Finding a subset of nonnegative vectors with a coordinatewise large sum

Ilya I. Bogdanov ${ }^{\text {a,b,* }}$, Grigory R. Chelnokov ${ }^{\text {b }}$
${ }^{a}$ Moscow Institute of Physics and Technology (State University), Institutsky per., 9, Dolgoprudny, Moscow reg., Russia 141700
${ }^{b}$ Laboratory of Discrete and Computational Geometry, Yaroslavl' State University, Sovetskaya st. 14, Yaroslavl', Russia 150000

Abstract

Given a rational $a=p / q$ and N nonnegative d-dimensional real vectors \mathbf{u}_{1}, \ldots, \mathbf{u}_{N}, we show that it is always possible to choose $(d-1)+\lceil(p N-d+1) / q\rceil$ of them such that their sum is (componentwise) at least $(p / q)\left(\mathbf{u}_{1}+\cdots+\mathbf{u}_{N}\right)$. For fixed d and a, this bound is sharp if N is large enough. The method of the proof uses Carathéodory's theorem from linear programming.

Keywords: subsum optimization, linear programming

1. Introduction

We deal with the d-dimensional real vector space \mathbb{R}^{d}; the vectors of the standard basis are denoted by $\mathbf{e}_{1}, \ldots, \mathbf{e}_{d}$. Introduce a coordinatewise partial order \succeq on \mathbb{R}^{d}; that is, for the vectors $\mathbf{u}=\left[u^{1}, \ldots, u^{d}\right]$ and $\mathbf{v}=\left[v^{1}, \ldots, v^{d}\right]$ we write $\mathbf{u} \succeq \mathbf{v}$ if $u^{j} \geq v^{j}$ for $1 \leq j \leq d$.

Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{N} \in \mathbb{R}^{d}$ be N nonnegative vectors (that is, $\mathbf{u}_{i} \succeq \mathbf{0}$ for $1 \leq$ $i \leq N)$, and let $a \in[0,1]$ be some real number. We say that a set of indices $I \subseteq\{1, \ldots, N\}$ is a-rich if

$$
\sum_{i \in I} \mathbf{u}_{i} \succeq a \sum_{i=1}^{N} \mathbf{u}_{i} .
$$

[^0]Let $f_{N, d}(a)$ be the minimal number f such that for every N nonnegative vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{N} \in \mathbb{R}^{d}$ there exists an a-rich set I with $|I| \leq f$. Further we consider only rational a and write $a=p / q$ with $q>0$ and $\operatorname{gcd}(p, q)=1$.

To find an upper bound for $f_{N, d}(a)$, one may use a theorem of Stromquist and Woodall [1] claiming that, given n non-atomic probability measures on S^{1}, there exists a union of $n-1$ arcs that has measure a in each measure. It can be performed as follows. Let $w^{j}=\sum_{i=1}^{N} u_{i}^{j}$; we may assume that $w_{j}>0$ for $1 \leq j \leq d$. Consider a segment $T=[0, N]$, identify its endpoints to obtain a circle of length N, and split it into unit segments. For $1 \leq i \leq N$ and $1 \leq j \leq d$, define a measure μ^{j} on segment $[i-1, i]$ as $\mu^{j}=u_{i}^{j} \mu / w^{j}$, where μ is the usual Lebesgue measure; set also $\mu^{d+1}=\mu / N$. By the theorem mentioned above, there exists a union of $d \operatorname{arcs} J \subseteq T$ such that $\mu^{j}(\mathcal{F})=a$ for $1 \leq j \leq d+1$. Now, one may define

$$
I=\{i: J \cap[i-1, i] \neq \varnothing\}
$$

This set is a-rich since

$$
\sum_{i \in I} u_{i}^{j}=w^{j} \mu^{j}\left(\bigcup_{i \in I}[i-1, i]\right) \geq w^{j} \mu^{j}(J)=a \sum_{i=1}^{n} u_{i}^{j}
$$

Moreover,

$$
|I| \leq \mu(J)+2 d=N \mu^{d+1}(J)+2 d=a N+2 d .
$$

Thus, $f_{N, d}(a) \leq a N+2 d$.
In an analogous way, one may apply a well-known Alon's theorem on splitting of necklaces [2] obtaining a bound

$$
f_{N, d}(p / q) \leq \frac{p}{q} \cdot N+\frac{p(q-p)}{q} \cdot d
$$

The bounds shown above are asymptotically tight. Nevertheless, they provide exact values of $f_{N, d}(p / q)$ only for some border cases. The aim of this paper is to find an exact value of $f_{N, d}(a)$ for every rational $a=p / q$, positive integer d and sufficiently large N. We use only the methods of linear programming.

