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Abstract

Given a rational a = p/q and N nonnegative d-dimensional real vectors u1,
. . . , uN , we show that it is always possible to choose (d−1)+⌈(pN − d+ 1)/q⌉
of them such that their sum is (componentwise) at least (p/q)(u1+ · · ·+uN ).
For fixed d and a, this bound is sharp if N is large enough. The method of
the proof uses Carathéodory’s theorem from linear programming.
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1. Introduction

We deal with the d-dimensional real vector space R
d; the vectors of the

standard basis are denoted by e1, . . . , ed. Introduce a coordinatewise partial
order � on R

d; that is, for the vectors u = [u1, . . . , ud] and v = [v1, . . . , vd]
we write u � v if uj ≥ vj for 1 ≤ j ≤ d.

Let u1, . . . ,uN ∈ R
d be N nonnegative vectors (that is, ui � 0 for 1 ≤

i ≤ N), and let a ∈ [0, 1] be some real number. We say that a set of indices
I ⊆ {1, . . . , N} is a-rich if

∑

i∈I

ui � a

N
∑

i=1

ui.
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Let fN,d(a) be the minimal number f such that for every N nonnegative
vectors u1, . . . ,uN ∈ R

d there exists an a-rich set I with |I| ≤ f . Further we
consider only rational a and write a = p/q with q > 0 and gcd(p, q) = 1.

To find an upper bound for fN,d(a), one may use a theorem of Stromquist
and Woodall [1] claiming that, given n non-atomic probability measures
on S1, there exists a union of n−1 arcs that has measure a in each measure.
It can be performed as follows. Let wj =

∑N
i=1

uj
i ; we may assume that

wj > 0 for 1 ≤ j ≤ d. Consider a segment T = [0, N ], identify its endpoints
to obtain a circle of length N , and split it into unit segments. For 1 ≤ i ≤ N
and 1 ≤ j ≤ d, define a measure µj on segment [i − 1, i] as µj = uj

iµ/w
j,

where µ is the usual Lebesgue measure; set also µd+1 = µ/N . By the theorem
mentioned above, there exists a union of d arcs J ⊆ T such that µj(F) = a
for 1 ≤ j ≤ d+ 1. Now, one may define

I = {i : J ∩ [i− 1, i] 6= ∅} .

This set is a-rich since

∑

i∈I

uj
i = wjµj

(

⋃

i∈I
[i− 1, i]

)

≥ wjµj(J) = a

n
∑

i=1

uj
i .

Moreover,
|I| ≤ µ(J) + 2d = Nµd+1(J) + 2d = aN + 2d.

Thus, fN,d(a) ≤ aN + 2d.
In an analogous way, one may apply a well-known Alon’s theorem on

splitting of necklaces [2] obtaining a bound

fN,d(p/q) ≤
p

q
·N +

p(q − p)

q
· d.

The bounds shown above are asymptotically tight. Nevertheless, they
provide exact values of fN,d(p/q) only for some border cases. The aim of
this paper is to find an exact value of fN,d(a) for every rational a = p/q,
positive integer d and sufficiently large N . We use only the methods of linear
programming.

The main result is the following theorem.

Theorem 1. For any positive integer numbers N , d and rational number

a = p/q ∈ [0, 1], we have

fN,d(p/q) ≤ (d− 1) +

⌈

pN − d+ 1

q

⌉

.
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Moreover, if q > p ≥ 1 and N ≥ (q − 1)(d− 1), then we have

fN,d(p/q) = (d− 1) +

⌈

pN − d+ 1

q

⌉

.

Throughout the rest of the paper, we use the notation s = d− 1.

The next section contains the proof of the upper bound. Here we present
an example showing that this bound is sharp if N is large enough.

Example 1. Choose an integer r ∈ [1, q− 1] such that pr ≡ 1 (mod q). Let
m = ⌈pr/q⌉ (hence qm− pr = q − 1).

Let us set uir−k = ei for 1 ≤ i ≤ s and 0 ≤ k ≤ r − 1, and set ui = ed

for i > rs (notice that N ≥ (q − 1)s ≥ rs). Denote w =
∑N

i=1
ui =

[r, r, . . . , r, N − rs]. Now, if
∑

i∈I ui �
p
q
w, then

∑

i∈I

ui �

[

m,m, . . . ,m,

⌈

p

q
(N − rs)

⌉]

,

because all the coordinates of ui are integer. Thus, since the sum of coordi-
nates of each vector is 1, we should have

|I| ≥ ms+

⌈

p

q
(N − rs)

⌉

= s+

⌈

pN + s(qm− pr − q)

q

⌉

= s +

⌈

pN − s

q

⌉

,

as desired.

