊

(N1−1)
√
r

N1

⌋

.

Proof: The conclusions of Parts (i) and (ii) follow from (11) directly, and that of Part (iii) follows
from (4) and (9).

Theorem 14 is an interesting result in the theory of cyclotomy.

Theorem 15. Let N1 = gcd((r − 1)/(q − 1), N). Then the Hamming weight of every codeword in the
irreducible cyclic code of (1) is divisible by

(q − 1)

gcd (q − 1, N/N1)
.

Proof: By (11), the Hamming weight of every nonzero codeword is equal to

q − 1

gcd(q − 1, N/N1)

r − (1 +N1ηk)

q N
gcd(q−1,N/N1)

.
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The desired conclusion then follows from the fact that

gcd

(

q − 1, q
N

gcd(q − 1, N/N1)

)

= 1.

Particularly, whenN divides(r−1)/(q−1), the Hamming weight of every codeword in the irreducible
cyclic code of (1) is divisible byq − 1.

Example 1. Let q = 5. m = 4, N = 4. Then the irreducible cyclic code of (1) overGF(q) has length ,
dimension, and the following weight distribution:

1 + 156x112 + 156x124 + 156x128 + 156x136.

So by Theorem 15, 4 is a common divisor of all nonzero weights.Note that

gcd(112, 124, 128, 136) = 4.

Example 2. Let q = 3. m = 4, N = 2. Then the irreducible cyclic code of (1) overGF(q) has length 40,
dimension 4, and the following weight distribution:

1 + 40x24 + 40x30.

So by Theorem 15, 2 is a common divisor of all nonzero weights.Note thatgcd(24, 30) = 6.

IV. THE WEIGHT DISTRIBUTION IN THE CASE THATgcd((r − 1)/(q − 1), N) = 1

Theorem 16. Let N be a positive divisor ofr − 1 such thatgcd((r − 1)/(q − 1), N) = 1. Then the set
C(r,N) in (1) is a [(qm − 1)/N,m, (q − 1)qm−1/N ] constant-weight code with the weight enumerator

1 + (r − 1)x
(q−1)qm−1

N .

Proof: SinceN dividesr− 1 andgcd((r− 1)/(q− 1), N) = 1, N must divideq− 1. It follows that

gcd((r − 1)/(q − 1), N) = gcd(m,N) = 1.

Let α be the generator ofGF(r)∗. For anya 6= 0, it follows from (11) and Lemma 12 that for any
β ∈ GF(r)∗ the Hamming weight of any codeword

c(β) = (Trr/q(β),Trr/q(βθ), ...,Trr/q(βθ
n−1)

of the codeC(r,N) is equal to

n− Z(r, β)− 1

N
=

(q − 1)qm−1

N
.

Note that|C(2,r)
0 | = |C(2,r)

1 | = (r − 1)/2. The weight distribution and dimension of the code follow. This
completes the proof.

Theorem 17. Let N be a positive divisor ofr − 1. Then the setC(r,N) in (1) is a [(qm − 1)/N,m]
constant-weight code if and only ifgcd((r − 1)/(q − 1), N) = 1.

Proof: Theorem 16 shows that the condition is sufficient. We now prove the necessity of the condition.
Let N1 = gcd((r− 1)/(q− 1), N) andn1 = (r− 1)/N1. Assume thatC(r,N) is a constant weight code.
It then follows from (11) that1+N1ηi is a constantλ for all i. Defineζi = 1+N1ηi. Then the formulas
in Lemma 7 becomes

1)
∑N1−1

i=0 ζi = 0.
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2)
∑N1−1

i=0 ζiζi+k = N1(N1θk − 1)r for all k ∈ {0, 1, · · · , N1 − 1}, where

θk =







1 if n1 is even andk = 0
1 if n1 is odd andk = N1/2
0 otherwise,

and equivalentlyθk = 1 if and only if −1 ∈ C
(N1,r)
k .

SinceN1 is a divisor of(r − 1)/(q − 1), GF(q)∗ ⊂ C
(N1,r)
0 . It follows that θ0 = 1. Hence, we have

N1λ = 0, N1λ
2 = N1(N1 − 1)r.

