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Hamming Weights in Irreducible Cyclic Codes
Cunsheng Ding, Jing Yang

Abstract

Irreducible cyclic codes are an interesting type of codesteve applications in space communications. They
have been studied for decades and a lot of progress has beabm ifee objectives of this paper are to survey
and extend earlier results on the weight distributions i@&ducible cyclic codes, present a divisibility theorem and
develop bounds on the weights in irreducible cyclic codes.
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I. INTRODUCTION

Throughout this paper, letbe a primeg = p° for a positive integes, andr = ¢™ for a positive integer
m. A linear [n, k, d] code overGF(q) is ak-dimensional subspace 6fF(¢)" with minimum (Hamming)
distanced. Let A; denote the number of codewords with Hamming weigint a codeC of lengthn. The
weight enumeratoof C is defined by

14+ Az + Agx? + -+ A, z™.

A linear [n, k] codeC over the finite fieldGF(q) is called cyclic if (co,c1,---,¢,—1) € C implies
(Cn_1,C0,C15 "+ yCno) € C. Let ged(n,q) = 1. By identifying any vector(co, c1, -+ ,c,-1) € GF(q)"
with

co+ 1+ e’ + -4 ezt € GF(g)[z] /(2™ — 1),

any codeC of lengthn over GF(q) corresponds a subset Gf'(¢)[z]/(z" —1). The linear cod€ is cyclic
if and only if the corresponding subset @it (¢)[x]/(z™ — 1) is an ideal of the rindzF(q)[z]/(z" — 1).
Note that every idea o&:F(q)[z]/(z™ — 1) is principal. LetC = (¢g(z)) be a cyclic code. Thep(z) is
called thegenerator polynomiaand h(z) = (2™ — 1)/g(x) is referred to as thearity-checkpolynomial
of C.
Let N > 1 be an integer dividing — 1, and putn = (r—1)/N. Let o be a primitive element ofsF(r)
and letd = oV. The set

C(r, N) = {(Try/q(B), Trr g (B), ..., Try g (80" 7)) : B € GF(r)} (1)

is called anirreducible cyclic [n, mq| code over GF(q), whereTr, , is the trace function fronGF(r)
onto GF(q), mg is the multiplicative order off modulon andm, dividesm.

Irreducible cyclic codes have been an interesting subjestunly for many years. The celebrated Golay
code is an irreducible cyclic code and was used on the Madungiter-Saturn Mission. They form a special
class of codes and are interesting in theory as they are rairgyclic codes. The weight distribution,
i.e., the vector(1, Ay, As,--- , A,_1), of the irreducible cyclic codes has been determined for allsm
number of special cases. The objectives of this paper araigeys and extend earlier results on the
weight distributions of irreducible cyclic codes, presardivisibility theorem and develop bounds on the
weights in irreducible cyclic codes.
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[I. GROUP CHARACTERS CYCLOTOMY, AND GAUSSIAN PERIODS

In this section, we present results on group characterdotoyoy and Gaussian sums which will be
needed in the sequel.

A. Group characters and Gaussian sums

Let Tr,,, denote the trace function fro®F (¢) to GF(p). An additive characteof GF(q) is a nonzero
function x from GF(q) to the set of complex numbers such thdt: + y) = x(x)x(y) for any pair
(z,y) € GF(q)?. For eachb € GF(q), the function

xs(c) = 2™V 1Trant/P - for all ¢ € GF(q) 2)

defines an additive character GF(q). Whenb = 0, x(c) = 1 for all ¢ € GF(q), and is called thérivial
additive characteof GF(q). The charactex; in (2) is called thecanonical additive characteof GF(q).

A multiplicative characteof GF(q) is a nonzero functiog from GF(¢)* to the set of complex numbers
such thaty(zy) = ¥ (x)y(y) for all pairs(z,y) € GF(q)* x GF(q)*. Let g be a fixed primitive element
of GF(g). For eachj =0,1,..., ¢ — 2, the functiony; with

Wi(g*) = 2™V @Y for k=0,1,...,q—2 (3)

defines a multiplicative character with ordef GF(q). Whenj = 0, ¢y(c) = 1 for all ¢ € GF(q)*, and
is called thetrivial multiplicative characterof GF(q).
Let ¢ be odd andj = (¢ —1)/2 in (3), we then get a multiplicative characteisuch that)(c) = 1 if ¢
is the square of an element antt) = —1 otherwise. This; is called thequadratic characterof GF(q).
Let ¢» be a multiplicative character with ordérwherek|(¢ — 1) and x an additive character @&F(q).
Then theGaussian suntz(v, x) of orderk is defined by

G, x)= Y v(ex(e).
ceGF(q)*
SinceG(¥, x») = ¥ (b)G(1, x1), We just consideG (), 1), briefly denoted a€i (), in the sequel. If
Y # 1y , then
G(4)] = ¢'/2. 4

Generally, to explicitly determine the value of Gaussiamsus a challenging task. At present, they
can be determined in a few cases. Among them is the followasg ©fk = 2.
If ¢ = p®, wherep is an odd prime and is a positive integer, then

G s if p=1 (mod 4),
G(n) = { (—1)*"L(/=1)%¢"? if p=3 (mod 4). (5)
The following result ([18]) is useful in the sequel.

