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ON PSEUDO-CONVEX PARTITIONS OF A PLANAR POINT SET

BHASWAR B. BHATTACHARYA AND SANDIP DAS

Abstract. Aichholzer et al. [Graphs and Combinatorics, Vol. 23, 481-507, 2007] introduced
the notion of pseudo-convex partitioning of planar point sets and proved that the pseudo-convex
partition number ψ(n) satisfies, 3

4
⌊n

4
⌋ ≤ ψ(n) ≤ ⌈n

4
⌉. In this paper we prove that ψ(13) = 3,

which immediately improves the upper bound on ψ(n) to ⌈ 3n

13
⌉, thus answering a question posed

by Aichholzer et al. in the same paper.

1. Introduction

In 1978 Erdős [4] asked whether for every positive integer k, there exists a smallest integer H(k),
such that any set of at least H(k) points in the plane, no three on a line, contains k points which
lie on the vertices of a convex polygon whose interior contains no points of the set. Such a subset is
called an empty convex k-gon or a k-hole. Esther Klein showed H(4) = 5 and Harborth [6] proved
that H(5) = 10. Horton [7] showed that it is possible to construct arbitrarily large set of points
without a 7-hole, proving that H(k) does not exist for k ≥ 7. Recently, after a long wait, the
existence of H(6) has been proved by Gerken [5] and independently by Nicolás [11]. Later Valtr
[14] gave a simpler version of Gerken’s proof.

Any two empty convex polygons are said to be disjoint if their convex hulls do not intersect.
Let H(k, ℓ), k ≤ ℓ denote the smallest integer such that any set of H(k, ℓ) points in the plane, no
three on a line, contains both a k-hole and a ℓ-hole which are disjoint. Clearly, H(3, 3) = 6 and
Horton’s result [7] implies that H(k, ℓ) does not exist for all ℓ ≥ 7. It is known that H(3, 4) = 7
[13], H(3, 5) = 10 [9], H(4, 4) = 9 [10], and H(4, 5) = 12 [3]. Recently, Hosono and Urabe [8]
showed that H(5, 5) ≥ 17, and Bhattacharya and Das [2] proved H(5, 5) ≤ 19.

The problem of partitioning planar point sets with disjoint holes was first addressed by Urabe
[13]. For any set S of points in the plane, denote the convex hull of S by CH(S), and cardinality of
S by |S|. Given a set S of n points in the plane, no three on a line, a disjoint convex partition of S
is a partition of S into subsets S1, S2, . . . St, with

∑t
i=1 |Si| = n, such that for each i ∈ {1, 2, . . . , t},

CH(Si) forms a |Si|-gon and CH(Si) ∩ CH(Sj) = ∅, for any pair of distinct indices i, j. Observe
that in any disjoint convex partition of S, the set Si forms a |Si|-hole and the holes formed by
the sets Si and Sj are disjoint for any pair of distinct indices i, j. Let κ(S) denote the minimum
number of disjoint holes in any disjoint convex partition of S. Define κ(n) = maxS κ(S), where the
maximum is taken over all sets S of n points. κ(n) is called the convex partition number for all
sets S of fixed size n, and it is bounded by ⌈n−1

4
⌉ ≤ κ(n) ≤ ⌈5n

18
⌉. The lower bound was given by

Urabe [13] and the upper bound by Hosono and Urabe [10]. The lower bound was later improved
to ⌈n+1

4
⌉ by Xu and Ding [15].

A pseudo-triangle is a simple polygon with exactly three vertices having interior angles less than
180◦, and is considered to be the natural counterpart of a convex polygon. These have been studied
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recently in the context of pseudo-triangulations, which are tessellation of the plane with pseudo-
triangles. They provide sparser tessellations than triangulations but retain many of the desirable
properties of triangulations. Pseudo-triangulations have received considerable attention in the last
few years for applications in areas like motion planning, collision detection, ray shooting, rigidity,
or visibility (refer to Rote et al. [12] for a survey of the different properties of pseudo-triangulations
and its various applications).

A pseudo-triangle with ℓ vertices is called a ℓ-pseudo-triangle, and a set is said to contain an
empty ℓ-pseudo-triangle if there exists a subset of ℓ points forming a pseudo-triangle which contains
no point of the set in its interior. Any two empty pseudo-triangles, or a hole and an empty pseudo-
triangle are said to be disjoint if their vertex sets as well as their interiors are disjoint. Recently,
Aichholzer et al. [1] introduced the problem of partitioning planar point sets with disjoint holes or
empty pseudo-triangles. Given a set S of n points in the plane, no three on a line, a pseudo-convex

partition of S is a partition of S into subsets S1, S2, . . . St, with
∑t

i=1 |Si| = n, such that for each
i ∈ {1, 2, . . . , t}, the set Si forms a |Si|-hole or a |Si|-pseudo-triangle, the holes or pseudo-triangles
formed by the sets Si and Sj are disjoint for any pair of distinct indices i, j. If ψ(S) denotes the
minimum number of disjoint holes or empty pseudo-triangles in any pseudo convex partition of S,
then the pseudo-convex partition number is defined as ψ(n) = maxS ψ(S), where the maximum is
taken over all sets S of n points.