2. Proof of the upper bound

Consider N vectors u1, . . . ,uN ∈ R
d with nonnegative coordinates. De-

note

w =
N
∑

i=1

ui, f = s+

⌈

pN − s

q

⌉

.

We need to prove that there exists a set of indices I such that

|I| ≤ f and
∑

i∈I

ui �
p

q
w.

We use induction on p + q. In the base cases p + q ≤ 2 we have a = 0 or
a = 1, and the statement is trivial.
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Now, assume that p+q ≥ 3, and assume that the statement of the theorem
holds for all pairs (p′, q′) with p′ + q′ < p+ q. Introduce the following set:

Xp/q =

{

x ∈ R
N : 0 ≤ xi ≤ 1,

N
∑

i=1

xiui =
p

q
w

}

.

This set is closed and bounded; next, it is nonempty since [p/q, . . . , p/q] ∈
Xp/q. Moreover, this set is defined by s + 1 linear equalities and some
linear inequalities. By Carathéodory’s theorem, there exists a vector x =
[x1, . . . , xN ] ∈ Xp/q such that N − s− 1 of these inequalities come to equali-
ties; that is, N − s− 1 coordinates of x are integer. Hence, either (i) at least
N − f coordinates are zeros, or (ii) at least f − s coordinates are ones.

In case (i), denote I = {i : xi > 0}. We have |I| ≤ N − (N − f) = f . On
the other hand, we obtain

∑

i∈I

ui �
∑

i∈I

xiui =
N
∑

i=1

xiui =
p

q
w, (1)

as desired.

In case (ii), define J = {i : xi < 1}, and let N ′ = |J |. We have

∑

i∈J

ui = w−
∑

i/∈J

ui � w−

N
∑

i=1

xiui =
q − p

q
w. (2)

Notice that in (1) and (2) we have used the condition that all the vectors ui

are nonnegative.
Next, note that

N ′ = |J | ≤ N−f+s = N−

⌈

pN − s

q

⌉

≤ N−
pN − s

q
=

(q − p)N + s

q
. (3)

Renumbering the vectors we may assume that J = {1, 2, . . . , N ′}. Again, we
distinguish two subcases: (ii′) q ≥ 2p and (ii′′) q < 2p.

In case (ii′), we apply the induction hypothesis to the vectors u1, . . . ,uN ′

and the number a′ = p/(q−p) ∈ [0, 1]. We obtain the subset I ⊆ {1, . . . , N ′}
such that

|I| ≤ s+

⌈

pN ′ − s

q − p

⌉
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and
∑

i∈I

ui �
p

q − p

∑

i∈J

ui.

By (2), the last inequality yields

∑

i∈I

ui �
p

q − p
·
q − p

q
w =

p

q
w. (4)

Next, by (3) we have

pN ′ − s ≤
p

q

(

(q − p)N + s
)

− s =
q − p

q
(pN − s),

thus obtaining

|I| ≤ s+

⌈

1

q − p
·
q − p

q
(pN − s)

⌉

= f. (5)

The relations (4) and (5) show that I is a desired set of indices.

In case (ii′′), we apply the induction hypothesis to N −N ′ vectors uN ′+1,
. . . , uN and the number a′ = (2p − q)/p ∈ (0, 1). We obtain the subset
I ′ ⊆ {N ′ + 1, . . . , N} such that

|I ′| ≤ s+

⌈

(2p− q)(N −N ′)− s

p

⌉

and
∑

i∈I′

ui �
2p− q

p

N
∑

i=N ′+1

ui.

Now we claim that the subset I = I ′ ∪ J satisfies the desired properties.
Recall that by (2) we have

N ′

∑

i=1

ui =
q − p

q
w +w

′

for some vector w
′ � 0. Hence

N
∑

i=N ′+1

ui =
p

q
w −w

′,
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and we obtain

∑

i∈I

ui =
∑

i∈I′

ui +
∑

i∈J

ui �
2p− q

p

(

p

q
w−w

′

)

+

(

q − p

q
w +w

′

)

=
p

q
w +

q − p

p
w

′ �
p

q
w.

We are left to show that |I| ≤ f .
Recall that

|I| = |J |+ |I ′| ≤ N ′ + s+

⌈

(2p− q)(N −N ′)− s

p

⌉

= s+

⌈

(q − p)N ′ + (2p− q)N − s

p

⌉

.

So, it suffices to prove that

(q − p)N ′ + (2p− q)N − s

p
≤

pN − s

q
, or qN ′ ≤ (q − p)N + s,

which is equivalent to (3). Thus I is a desired set.
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