Lemma 1. Let y be a nontrivial additive character d&F(q) with ¢ odd, and letf(z) = ayz*+a;x+ag €
GF(q)[x] with ay # 0. Then

> X(f(e) = x(ao — ai(4az) " )n(as)G(n). (6)
ceGF(q)

The Gaussian sums of small order, suchkas 3, 4, 5, 6, and 12, can be also determined, sée [2].
In another special case, called “semi-primitive” case, @eussian sums are known and given in the
following two lemmasl|[2].



Lemma 2. Assume thatV # 2 and there exists a positive integg¢rsuch thatp’ = —1 (mod N), and
the j is the least such. Let = p*” for some integery. Then the Gaussian sums of ord&rover GF(q)

are given b
’ ’ a (_1)7—1 \/az if p =2,
(,l/)) - (_1)7_14-"/(17;\{4&) \/a’ If p 2 3

Lemma 3. Let notations be defined as in Lemida 2. Fox i < N — 1, the Gaussian sum&(v") are
given by .
Gy) = { (-1)'/g,  if Nis even,p,~y and 2+ are odd
(=1)"',/q, otherwise.

If p generates a subgroup of gro(#/NZ)* with index[(Z/NZ)* : (p)] =2 and—1 ¢ (p) C (Z/NZ)*,
which is the so-calledduadratic residuesor “index 2 case, Gaussian sums are also explicitly determined.
See [38] and its references for details. We list one of thalt®$33] in the index 2 case below, which is
useful in the sequel.

Lemma 4. Let N, = [* where3 # [ = 3 (mod 4) is a prime and) is a positive integer. Leff =
ordy, (p), r = p/* for some positive integer, and+» be a primitive multiplicative character of ordeY,

over GF(r)*. Assume thaf = @, which means thap generates the quadratic residues modNg,

then, forl <t < )\, we have that

glA—t

- so1  SU=RATH g e
G = (1)t p e ()
= Pt(&)\) <A§87)‘) _|_ Bgsv)‘) /_l) ,

where# is the ideal class number @¥(v/—!), the integers:, b are given by
{ a’ + 1b? = 4ph

1—=1+2h

a=-2p 1 (mod 1),

and PV, AN BEY ¢ 7 are defined as

s(f—hA Y
5 .

P = (-1t pT
7
/\/Z. (7)

B. Cyclotomy

Let r — 1 = n/N for two positive integers: > 1 and N > 1, and leta be a fixed primitive element
of GF(r). DefineC™") = ai(a™) for i = 0,1,..., N — 1, where (o) denotes the subgroup 6fF(r)*
generated byV. The cosetsCi(N”") are called theyclotomic classesf order N in GF(r). Thecyclotomic
numbersof order N are defined by

)N = | +yn o

foral 0<i:<N—-1land0<j<N-—1.
We will need the following lemmal(([13]) in the sequel.

Lemmab. Letr — 1 =nN and letq be a prime power. Then
N—-1 .

(N7) _ n—l, if ]{5:0,
> (wuth) _{n, if & £ 0.

u=0



To determine the weight distribution of some classes oflirm®des in the sequel, we need the following
lemma.

Lemma 6. Let e; be a positive divisor of — 1 and leti be any integer with) < i < e¢;. We have the
following multiset equality:

e1,r —1 d —1 —1 9 cd((r— —1),e1),r
{xy .y e GF(q)", v € Ci( L )} _ (q—1)ged((r—1)/(g—1),e1) “ CZ'(g d((r-1)/(g—1),e1), )7 ®)

€1

where (¢-Decdlr—D/(a-1.e1) s CEAr=D/la=1en)n) ganotes the multiset in which each element in the set
Cleed(r=D)/(a=Dser)r) appears in the multiset with multiplicityg=tlecdr—D/a=D.c1)

[ €1

Proof: We need to prove the conclusion foe 0 only because
Cleed((r=1)/(g=1).e1);r) _ aicégcd((r—l)/(q%xm)m)_

Note that every € GF(¢)* can be expressed gs= a1’ for an uniquel with 0 < ¢ < ¢—1 and every

z € OV can be expressed as= o/ for an uniquej with 0 < j < (r — 1)/e;. Then we have
Ty = OAZI %Z'Hil]

It follows that

—1 r—1 €1 .
zy = qaitte = (ang((’“‘l)/(q—1>vel))<q—1)gcd((r—l)/(qfl),el)“god«v-—l)/(q—l),elﬂ.