Aichholzer et al. [1] showed that the pseudo-convex partition number ψ(n) satisfies: 3

4
⌊n
4
⌋ ≤

ψ(n) ≤ ⌈n
4
⌉. The upper bound follows from the simple observation that every set of 4 points forms

either an 4-hole or an empty 4-pseudo-triangle. In fact, using computer-aided search, Aichholzer et
al. [1] obtained bounds on the pseudo-convex partition number ψ(n) for small point sets. However,
they were unable to find the exact value of ψ(13), and mentioned the possibility of a non-trivial
upper bound on ψ(n) by conjecturing that ψ(13) = 3. In this paper, we answer this question
in the affirmative, thus proving that ψ(n) ≤ ⌈3n

13
⌉. Our proof is geometric and does not rely on

computer-aided search over the order type database. We identify a number of simple necessary
conditions that allows the desired partitioning, and then proceed to show that each set of 13 points
must satisfies one of these conditions.

2. Notations and Definitions

We first introduce the definitions and notations required for the remaining part of the paper. Let
S be a finite set of points in the plane in general position, that is, no three on a line. Denote the
convex hull of S by CH(S). The boundary vertices of CH(S), and the points of S in the interior

of CH(S) are denoted by V(CH(S)) and Ĩ(CH(S)), respectively. A region R in the plane is said
to be empty in S if R contains no elements of S in its interior. Moreover, for any set T , |T | denotes
the cardinality of T .

By P := p1p2 . . . pm we denote the region bounded by the simple polygon with vertices {p1, p2, . . . , pm}
ordered anti-clockwise. Let V(P) denote the set of vertices {p1, p2, . . . , pm} and I(P) the interior
of P. A finite set of points Z is said to span a simple polygon P if V(P) = Z.

The j-th convex layer of S, denoted by L{j, S}, is the set of points that lie on the boundary of

CH(S\{
⋃j−1

i=1
L{i, S}}), where L{1, S} = V(CH(S)). If p, q ∈ S are such that pq is an edge of the

convex hull of the j-th layer, then the open halfplane bounded by the line pq and not containing

any point of S\{
⋃j−1

i=1
L{i, S}} will be referred to as the outer halfplane induced by the edge pq

(see Figure 1(a)).
For any three points p, q, r ∈ S, H(pq, r) (respectively Hc(pq, r)) denotes the open (respectively

closed) halfplane bounded by the line pq containing the point r. Similarly, H(pq, r) (respectively
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Figure 1. (a) Convex layers and outer halfplane, and (b) Cone and nearest angular
neighbors.

Hc(pq, r)) is the open (respectively closed) halfplane bounded by pq not containing the point r.
Moreover, if ∠rpq < π, Cone(rpq) denotes the interior of the angular domain ∠rpq. A point
s ∈ Cone(rpq)∩ S is called the nearest angular neighbor of −→pq in Cone(rpq) if Cone(spq) is empty
in S. Similarly, for any convex region R a point s ∈ R ∩ S is called the nearest angular neighbor of
−→pq in R if Cone(spq) ∩ R is empty in S. More generally, for any positive integer k, a point s ∈ S
is called the k-th angular neighbor of −→pq whenever Cone(spq) ∩ R contains exactly k − 1 points of
S in its interior (see Figure 1(b)).

3. Pseudo-Convex Partitioning

Aichholzer et al. [1] showed that ψ(n) ≤ ⌈n
4
⌉. They also observed that 3 ≤ ψ(13) ≤ 4, and

mention the possibility of a better upper bound of ⌈3n
13
⌉ on ψ(n) by conjecturing that ψ(13) = 3.

In the following theorem we settle this conjecture in the affirmative.

Theorem 3.1. Every set of 13 points in the plane, in general position, can be partitioned into three

sets each of which span either a hole or an empty pseudo-triangle which are mutually disjoint. In

other words, ψ(13) = 3.

Theorem 3.1 immediately establishes a non-trivial upper bound on ψ(n), as suggested by Aich-
holzer et al. [1]:

Theorem 3.2. ψ(n) ≤ ⌈3n
13
⌉.