Whence,N1 = 1. This completes the proof.
Theorem 17 above is a complete characterization of one-weight irreducible cyclic codes in the general

case thatN is any divisor ofr−1, which is different from Theorem 1 in [30], where Vega and Wolfmann
considered only the case thatN is a divisor ofq − 1 and use the period of the check polynomial of the
code for the characterization. Theorem 16 is extension of Theorem 6 in [10].

V. THE WEIGHT DISTRIBUTION IN THE CASE THATgcd((r − 1)/(q − 1), N) = 2

Theorem 18. Let N be a positive divisor ofr − 1. If gcd((r − 1)/(q − 1), N) = 2, then the setC(r,N)
in (1) is a [(qm − 1)/N,m, (q − 1)(r −√

r)/Nq] two-weight code with the weight enumerator

1 +
r − 1

2
x

(q−1)(r−
√

r)
qN +

r − 1

2
x

(q−1)(r+
√

r)
qN .

Proof: Sincegcd((r−1)/(q−1), N) = 2, m is even andq is odd. Letα be the generator ofGF(r)∗.
Let a ∈ C

(2,r)
h . It then follows from (11) and Lemma 12 that for anyβ ∈ GF(r)∗ the Hamming weight

of any codeword
c(β) = (Trr/q(β),Trr/q(βθ), ...,Trr/q(βθ

n−1)

of the codeC(r,N) is equal to

n− Z(r, β)− 1

N
=

(q − 1)(r ∓√
r)

qN
> 0.

Note that|C(2,r)
0 | = |C(2,r)

1 | = (r − 1)/2. The weight distribution and dimension of the code follow. This
completes the proof.

Theorem 18 is an extension of Theorem 7 in Baumert and McEliece [3].

Example 3. Let q = 9, m = 2, andN = q−1 = 8. Thengcd((r−1)/(q−1), N) = 2. All the conditions of
Theorem 18 are satisfied. The setC(r, 8) is then a[10, 2, 8] code overGF(9) with the weight distribution
1 + 40x8 + 40x10.

Example 4. Let q = 9, m = 2, andN = 2(q − 1) = 16. Thengcd((r − 1)/(q − 1), N) = 2. All the
conditions of Theorem 18 are satisfied. The setC(r, 16) is then a[5, 2, 4] code overGF(9) with the weight
distribution 1 + 40x4 + 40x5.

Example 5. Let q = 3, m = 4, andN = q−1 = 2. Thengcd((r−1)/(q−1), N) = 2. All the conditions of
Theorem 18 are satisfied. The setC(r, 2) is then a[40, 4, 24] code overGF(3) with the weight distribution
1 + 40x24 + 40x30.

Example 6. Let q = 3, m = 4, andN = 2(q− 1) = 4. Thengcd((r− 1)/(q− 1), N) = 4. The setC(r, 4)
is then a[20, 4, 12] code overGF(3) with the weight distribution1 + 60x12 + 20x18. In this case, the
weight distribution of this code is different from the one inTheorem 18.
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VI. THE WEIGHT DISTRIBUTION IN THE CASE THATgcd((r − 1)/(q − 1), N) = 3

Theorem 19. Let N be a divisor ofr − 1. Whengcd((r − 1)/(q − 1), N) = 3 and p ≡ 1 (mod 3), the
setC(r,N) in (1) is a [(qm − 1)/N), m] code with the following weight distribution:

1 +
r − 1

3
x

(q−1)(r−c1r
1/3)

Nq +
r − 1

3
x

(q−1)[r+1
2 (c1+9d1)r

1/3]

Nq +
r − 1

3
x

(q−1)[r+1
2 (c1−9d1)r

1/3]

Nq ,

wherec1 and d1 are uniquely given by4qm/3 = c21 + 27d21, c1 ≡ 1 (mod 3) and gcd(c1, p) = 1.

Proof: By assumptiongcd(m, q − 1) = 3. It then follows from (8) that
{

xy : y ∈ GF(q)∗, x ∈ C
(N,r)
i

}

=
3(q − 1)

N
∗ C(3,r)

i .