Note that

ged ( rel 61 ) = 1.
(¢ — 1) ged((r = 1)/(q = 1),e1) " ged((r = 1)/(¢ — 1), 1)
When/ ranges ovef) < ¢ < ¢—1 andj ranges ovef) < j < (r —1) /ey, zy takes on the valué exactly
= ged((r — 1)/(q —1),e;) times.
Let z;, € C*") for iy = 1 andi; = 2, and lety;, € GF(g)* for i, = 1 andi, = 2. ThenZ e clern)

and yl € GF(q)*. Note thatz,y; = zoy» if and only if o yl = 1. Then the conclusion of the Iemma for
the case — 0 follows from the discussions above. [ ]

C. Gaussian periods

The Gaussian periodare defined by
=Y x@), i=0,1,.,N—1,
mGCi(N’T)

wherey is the canonical additive character GF'(r).
The following lemma presents some basic properties of Gaugeeriods, and will be employed later.

Lemma 7. [@ﬂ Let symbols be the same as before. Then we have

1) 25\70 ,r]Z - 1
2) >o.lo nimik =16 —nforall ke {0,1,---, N — 1}, where

1 if nisevenand =0
0, =< 1 if nisoddandk = N/2
0 otherwise,

and equivalentlyy, = 1 if and only if —1 € C,SN )



Gaussian periods are closely related to Gaussian sums.eBglisbrete Fourier transform, it is known
that

) = Z@“G ) =

—1+ Z (NG ] ©)

where(y = V=N and is a primitive multiplicative character of ordé¥ over GF(r)*.

From (9), one knows that the values of the Gaussian periodsrneral are also very hard to compute.
However, they can be computed in a few cases. To present soawnkresults on Gaussian periods, we
need to introduce period polynomials.

The period polynomials)y ) (X) are defined by

N-1

¢ww()—II<X nw”)

It is known thaty v, (X) is a polynomial with integer coefficients [24]. We will neeuktfollowing four
lemmas whose proofs can be found linl[24].

Lemma 8. Let N = 3. Letc andd be defined bylr = ¢ +27d? ¢ =1 (mod 3), and, ifp = 1 (mod 3),
thenged(c, p) = 1. These restrictions determineuniquely, andd up to sign. Then we have
r—1 (c+3)r—1

(X)) = X3+ X2 — X —
Y (X) + 3 57

Lemma 9. Let N = 3. We have the following results on the factorization/f, (X
(@) If p=2 (mod 3), thenms is even, and

) — 33BX +1+2yr)(3X +1—/r)> if sm/2 even,

Ven(X) =3 333X 41— 273X + 1+ 2 if sm/2 odd.
(b) If p
©) If p

1 (mod 3), andsm # 0 (mod 3), thenvs,y(X) is irreducible over the rationals.
1 (mod 3), and sm =0 (mod 3), then

Lemma 10. Let N = 4. Letu andv be defined by = u? +4v% u =1 (mod 4), and, ifp =1 (mod 4),
thengced(u, p) = 1. These restrictions determineuniquely, andv up to sign.
If n is even, then

-
w\»—‘

1 1 1
’l/)gﬂn)(X) (3X +1-— 017’3) (3X+ 1+ 5(01 —|—9d1)7“3) (3X+ 1+ 2(01 — 9d1)

27

—

wherec, and d, are given bydp*™/3 = ¢? +27d?, ¢, = 1 (mod 3) and ged(cy, p) = 1.

- 2u — 1 2 _ (42 — 1
¢(4r)(X)=X4+X3_MX2+(U 3)r + X+T (4u 8u+6)r+.
| 16 256
If n is odd, then
2 2 _
¢(4,r)(X)=X4+X3+%X2+%X+9T (4u 2586u 2)r+1

Lemma 11. Let N = 4. We have the following results on the factorization/ef, (X
(@) If p=3 (mod 4), thenms is even, and

) — 474X + 1+ 3yr)dX +1—/r)® if sm/2 even,
Y (X) = 474X +1-3yr)(AX + 1+ /) if sm/2 odd.



(b) If p
(c) If p

1 (mod 4), and sm is odd, themy,, (X) is irreducible over the rationals.
1 (mod 4), and sm =2 (mod 4), then

Y (X) =47 ((4X + 1) + 2VF(AX + 1) — 7 — 2¢/ru) x
((4X +1)* = 2/7r(4X + 1) = r +2V/ru),

the quadratics being irreducible, the is defined in Lemmia_10.
(d) If p=1 (mod 4), andsm =0 (mod 4), then

Dy (X) = 47 ((AX + 1) + /7 4+ 27, ((AX + 1) + F — 204
< ((AX +1) =/ +drt/to) (4X +1) = Vr = drt/to)

whereu; and v, are given byp*™/? = u? + 4v?, u; = 1 (mod 4) and ged(uy, p) = 1.

The following lemma follows from Lemmial 1 anf] (5).

Lemma 12. WhenN = 2, the Gaussian periods are given by the following:

@ { (1) 1p1/2 fp=1 (mod4)

2
Mo _1+(—1)SW;(ﬁ)Smr”2 if p=3 (mod 4)
and 2 2
R

By Lemmal3 and[(9), the Gaussian periods in the semi-prienitese are known and are described in
the following lemmal[3], [[24] .

Lemma 13. Assume thatfV > 2 and there exists a positive integgrsuch thatp’ = —1 (mod N), and
the j is the least such. Let = p?” for some integer.
(@) If v, pand (p’ +1)/N are all odd, then
(Nyr) _ (N=1)yr—1 )\f 1
N/2 T
ptior) \/;v“ for k# N/2.