The main result is the following theorem.
Theorem 1. For any positive integer numbers N, d and rational number $a=p / q \in[0,1]$, we have

$$
f_{N, d}(p / q) \leq(d-1)+\left\lceil\frac{p N-d+1}{q}\right\rceil .
$$

Moreover, if $q>p \geq 1$ and $N \geq(q-1)(d-1)$, then we have

$$
f_{N, d}(p / q)=(d-1)+\left\lceil\frac{p N-d+1}{q}\right\rceil .
$$

Throughout the rest of the paper, we use the notation $s=d-1$.
The next section contains the proof of the upper bound. Here we present an example showing that this bound is sharp if N is large enough.

Example 1. Choose an integer $r \in[1, q-1]$ such that $p r \equiv 1(\bmod q)$. Let $m=\lceil p r / q\rceil$ (hence $q m-p r=q-1$).

Let us set $\mathbf{u}_{i r-k}=\mathbf{e}_{i}$ for $1 \leq i \leq s$ and $0 \leq k \leq r-1$, and set $\mathbf{u}_{i}=\mathbf{e}_{d}$ for $i>r s$ (notice that $N \geq(q-1) s \geq r s)$. Denote $\mathbf{w}=\sum_{i=1}^{N} \mathbf{u}_{i}=$ $[r, r, \ldots, r, N-r s]$. Now, if $\sum_{i \in I} \mathbf{u}_{i} \succeq \frac{p}{q} \mathbf{w}$, then

$$
\sum_{i \in I} \mathbf{u}_{i} \succeq\left[m, m, \ldots, m,\left\lceil\frac{p}{q}(N-r s)\right\rceil\right]
$$

because all the coordinates of \mathbf{u}_{i} are integer. Thus, since the sum of coordinates of each vector is 1 , we should have

$$
|I| \geq m s+\left\lceil\frac{p}{q}(N-r s)\right\rceil=s+\left\lceil\frac{p N+s(q m-p r-q)}{q}\right\rceil=s+\left\lceil\frac{p N-s}{q}\right\rceil
$$

as desired.

2. Proof of the upper bound

Consider N vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{N} \in \mathbb{R}^{d}$ with nonnegative coordinates. Denote

$$
\mathbf{w}=\sum_{i=1}^{N} \mathbf{u}_{i}, \quad f=s+\left\lceil\frac{p N-s}{q}\right\rceil .
$$

We need to prove that there exists a set of indices I such that

$$
|I| \leq f \quad \text { and } \quad \sum_{i \in I} \mathbf{u}_{i} \succeq \frac{p}{q} \mathbf{w}
$$

We use induction on $p+q$. In the base cases $p+q \leq 2$ we have $a=0$ or $a=1$, and the statement is trivial.

Now, assume that $p+q \geq 3$, and assume that the statement of the theorem holds for all pairs $\left(p^{\prime}, q^{\prime}\right)$ with $p^{\prime}+q^{\prime}<p+q$. Introduce the following set:

$$
X_{p / q}=\left\{\mathbf{x} \in \mathbb{R}^{N}: \quad 0 \leq x_{i} \leq 1, \quad \sum_{i=1}^{N} x_{i} \mathbf{u}_{i}=\frac{p}{q} \mathbf{w}\right\}
$$

This set is closed and bounded; next, it is nonempty since $[p / q, \ldots, p / q] \in$ $X_{p / q}$. Moreover, this set is defined by $s+1$ linear equalities and some linear inequalities. By Carathéodory's theorem, there exists a vector $\mathbf{x}=$ $\left[x_{1}, \ldots, x_{N}\right] \in X_{p / q}$ such that $N-s-1$ of these inequalities come to equalities; that is, $N-s-1$ coordinates of \mathbf{x} are integer. Hence, either (i) at least $N-f$ coordinates are zeros, or (ii) at least $f-s$ coordinates are ones.

In case (i), denote $I=\left\{i: x_{i}>0\right\}$. We have $|I| \leq N-(N-f)=f$. On the other hand, we obtain

$$
\begin{equation*}
\sum_{i \in I} \mathbf{u}_{i} \succeq \sum_{i \in I} x_{i} \mathbf{u}_{i}=\sum_{i=1}^{N} x_{i} \mathbf{u}_{i}=\frac{p}{q} \mathbf{w} \tag{1}
\end{equation*}
$$

as desired.
In case (ii), define $J=\left\{i: x_{i}<1\right\}$, and let $N^{\prime}=|J|$. We have

$$
\begin{equation*}
\sum_{i \in J} \mathbf{u}_{i}=\mathbf{w}-\sum_{i \notin J} \mathbf{u}_{i} \succeq \mathbf{w}-\sum_{i=1}^{N} x_{i} \mathbf{u}_{i}=\frac{q-p}{q} \mathbf{w} \tag{2}
\end{equation*}
$$

Notice that in (11) and (2) we have used the condition that all the vectors \mathbf{u}_{i} are nonnegative.

Next, note that

$$
\begin{equation*}
N^{\prime}=|J| \leq N-f+s=N-\left\lceil\frac{p N-s}{q}\right\rceil \leq N-\frac{p N-s}{q}=\frac{(q-p) N+s}{q} . \tag{3}
\end{equation*}
$$

Renumbering the vectors we may assume that $J=\left\{1,2, \ldots, N^{\prime}\right\}$. Again, we distinguish two subcases: $\left(i i^{\prime}\right) q \geq 2 p$ and $\left(i i^{\prime \prime}\right) q<2 p$.