Sincegcd((r − 1)/(q − 1), N) = 3, (r − 1)/(q − 1) mod 3 = m mod 3 = 0. Note that every element
of GF(q)∗ is of the formαi(r−1)/(q−1) for some integeri. Hence,GF(q)∗ ⊂ C

(3,r)
0 . It then follows from

Lemma 9 that the Gaussian periodsη(3,r)i take only the following three distinct values:

−1 + c1r
1/3

3
,
−1− 1

2
(c1 + 9d1)r

1/3

3
,
−1 − 1

2
(c1 − 9d1)r

1/3

3
.

It then follows from (11) that for anyβ ∈ GF(r)∗ the Hamming weight of any codeword

c(β) = (Trr/q(β),Trr/q(βθ), ...,Trr/q(βθ
n−1)

of the codeC(r, q − 1) is equal to

n− Z(r, β)− 1

N
=

1

q

[

q + r − 1 + 3(q − 1)η
(3,r)
i

]

> 0.

Note that |C(3,r)
i | = (r − 1)/3. The weight distribution and dimension of the code then follow. This

completes the proof.
Theorem 19 of this section is an extension of Theorem 14 in [10] and Theorem 6 in [12] .

Example 7. Let q = 7, m = 3 andN = q − 1 = 6. Then the setC(r,N) in (1) is a [57, 3, 45] code with
the weight distribution1 + 114x45 + 114x48 + 114x54.

Example 8. Let q = 7, m = 3 andN = 3(q − 1) = 18. Then the setC(r,N) in (1) is a [19, 3, 15] code
with the weight distribution1 + 114x15 + 114x16 + 114x27.

Theorem 20. LetN be a divisor ofr−1. Suppose thatgcd((r−1)/(q−1), N) = 3 andp ≡ 2 (mod 3).
If sm ≡ 0 (mod 4), thenC(r,N) is a [(r − 1)/N,m, (q − 1)(r − √

r)/Nq] code overGF(q) with the
weight distribution

1 +
2(r − 1)

3
x

(q−1)(r−
√

r)
Nq +

r − 1

3
x

(q−1)(r+2
√

r)
Nq .

If sm ≡ 2 (mod 4), thenC(r,N) is a [(r− 1)/N,m, (q− 1)(r− 2
√
r)/Nq] code overGF(q) with the

weight distribution

1 +
r − 1

3
x

(q−1)(r−2
√

r)
Nq +

2(r − 1)

3
x

(q−1)(r+
√

r)
Nq .

Proof: Note thatgcd((r − 1)/(q − 1), N) = 3 andp ≡ 2 (mod 3). This theorem becomes a special
case of Theorem 24.

Example 9. Let q = 4, m = 6 andN = q − 1 = 3. Then the setC(r,N) in (1) is a [1365, 6, 1008] code
overGF(4) with the weight distribution1 + 2730x1008 + 1365x1056.
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Example 10. Let q = 4, m = 6 andN = 3(q− 1) = 9. Then the setC(r,N) in (1) is a [455, 6, 336] code
overGF(4) with the weight distribution1 + 2730x336 + 1365x352.

Example 11. Let q = 4, m = 3 andN = q− 1 = 3. Then the setC(r,N) in (1) is a [21, 3, 12] code over
GF(4) with the weight distribution1 + 21x12 + 42x18.

Example 12. Let q = 4, m = 3 andN = 3(q − 1) = 9. Then the setC(r,N) in (1) is a [7, 3, 4] code
overGF(4) with the weight distribution1 + 21x4 + 42x6.