(b) In all other cases,

77(N r) _ (= 1)”’“(1\7 Dyr—1
(o)
P = EUVL flfork:%o

From Lemmd# and (9), the Gaussian periods in the so-calladrgtic residues (or index 2) case can
be also computed. The results with# N = 3 (mod 4) being odd prime are given by|[5], [24].

[Il. THE WEIGHTS IN IRREDUCIBLE CYCLIC CODES

Let N > 1 be an integer dividing — 1, and putn = (r—1)/N. Let o be a primitive element ofsF(r)
and letd = oV. Let Z(r, a) denote the number of solutionse GF(r) of the equatiorlt, ,(az") = 0.

Let ¢, = 2™V~ andy(z) = ¢ """, whereTr, , is the trace function fron&F(r) to GF(p). Theny



is an additive character @kF(r). We have then by Lemnid 6

Z(Tva') = Z Z C q/p(yTrr/q(a:c ))

1\ CGF(q) weGR(r)

DI

q yeGF( ) 2€GF(r)

q+r—1+ Z Z yax

yeGF(q)* xeGF(r

| =

qg+r—1+N Z Z x(yazx)

yeGF(q)* SCEC(N \T)

| =

= —|g+r—1+(g—Deged((r—1)/(g—=1),N) > xlaz) (10)

Then the Hamming weight of the codeword

(Ttrq(B), T, (B9), o Try 1y (86" )
in the irreducible cyclic code of1) is equal to

_ ged gii,N r
2(r.5) — 1 (q—1) (r—l—gcd((}_—},N)nlg ( ) )) .
" N gN ' (11)
The weight expression of (L1) is the key observation of tliggn and proves that the determination of
the weight distribution of an irreducible cyclic code is aglent to that of the Gaussian periods of order
Ny =ged((r—1)/(¢—1), N). McEliece [21] gave a different proof of (I11) by Gaussian syand from
@), we know that the weights of an irreducible cyclic code t@& expressed as a linear combination of

Gaussian sums.

Theorem 14. Let Ny, = ged((r —1)/(¢ — 1), N). Then, for alli with 0 <i < N; — 1, we have
M ™" € zZ;
(i) N n(Nl ") 41=0 (mod ¢); and
(i) }n/“" + N%\ < [osher],
Proof: The conclusions of Parts (i) and (ii) follow frorh _(11) dirggtand that of Part (iii) follows

from (4) and [(®). [
Theoren{ I} is an interesting result in the theory of cyclgtom

Theorem 15. Let N; = ged((r — 1)/(¢ — 1), N). Then the Hamming weight of every codeword in the
irreducible cyclic code of[{1) is divisible by

(¢—1)
ged (g — 1, N/Ny)
Proof: By (1), the Hamming weight of every nonzero codeword is étpa
qg—1 r— (14 Nimg)
ged(qg — 1, N/Ny) '

N
Yged(q—1,N/N7)



The desired conclusion then follows from the fact that

cd( —1 N ) =1
& ¢ ’qgcd(q—l,N/Nl) ’

u
Particularly, whenV divides(r—1)/(¢—1), the Hamming weight of every codeword in the irreducible
cyclic code of [(1) is divisible by; — 1.

Example 1. Let ¢ = 5. m = 4, N = 4. Then the irreducible cyclic code dfl (1) ov&f(¢) has length ,
dimension, and the following weight distribution:

14 1562'"? + 1562"** + 1562'° + 1562'%°.
So by Theorem 15, 4 is a common divisor of all nonzero weid\tdte that
ged (112,124,128, 136) = 4.

Example 2. Letq = 3. m = 4, N = 2. Then the irreducible cyclic code dfl (1) ovéit'(¢) has length 40,
dimension 4, and the following weight distribution:

1+ 402°* + 402™.
So by Theorerfi 15, 2 is a common divisor of all nonzero weiddte thatged(24, 30) = 6.

IV. THE WEIGHT DISTRIBUTION IN THE CASE THATged((r —1)/(¢—1),N) =1

Theorem 16. Let N be a positive divisor of — 1 such thatged((r — 1)/(¢ — 1), N) = 1. Then the set
C(r,N)in @ is al(¢™ —1)/N,m, (¢ — 1)¢g™ ' /N] constant-weight code with the weight enumerator

<q71)qm71

1+ (r—1)az ~
Proof: Since N dividesr — 1 andged((r —1)/(¢—1),N) = 1, N must divideq — 1. It follows that
ng((’l“ - 1)/(q - 1)7 N) = ng(m> N) =1

Let a be the generator o&F(r)*. For anya # 0, it follows from (I1) and Lemma-12 that for any
g € GF(r)* the Hamming weight of any codeword

C(ﬁ) = (Trr/q(ﬁ)v Trr/q(ﬁe)v sy Trr/q(ﬁen_1>

of the codeC(r, N) is equal to
L 2rp) =1 (¢= D™
N N .
Note that|C{*"| = |C\*")| = (» — 1)/2. The weight distribution and dimension of the code follovaisT
completes the proof. [ |

Theorem 17. Let N be a positive divisor of — 1. Then the se€(r, N) in @) is a [(¢™ — 1)/N,m]
constant-weight code if and only dtd((r — 1)/(¢ — 1), N) = 1.