In case ($i i^{\prime}$), we apply the induction hypothesis to the vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{N^{\prime}}$ and the number $a^{\prime}=p /(q-p) \in[0,1]$. We obtain the subset $I \subseteq\left\{1, \ldots, N^{\prime}\right\}$ such that

$$
|I| \leq s+\left\lceil\frac{p N^{\prime}-s}{q-p}\right\rceil
$$

and

$$
\sum_{i \in I} \mathbf{u}_{i} \succeq \frac{p}{q-p} \sum_{i \in J} \mathbf{u}_{i}
$$

By (2), the last inequality yields

$$
\begin{equation*}
\sum_{i \in I} \mathbf{u}_{i} \succeq \frac{p}{q-p} \cdot \frac{q-p}{q} \mathbf{w}=\frac{p}{q} \mathbf{w} \tag{4}
\end{equation*}
$$

Next, by (3) we have

$$
p N^{\prime}-s \leq \frac{p}{q}((q-p) N+s)-s=\frac{q-p}{q}(p N-s),
$$

thus obtaining

$$
\begin{equation*}
|I| \leq s+\left\lceil\frac{1}{q-p} \cdot \frac{q-p}{q}(p N-s)\right\rceil=f \tag{5}
\end{equation*}
$$

The relations (4) and (5) show that I is a desired set of indices.
In case $\left(i i^{\prime \prime}\right)$, we apply the induction hypothesis to $N-N^{\prime}$ vectors $\mathbf{u}_{N^{\prime}+1}$, \ldots, \mathbf{u}_{N} and the number $a^{\prime}=(2 p-q) / p \in(0,1)$. We obtain the subset $I^{\prime} \subseteq\left\{N^{\prime}+1, \ldots, N\right\}$ such that

$$
\left|I^{\prime}\right| \leq s+\left\lceil\frac{(2 p-q)\left(N-N^{\prime}\right)-s}{p}\right\rceil
$$

and

$$
\sum_{i \in I^{\prime}} \mathbf{u}_{i} \succeq \frac{2 p-q}{p} \sum_{i=N^{\prime}+1}^{N} \mathbf{u}_{i}
$$

Now we claim that the subset $I=I^{\prime} \cup J$ satisfies the desired properties. Recall that by (2) we have

$$
\sum_{i=1}^{N^{\prime}} \mathbf{u}_{i}=\frac{q-p}{q} \mathbf{w}+\mathbf{w}^{\prime}
$$

for some vector $\mathbf{w}^{\prime} \succeq \mathbf{0}$. Hence

$$
\sum_{i=N^{\prime}+1}^{N} \mathbf{u}_{i}=\frac{p}{q} \mathbf{w}-\mathbf{w}^{\prime}
$$

and we obtain

$$
\begin{aligned}
\sum_{i \in I} \mathbf{u}_{i}=\sum_{i \in I^{\prime}} \mathbf{u}_{i}+\sum_{i \in J} \mathbf{u}_{i} \succeq \frac{2 p-q}{p}\left(\frac{p}{q} \mathbf{w}-\mathbf{w}^{\prime}\right) & +\left(\frac{q-p}{q} \mathbf{w}+\mathbf{w}^{\prime}\right) \\
& =\frac{p}{q} \mathbf{w}+\frac{q-p}{p} \mathbf{w}^{\prime} \succeq \frac{p}{q} \mathbf{w}
\end{aligned}
$$

We are left to show that $|I| \leq f$.
Recall that

$$
\begin{aligned}
|I|=|J|+\left|I^{\prime}\right| \leq N^{\prime}+s+\left\lceil\frac{(2 p-q)\left(N-N^{\prime}\right)-s}{p}\right\rceil \\
=s+\left\lceil\frac{(q-p) N^{\prime}+(2 p-q) N-s}{p}\right\rceil .
\end{aligned}
$$

So, it suffices to prove that

$$
\frac{(q-p) N^{\prime}+(2 p-q) N-s}{p} \leq \frac{p N-s}{q}, \quad \text { or } \quad q N^{\prime} \leq(q-p) N+s
$$

which is equivalent to (3). Thus I is a desired set.

Acknowledgements

The authors are grateful to Prof. V.L. Dolnikov and Prof. R.N. Karasev for useful discussions. The authors thank the referees for their valuable remarks.

References

[1] W. Stromquist and D. Woodall, Sets on which several measures agree, J. Math. Anal. Appl., 108, 1985, 241-248.
[2] N. Alon, Splitting of necklaces, Adv. in Math., 63(3), 1987, 247-253.

[^0]: ${ }^{2}$ Supported by the Russian government project 11.G34.31.0053.
 *Corresponding author
 Email addresses: ilya.i.bogdanov@gmail.com(Ilya I. Bogdanov), grishabenruven@yandex.ru (Grigory R. Chelnokov)