VII. T HE WEIGHT DISTRIBUTION IN THE CASE THATgcd((r − 1)/(q − 1), N) = 4

Theorem 21. Let N be a divisor ofr − 1. If gcd((r − 1)/(q − 1), N) = 4 and p ≡ 1 (mod 4), C(r,N)
is a [(r − 1)/N,m] code overGF(q) with the weight distribution

1 +
r − 1

4
x

(q−1)(r+
√

r+2u1r
1/4)

Nq +
r − 1

4
x

(q−1)(r+
√

r−2u1r
1/4)

Nq

+
r − 1

4
x

(q−1)(r−
√

r+4v1r
1/4)

Nq +
r − 1

4
x

(q−1)(r−
√

r−4v1r
1/4)

Nq

whereu1 and v1 are given byqm/2 = u21 + 4v21, u1 ≡ 1 (mod 4), and gcd(u1, p) = 1.
If gcd((r− 1)/(q− 1), N) = 4 and p ≡ 3 (mod 4), C(r,N) is a [(r− 1)/N,m] code overGF(q) with

the weight distribution

1 +
3(r − 1)

4
x

(q−1)(r−
√

r)
Nq +

r − 1

4
x

(q−1)(r+3
√

r)
Nq .

Proof: Note thatgcd((r − 1)/(q − 1), N) = 4. Then similar to the proof of Theorem 19, we can
prove the weight distribution formula with the help of Lemma11 and (11).

Theorem 21 of this section is an extension of Theorem 21 in [10] and Theorem 7 in [12].

Example 13. Let q = 5, m = 4 andN = q − 1 = 4. Then the setC(r,N) in (1) is a [156, 4, 112] code
overGF(5) with the weight distribution1 + 156x112 + 156x124 + 156x128 + 156x136.

Example 14. Let q = 5, m = 4 andN = 4(q − 1) = 16. Then the setC(r, q − 1) in (1) is a [39, 4, 28]
code overGF(5) with the weight distribution1 + 156x28 + 156x31 + 156x32 + 156x34.

VIII. T HE WEIGHT DISTRIBUTION IN THE QUADRATIC RESIDUE CASE

In another special case, called the “quadratic residue” or “index 2” case, the weight distribution of the
irreducible cyclic code is known and described in the following theorem.

Theorem 22. Let notations be defined as in Lemma 4. For0 6 i 6 N1 − 1, define
{

i2 := vl(i), i.e., li2 ‖ i;
i1 := i/li2 ∈ (Z/lλ−i2Z)∗.

Then, the Hamming weight of the codewordc(β) with β ∈ C
(r,N1)
i is given by

wH(c(β)) =
(q − 1)

Nq

[

r −
lλ−1
∑

u=1

G(ψu, χ1)ψ
−u(gi)

]

=
(q − 1)

Nq

[

r −
i2
∑

t=0

lt
(

A
(s,λ)
t P

(s,λ)
t −A

(s,λ)
t+1 P

(s,λ)
t+1

)

−
(

i1
l

)

li2+1P
(s,λ)
i2+1B

(s,λ)
i2+1

]

,

where we takeA0 = Aλ+1 = Bλ+1 = 0.
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Proof: The conclusions of this theorem follow from (11), Lemma 4 andthe conditions stated in this
theorem.

Regarding Theorem 22, we have the following remarks.
• Theorem 22 is an extension of the main results obtained by Baumert and Mykkeltveit [5] and the

main results of [2,§11.7].
• With the explicit formulas of Theorem 22 and the recursive relation of A(s,λ)

t , B
(s,λ)
t , P

(s,λ)
t with

respect toλ, one can derive the recursive algorithms presented in [23].
• According to the conclusions of [33], there are six subcasesfor Gauss sums in the index 2 case.

Theorem 22 is the corresponding result for one of the six subcases.

Example 15. Letq = 2,m = 42 andN = 72 = 49. Then the setC(r,N) in (1) is a[89756051247, 42, 44877307904]
code overGF(2) with the weight distribution

1 + x44877307904 + 3x44877832192 + 21x44877979648 + 21x44878086144 + 3x44878356480.

Example 16. Let q = 3, m = 55 andN = 112 = 121. Then the setC(r,N) in (1) is a

[1441729016604299000588186, 55, 961152677733830625644778]

code overGF(3) with the weight distribution

1+6x961152677733830625644778+55x961152677735964537698190+55x961152677736445713945528+5x961152677738914357301436 .

IX. THE WEIGHT DISTRIBUTION IN THE CASE THATn IS PRIME POWER

The following result is presented in [25].