Proof: Theoreni_1b shows that the condition is sufficient. We now @itbe necessity of the condition.
Let Ny = ged((r—1)/(¢—1),N) andn; = (r — 1)/N;. Assume that(r, N) is a constant weight code.
It then follows from [(11) thatl + N,7; is a constani for all . Define(; = 1 + N;n;. Then the formulas
in LemmalY becomes

1) Yt =0.



2) Y GiGivk = Ni(Nif — 1)r for all k€ {0,1,---, Ny — 1}, where

1 if n; is even andk =0
0, =< 1 if nyisodd andk = N;/2
0 otherwise,

and equivalentyy,, = 1 if and only if —1 € C (Ni.r)

Since NV, is a divisor of(r — 1)/(¢ — 1), GF(q ) C CéNl””). It follows thatd, = 1. Hence, we have
NiA =0, NjA? = Ny(N; — 1)r.

Whence,N; = 1. This completes the proof. [ |

Theoren{1l7 above is a complete characterization of onehw@igducible cyclic codes in the general
case thatV is any divisor ofr — 1, which is different from Theorem 1 in [80], where Vega and Wann
considered only the case that is a divisor ofg — 1 and use the period of the check polynomial of the
code for the characterization. Theorém 16 is extension @ofém 6 in [[10].

V. THE WEIGHT DISTRIBUTION IN THE CASE THATged((r —1)/(¢— 1), N) =2

Theorem 18. Let N be a positive divisor of — 1. If ged((r —1)/(¢ — 1), N) = 2, then the se€(r, N)
in @) is a(¢™—1)/N,m,(q— 1)(r —/r)/Nq] two-weight code with the weight enumerator
r—l CEMIEND r—1 (@nerevn

2 e T
Proof: Sinceged((r—1)/(¢—1), N) = 2, m is even and; is odd. Leta be the generator d&F(r)*.

Let a € C/>"). It then follows from [T1) and Lemmiall2 that for apye GF(r)* the Hamming weight
of any codeword

1+

c(B) = (Tr,/4(8), Tr,/y(80), ..., Tr, /o (86" )
of the codeC(r, N) is equal to

Z(r,B) =1  (q—1)(rF+/r)
N N =0

n —

Note that|CO(2’r)\ = |C£2’T)| = (r —1)/2. The weight distribution and dimension of the code followisT
completes the proof. [ |
Theoren{1B is an extension of Theorem 7 in Baumert and Mo&lj8L

Example 3. Letq =9, m =2, andN = ¢—1 = 8. Thenged((r—1)/(¢—1), N) = 2. All the conditions of
Theoreni_IB are satisfied. The gkt 8) is then a[10, 2, 8] code overGF(9) with the weight distribution
1+ 4028 + 40z'°.

Example 4. Let¢g = 9, m = 2, and N = 2(¢ — 1) = 16. Thenged((r —1)/(¢ — 1), N) = 2. All the
conditions of Theoreiln 18 are satisfied. The&et 16) is then a[5, 2, 4] code overGF(9) with the weight
distribution 1 + 402* 4 402°.

Example5. Letq = 3, m = 4, andN = ¢—1 = 2. Thenged((r—1)/(¢—1), N) = 2. All the conditions of
Theoreni 1B are satisfied. The €&t 2) is then a]40, 4, 24] code ovelGF(3) with the weight distribution
1+ 4022 + 402,

Example 6. Letq =3, m =4, and N = 2(¢—1) = 4. Thenged((r—1)/(¢—1), N) = 4. The seC(r,4)
is then a[20, 4, 12] code overGF(3) with the weight distributionl + 6022 4 2028, In this case, the
weight distribution of this code is different from the oneTineoren{ IB.
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VI. THE WEIGHT DISTRIBUTION IN THE CASE THATged((r —1)/(¢ — 1), N) =3
Theorem 19. Let N be a divisor ofr — 1. Whenged((r —1)/(¢ — 1), N) =3 andp = 1 (mod 3), the
setC(r, N) in @) is a[(¢" — 1)/N), m] code with the following weight distribution:
r—1 @De-—car/3)  p—1 @ Dlr+ie+9d)r!/3 1 @ Dr+E(e1—9d1)r1/3)
5 T Ngq —+ 5 €T Nq + 3 €T Ngq ,
wherec; andd; are uniquely given bylg™/3 = ¢? + 27d?, ¢; = 1 (mod 3) and ged(cy,p) = 1.

1+

Proof: By assumptiorged(m, ¢ — 1) = 3. It then follows from [8) that
—1
{xy cy € GF(q)*, z € C’i(N’T)} _3-b « O3,
N
Sinceged((r —1)/(¢—1),N) =3, (r—1)/(¢ — 1) mod 3 = m mod 3 = 0. Note that every element
of GF(q)* is of the formai™—1/(=-1) for some integer. Hence,GF(¢)* ¢ C*". It then follows from
Lemmal[® that the Gaussian perioqu’r) take only the following three distinct values:
~1+ert? =1 =L +9di)r? =1 — $(cy — 9dy)rt/3
3 ’ 3 ’ 3 '
It then follows from [I1) that for any € GF(r)* the Hamming weight of any codeword
C(ﬂ) = (Trr/q(ﬁ)v Trr/q(ﬂe)v ceey Trr/q(ﬁen_l)

of the codeC(r,q — 1) is equal to

Z(T7B)_1 o 1 (3,r)
n—T—g[q—i—r—lJr?)(q—l)m > 0.
Note that\Ci(g’”)\ = (r — 1)/3. The weight distribution and dimension of the code thenofall This
completes the proof. [ |

Theoren_IP of this section is an extension of Theorem 14 i §bd Theorem 6 in[[12] .

Example 7. Letq =7, m =3 and N = ¢ — 1 = 6. Then the sef(r, N) in (@) is a [57, 3,45] code with
the weight distributionl + 1142% + 1142 + 11425,

Example 8. Letq =7, m =3 and N = 3(¢ — 1) = 18. Then the se€(r, N) in (@) is a[19, 3, 15] code
with the weight distributiont + 1142 + 1142 + 1142%".

Theorem 20. Let N be a divisor ofr — 1. Suppose thagcd((r —1)/(¢—1), N) =3 andp = 2 (mod 3).
If sm =0 (mod 4), thenC(r,N) is a[(r —1)/N,m, (¢ — 1)(r — \/r)/Ngq] code overGF(q) with the
weight distribution

2(r—1) @ue-vn r—1 @ne+2vmn
T Ng + T Nq .

3 3

If sm =2 (mod 4), thenC(r,N) isa[(r—1)/N,m,(q—1)(r —2y/r)/Nq] code overGF(q) with the
weight distribution

1+

r—1 @uoe2wm  2(r—1) @netvn
€ Naq + T Ng .

1
* 3 3

Proof: Note thatged((r — 1)/(¢— 1), N) =3 andp = 2 (mod 3). This theorem becomes a special
case of Theorern 24. |

Example 9. Letqg =4, m =6 and N = ¢ — 1 = 3. Then the sef(r, N) in (@) is a[1365, 6, 1008] code
over GF(4) with the weight distribution + 273021%% + 1365205,
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Example 10. Letq =4, m =6 and N = 3(¢— 1) = 9. Then the se€(r, N) in () is a[455, 6,336 code
over GF(4) with the weight distributionl + 2730233 4 13652%°2.

Example 11. Letg =4, m =3 and N = ¢ — 1 = 3. Then the se€(r, N) in (1) is a |21, 3, 12] code over
GF(4) with the weight distribution + 21z + 42x!8.

Example 12. Let¢g =4, m =3 and N = 3(¢ — 1) = 9. Then the se€(r, N) in (@) is a[7, 3,4] code
over GF(4) with the weight distribution + 212* + 4229,

VIl. THE WEIGHT DISTRIBUTION IN THE CASE THATged((r —1)/(¢—1),N) =4

Theorem 21. Let N be a divisor ofr — 1. If ged((r —1)/(¢— 1), N) =4 andp =1 (mod 4), C(r, N)
is a[(r—1)/N,m| code overGF(q) with the weight distribution

T — ]_ (Q*l)(7'+\/7+2u17'1/4) r — ]_ (qfl)(,,.+\/;72u17,1/4)
1 + s Ngq €T Ngq
4
r— 1 (Q*l)(7‘*\/7+41/17'1/4) r — 1 (qfl)(7.7\/F74,U17,1/4)
€ Na -+ X Ngq

4

4
whereu; and v, are given byg™/? = u? + 4v?, u; = 1 (mod 4), and ged(uy, p) = 1.
If ged((r—1)/(¢—1),N)=4andp =3 (mod 4), C(r,N) is a[(r —1)/N,m| code overGF(q) with
the weight distribution
3(r—1) @ue-—vn r—1 @-10o+3vn
Nq + X Nq .

X

1
* 4 4

Proof: Note thatged((r — 1)/(¢ — 1), N) = 4. Then similar to the proof of Theorem]19, we can
prove the weight distribution formula with the help of Lem@a and [(111). [
Theoren{ 2l of this section is an extension of Theorem 21 i §hd Theorem 7 in[12].

Example 13. Letq =5, m =4 and N = ¢ — 1 = 4. Then the se€(r, N) in () is a[156,4, 112] code
over GF(5) with the weight distribution + 156z''? + 1562'%* + 1562'%® + 1562'%.

Example 14. Letq =5, m =4 and N = 4(¢ — 1) = 16. Then the sef(r,q — 1) in (@) is a [39, 4, 28]
code overGF(5) with the weight distributionl + 15622% + 156231 + 156232 + 15624

VIII. THE WEIGHT DISTRIBUTION IN THE QUADRATIC RESIDUE CASE

In another special case, called the “quadratic residue’iratex 2” case, the weight distribution of the
irreducible cyclic code is known and described in the follogvtheorem.