Theorem 23. Let q = ps. Let t be an odd prime andℓ be a positive integer. Assume that the multiplicative
order ofq mudulotℓ is td, where0 ≤ d < ℓ. Definem = td andN = (qm−1)/tj for anyj with 1 ≤ j ≤ ℓ.

If j ≤ ℓ− d, then the setC(r,N) in (1) is a [tj , 1, tj] constant-weight code overGF(q) with the weight
enumerator

1 + (q − 1)xt
j

.

If j > ℓ − d, then the setC(r,N) in (1) is a [tj , tj−(ℓ−d)] cyclic code overGF(q) with the weight
enumerator

tr−ℓ+d
∑

w=0

(

tj−ℓ+d

w

)

xt
(ℓ−d)w.

Example 17. Let q = 22 and tℓ = 33. Then the order ofq modulo tℓ is 32. Definem = 32 = 9 and
N = (qm − 1)/t2. Thenn = t2 = 9, and the setC(r,N) in (1) is a [9, 3, 3] cyclic code overGF(4) with
the weight enumerator

1 + 9x3 + 27x6 + 27x9.

X. THE WEIGHT DISTRIBUTION IN THE SEMI-PRIMITIVE AND RELATED CASES

Theorem 24. Let p be a prime andsm be even. LetN be a positive divisor ofr − 1 and N1 =
gcd((r − 1)/(q − 1), N) > 2. Assume there exists a positive integerj such thatpj ≡ −1 (mod N1), and
the j is the least such. Defineγ = sm/2j.

(a) If γ, p and (pj + 1)/N1 are all odd, then the setC(r,N) in (1) is a [(qm − 1)/N,m] code over
GF(q) with the weight enumerator

1 +
r − 1

N1
x

(q−1)(r−(N1−1)
√

r)
qN +

(r − 1)(N1 − 1)

N1
x

(q−1)(r+
√

r)
qN ,

provided thatN1 <
√
r + 1.
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(b) In all other cases, the setC(r,N) in (1) is a [(qm − 1)/N,m] code with the weight enumerator

1 +
r − 1

N1
x

(q−1)(r+(−1)γ (N1−1)
√

r)
qN +

(r − 1)(N1 − 1)

N1
x

(q−1)(r−(−1)γ
√
r)

qN ,

provided that
√
r + (−1)γ(N1 − 1) > 0.

Proof: The conclusions of this theorem follow from (11), Lemma 13 and the conditions stated in
this theorem.

Regarding Theorem 24, we have the following remarks.
• WhenN1 = N , this is the classical semi-primitive case, and the weight distribution of the code was

studied by Delsarte and Goethals [9], McEliece [20], and Baumert and McEliece [3].
• WhenN1 < N , this may not be the semiprimitive case forN . For example, letq = 7, m = 2 and
N = 12. We now prove that this is not the semi-primitive case forN = 12. To this end, we prove
that there is no positive integerj such that7j ≡ −1 (mod 12), which is equivalent to the following
system of congruences:

7j ≡ −1 (mod 4) and7j ≡ −1 (mod 3)

by the Chinese Remainder Theorem. The second congruence does not have a solution.
In this caseN1 = 4|71 + 1. By Theorem 24 the code overGF(7) has length4, dimension2 and
weight enumerator

1 + 12x2 + 36x4.

This shows that some non-semiprimitive cases can be settledusing the results of the semiprimitive
cases.

• The condition thatN1 <
√
r + 1 or

√
r + (−1)γ(N1 − 1) > 0 is to ensure that the dimension of the

code ism.
• Theorem 2.1 in [11] is a special case of Theorem 24 above.
Theorem 24 describes a class of two-weight irredicuble cyclic codes overGF(q), and is an extension of

Theorem 6 in Baumert and McEliece [3]. It is an interesting problem to find out all two-weight irreducible
cyclic codes overGF(q). Schmidt and White have given a characterization of all two-weight irreducible
cyclic codes overGF(q) when q is prime [26]. However, the conditions for the characterization given
in [26] cannot be easily used for finding out all all two-weight irreducible cyclic codes overGF(p).
It follows from (10) that the codeC(r,N) in (1) has at most two nonzero weights if and only if the
Gaussian periodsη(gcd((r−1)/(q−1),N),r)

i take on at most two distinct values. A special case of this is the
case of uniform cyclotomy [4]. It might be possible to give another chacaterization in this direction.