Theorem 22. Let notations be defined as in Lemfa 4. Bok i < N; — 1, define

1y 1= Ul(i), ie., [i2 || 1
7:1 — Z/ZZQ c (Z/ZA—ZQZ)*

Then, the Hamming weight of the codewefd) with 5 € CZ-(T’N” is given by

A?ql) [7“ - ;Z:_Ill G, x1)v™"(g")

(C] - 1) i2 (5,)) p(s,\) (5,A) p(s,\) i\ 7i (3,0) 15(5,A)
T Ng T_tzzolt (At P = ALY P )—(%)ZQHPZQHBQH 7

where we taked, = A1 = By;1 = 0.

wile(g)) =4
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Proof: The conclusions of this theorem follow frofn (11), Lemhia 4 #mel conditions stated in this
theorem. [ ]

Regarding Theorefn 22, we have the following remarks.

o Theorem 2R is an extension of the main results obtained bynBauand Mykkeltveit[[5] and the
main results of[[2§11.7].

. With the explicit formulas of Theorefi 22 and the recursiviatien of AV, B“Y  pEY with
respect to\, one can derive the recursive algorithms presented in [23].

« According to the conclusions of [33], there are six subcdeesGauss sums in the index 2 case.
Theoren 2P is the corresponding result for one of the six st

Example 15. Letq = 2, m = 42 and N = 7% = 49. Then the sef(r, N) in (@) is a[89756051247, 42, 44877307904]
code overGF(2) with the weight distribution

1+ 1’44877307904 + 31,44877832192 + 211,44877979648 + 211,44878086144 + 31,44878356480.

Example 16. Let g = 3, m =55 and N = 112 = 121. Then the se€(r, N) in (1) is a
[1441729016604299000588186, 55, 961152677733830625644778|

code overGF(3) with the weight distribution
1+6x961152677733830625644778 +55x961152677735964537698190 +55x961152677736445713945528 +5x961152677738914357301436.

IX. THE WEIGHT DISTRIBUTION IN THE CASE THAT7 IS PRIME POWER
The following result is presented ih [25].

Theorem 23. Letq = p®. Lett be an odd prime and be a positive integer. Assume that the multiplicative
order ofq mudulot is t¢, where0 < d < (. Definem = t¢ and N = (¢™ —1)/t/ for anyj with 1 < j < /.
If j < ¢—d, then the se€(r, N) in (@) is a[t’, 1, /] constant-weight code ové&iF(q) with the weight
enumerator _
1+ (¢ —1)2".

If j > ¢ —d, then the seC(r,N) in @) is a [t/,t"~“~9] cyclic code overGF(q) with the weight

enumerator
tr'féer

tj—f—i—d (—d)
E < A
w=0 w

Example 17. Let ¢ = 22 and ¢ = 3%. Then the order of; modulot’ is 32. Definem = 3> = 9 and
N = (¢™ —1)/t*. Thenn = t* = 9, and the seC(r, N) in (@) is a9, 3, 3] cyclic code ovelGF(4) with
the weight enumerator

1+ 923 +272° + 272°.

X. THE WEIGHT DISTRIBUTION IN THE SEMFPRIMITIVE AND RELATED CASES

Theorem 24. Let p be a prime andsm be even. LetN be a positive divisor of- — 1 and N; =
ged((r—1)/(¢g — 1), N) > 2. Assume there exists a positive integesuch thatp’ = —1 (mod N;), and
the j is the least such. Defing = sm/2j.

(@) If v, p and (p’ + 1)/N; are all odd, then the sef(r, N) in (@) is a[(¢™ — 1)/N, m] code over
GF(q) with the weight enumerator
r—1 wue=w-nvn (r=1)(Ny = 1) @-neevm

xr q x q ,
Nl * Nl

provided thatN; < /r + 1.

1+
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(b) In all other cases, the sé(r, N) in (@) is a[(¢™ — 1)/N,m] code with the weight enumerator

r—1 @oereyop-nvn (r—1)(Ny — 1) @=0e=(nrvn
x aN + x aN

N1 Nl 7
provided that\/r + (—1)7(/N; — 1) > 0.

Proof: The conclusions of this theorem follow frorh {11), Lemima 13l dhe conditions stated in
this theorem. [ ]

Regarding Theorem 24, we have the following remarks.

« When N; = N, this is the classical semi-primitive case, and the weigstridution of the code was
studied by Delsarte and Goethdls [9], McEliece! [20], andrBewd and McEliece[[3].

« When N; < N, this may not be the semiprimitive case fdr. For example, ley = 7, m = 2 and
N = 12. We now prove that this is not the semi-primitive case #or= 12. To this end, we prove
that there is no positive integgrsuch that7’ = —1 (mod 12), which is equivalent to the following
system of congruences:

1+

7 =-1 (mod4)and7 = —1 (mod 3)

by the Chinese Remainder Theorem. The second congruensendb&ave a solution.
In this caseN; = 4|7' + 1. By Theorem 24 the code ovéiF(7) has lengthd, dimension2 and
weight enumerator

1+ 1227 + 362°.

This shows that some non-semiprimitive cases can be settied) the results of the semiprimitive
cases.

« The condition thatV; < /r +1 or \/r + (—1)"(N; — 1) > 0 is to ensure that the dimension of the
code ism.

« Theorem 2.1 in[[I1] is a special case of Theoferh 24 above.

Theoreni 24 describes a class of two-weight irredicubleicyddes oveGF(¢), and is an extension of
Theorem 6 in Baumert and McEliece [3]. It is an interestinglgbem to find out all two-weight irreducible
cyclic codes ovefGF(q). Schmidt and White have given a characterization of all wadght irreducible
cyclic codes ovelGF(q) when ¢ is prime [26]. However, the conditions for the characteitma given
in [26] cannot be easily used for finding out all all two-wetighreducible cyclic codes oveGF(p).

It follows from (10) that the cod€(r, N) in (1) has at most two nonzero weights if and only if the
Gaussian periodg&!(""1/@=D-N)1) take on at most two distinct values. A special case of thidiés t
case of uniform cyclotomy [4]. It might be possible to giveotirer chacaterization in this direction.

XI. THE WEIGHT DISTRIBUTION IN A FEW OTHER CASES AND OTHER RESULTS

Gaussian periods of order 5, 6, 8 and 12 are computed_in [1&][B4] respectively. So the weight
distribution of the cod€(r, N) in (1) can be computed by these Gaussian periods[and (11)evownthe
weight formulas will be complicated due to the messy expoessf these Gaussian periods. Two-weight
projective irreducible cyclic codes are characterized ifitvann [32].

Two recursive algorithms were developed for computing tkeggi distribution of certain irreducible
cyclic codes[[28]. The weight enumerators of all nondegateeirreducible cyclic binaryr] , m]-codes
have been computed for which > 27 and N = (2™ — 1)/n < 500 by Ward [31]. The weights of
irreducible cyclic codes are discussed by Aubry and Lamg§l, Moisio [22] and by Segal and Ward
[27]. The relations between the weight distributions oédhuicible cyclic codes and the Hasse-Davenport
curves are dealt with by van der VIug@t [29]. Chains of irreble cyclic codes and relations among their
weight distributions are presented in [17], [15].
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XIl. BOUNDS ON WEIGHTS IN IRREDUCIBLE CYCLIC CODES

Since it is notoriously hard to determine the weight disiibs of the irrreducible cyclic codes, it would
be interesting to develop tight bounds on the weights irducible cyclic codes. Such tight bounds can
give information on the error-correcting capability of gdhtlass of cyclic codes. The objective of this
section is to develop such tight bounds.

Theorem 25. Let N be a positive divisor of — 1 and defineN; = ged((r —1)/(¢ — 1), N). Letmg be
the nultiplicative order of; modulon. Then the se€(r, N) in (@) is a[(¢™ — 1)/N, my] cyclic code over
GF(q) in which the weightv of every nonzero codeword satisfies that

-y [T

r+ (N — 1)\/7“JJ
qN '

wu(c(B)) =

wne®) < (1) [

In particular, if Ni(N; — 1) <r, thenmg = m.

Proof: The results of this theorem follow from Theorém 14 apd (11). [
The lower bound of Theorem 5 is tight whead((r — 1)/(¢ — 1), N) is small, and may not be tight
in some other cases. Whend((r —1)/(¢ — 1), N) = 1, the lower and upper bounds of Theorkn 25 are
the same, and they are indeed achieved as the code in thisscassonstant-weight code. Takle | lists
some experimental data, wherg k, d are the length, dimension and minimum nonzero weight of the
code.

TABLE |
THE LOWER BOUND OFTHEOREM[ZH

| n | k | d | q | lower bound of Thnﬁ5| I mod N

q—1

5 |14 2 2 2 0
21 | 6| 8 2 8 0
21 | 3] 12 | 27 12 0
85 | 4] 64 | 27 64 1
13 13| 9 3 9 1
40 | 4| 24 | 3 24 0

1211 5| 81 | 3 81 1
312 4| 240 | 5 236 0

XIl. SUMMERY AND OPEN PROBLEMS

The contributions of this paper include the following:

« A survey of earlier results on the weight distributions a&ducible cyclic codes.

« Extensions and generalizations of earlier results on thghtdistributions of irreducible cyclic codes
(Theorem$ 24, 22,16, 118,119,120, 21).

A complete characterization of one-weight irreducible licycodes (Theoreni_17), which is an
extension of the result in_[30].

« The weight divisibility of irreducible cyclic codes (Thean[15).

« A lower and upper bound on the weights in irreducible cycbdes (Theorerh 25).

« A property on Gaussian periods (Theorenm 14)

While it is hard to determine the weight distributions of thieeducible cyclic codes in general,
it is possible to solve this problem for other special casese open problem would be a simpler
characterization of two-weight irreducible cyclic codésr the one presented in [26] by Schmidt and
White.
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