XI. THE WEIGHT DISTRIBUTION IN A FEW OTHER CASES AND OTHER RESULTS

Gaussian periods of order 5, 6, 8 and 12 are computed in [16] and [14] respectively. So the weight
distribution of the codeC(r,N) in (1) can be computed by these Gaussian periods and (11). However, the
weight formulas will be complicated due to the messy expression of these Gaussian periods. Two-weight
projective irreducible cyclic codes are characterized by Wolfmann [32].

Two recursive algorithms were developed for computing the weight distribution of certain irreducible
cyclic codes [23]. The weight enumerators of all nondegenerate irreducible cyclic binary [n , m]-codes
have been computed for whichk > 27 and N = (2m − 1)/n < 500 by Ward [31]. The weights of
irreducible cyclic codes are discussed by Aubry and Langevin [1], Moisio [22] and by Segal and Ward
[27]. The relations between the weight distributions of irreducible cyclic codes and the Hasse-Davenport
curves are dealt with by van der Vlugt [29]. Chains of irreducible cyclic codes and relations among their
weight distributions are presented in [17], [15].
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XII. B OUNDS ON WEIGHTS IN IRREDUCIBLE CYCLIC CODES

Since it is notoriously hard to determine the weight distribtions of the irrreducible cyclic codes, it would
be interesting to develop tight bounds on the weights in irrreducible cyclic codes. Such tight bounds can
give information on the error-correcting capability of this class of cyclic codes. The objective of this
section is to develop such tight bounds.

Theorem 25. Let N be a positive divisor ofr − 1 and defineN1 = gcd((r − 1)/(q − 1), N). Letm0 be
the nultiplicative order ofq modulon. Then the setC(r,N) in (1) is a [(qm− 1)/N,m0] cyclic code over
GF(q) in which the weightw of every nonzero codeword satisfies that

wH(c(β)) ≥ (q − 1)

⌈

r − ⌊(N1 − 1)
√
r⌋

qN

⌉

,

wH(c(β)) ≤ (q − 1)

⌊

r + ⌊(N1 − 1)
√
r⌋

qN

⌋

.

In particular, if N1(N1 − 1) < r, thenm0 = m.

Proof: The results of this theorem follow from Theorem 14 and (11).
The lower bound of Theorem 25 is tight whengcd((r− 1)/(q− 1), N) is small, and may not be tight

in some other cases. Whengcd((r− 1)/(q− 1), N) = 1, the lower and upper bounds of Theorem 25 are
the same, and they are indeed achieved as the code in this caseis a constant-weight code. Table I lists
some experimental data, wheren, k, d are the length, dimension and minimum nonzero weight of the
code.

TABLE I
THE LOWER BOUND OFTHEOREM 25

n k d q lower bound of Thm 25 r−1
q−1

mod N

5 4 2 2 2 0
21 6 8 2 8 0
21 3 12 22 12 0
85 4 64 22 64 1
13 3 9 3 9 1
40 4 24 3 24 0
121 5 81 3 81 1
312 4 240 5 236 0

XIII. SUMMERY AND OPEN PROBLEMS

The contributions of this paper include the following:
• A survey of earlier results on the weight distributions of irreducible cyclic codes.
• Extensions and generalizations of earlier results on the weight distributions of irreducible cyclic codes

(Theorems 24, 22, 16, 18, 19, 20, and 21).
• A complete characterization of one-weight irreducible cyclic codes (Theorem 17), which is an

extension of the result in [30].
• The weight divisibility of irreducible cyclic codes (Theorem 15).
• A lower and upper bound on the weights in irreducible cyclic codes (Theorem 25).
• A property on Gaussian periods (Theorem 14)
While it is hard to determine the weight distributions of theirreducible cyclic codes in general,

it is possible to solve this problem for other special cases.One open problem would be a simpler
characterization of two-weight irreducible cyclic codes than the one presented in [26] by Schmidt and
White.
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