Proof. Let S be a set of n points in the plane, no three of which are collinear. By a horizontal
sweep we can divide the plane into ⌈ n

13
⌉ disjoint strips, of which ⌊ n

13
⌋ contain 13 points each and

one remaining strip R, with |R| < 13. The strips having 13 points, can be partitioned into three

disjoint holes or empty pseudo-triangles by Theorem 3.1. Since |R| < 13, at most ⌈3|R|
13

⌉ disjoint

holes or empty pseudo-triangles are needed to partition R, thus proving that ψ(n) ≤ ⌈3n
13
⌉. �

4. Proof of Theorem 3.1

Let S be a set of 13 points in the plane in general position. A partition of S into three disjoint
subsets S1, S2, S3 is called admissible if each Si, i ∈ {1, 2, 3}, is either empty or it forms an |Si|-hole
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or empty |Si|-pseudo-triangle, such that the holes or pseudo-triangles formed by the sets Si and Sj
are disjoint for any pair of distinct indices i 6= j. The set S is said to be admissible if there exists
an admissible partition of S. To prove Theorem 3.1 we need to exhibit an admissible partition of
S, for all sets of 13 points in the plane, in general position.

Observe that any set of 4 points in the plane always spans a convex quadrilateral or a 4-pseudo-
triangle. Hence, we have the following observation.

Observation 1. For every integer k ≥ 1, we have ψ(4k) ≤ k. ✷

Observation 2. S is admissible if some outer halfplane induced by an edge of the second convex
layer contains more than two points of V(CH(S)).

Proof. Suppose some outer halfplane induced by an edge of the second layer contains more than two
points of V(CH(S)). This means that there exists two points p, q ∈ S, such that the line segment
pq is an edge of the second convex layer and |H(pq, r) ∩ S| ≥ 3, where r ∈ L{2, S}\{p, q}. Then
Hc(pq, r) ∩ S spans a k-hole, with k ≥ 5. The remaining eight points of S all lie in the halfplane
H(pq, r). As |H(pq, r) ∩ S| ≤ 8, the points in H(pq, r) ∩ S can be partitioned using at most two
disjoint holes or empty pseudo-triangles. �

si−1 si

si+1

p

(a)

CH(S)

α

s1

s2 s3

(b)

a points b points

Cα(s1, s2) Cα(s1, s3)

a points

b′ pointsα

s1

s2

s3
s4

s5

s6

(c)

Figure 2. Illustration for the proof of (a) Observation 3, (b) Observation 4, and
(c) Observation 5.

Observation 3. Let V(CH(S)) = {s1, s2, . . . , sk}, with the vertices in counter-clockwise order. If
there exists a point si ∈ V(CH(S)), such that |I(si−1sisi+1) ∩ S| ≥ 2, then S is admissible, where
the indices are taken modulo k.

Proof. Suppose |I(si−1sisi+1) ∩ S| = a ≥ 2, for some i = 1, 2, . . . , k. Let p ∈ S be the first
angular neighbor of −−−→si−1si in Cone(sisi−1si+1). Let Z = (Hc(si−1si+1, si)∩S)\{p, si}, and suppose
V(CH(Z)) = {si−1, z1, . . . , zb, si+1}. As a ≥ 2, b ≥ 1, and si+1z1 . . . zbsi−1psi is an empty ℓ-pseudo-
triangle with ℓ ≥ 5. Let S′ = S\{si+1, z1, . . . , zb, si−1, p, si}, that is, the points of S without the
points of the considered ℓ-pseudo-triangle. As |S′| ≤ 8 and CH(S′) does not intersect the ℓ-pseudo-
triangle, S′ can be partitioned using at most two holes or empty pseudo-triangles from Observation
1. �

Observation 4. S is admissible if there exists three distinct points s1, s2, s3 ∈ S satisfying the
following two conditions:
(A) |(H(s1s2, s3) ∩H(s1s3, s2)) ∩ S| = 0 and |H(s2s3, s1) ∩ S| = 0.
(B) |H(s1s2, s3) ∩ S| ≤ 4 and |H(s1s3, s2) ∩ S| ≤ 4.
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Proof. Let |H(s1s2, s3)∩S| = a ≤ 4 and |H(s1s3, s2)∩S| = b ≤ 4. Then, |I(s1s2s3)∩S| = 10−(a+b).
Then, there exists a point α /∈ S on the line segment s2s3 such that |I(s1s2α) ∩ S| = 5 − a and
|I(s1s3α) ∩ S| = 5 − b (see Figure 2(b)). Let Cα(s1, s2) = CH({I(s1s2α) ∩ S} ∪ {s1, s2}) and
Cα(s1, s3) = CH({I(s1s3α) ∩ S} ∪ {s1, s3}). Now, since both a, b ≤ 4, we have |V(Cα(s1, s2))| ≥ 3
and |V(Cα(s1, s3))| ≥ 3. Thus, S1 = V(Cα(s1, s2))∪V(Cα(s1, s3)) spans an empty ℓ-pseudo-triangle,
with ℓ ≥ 5. Moreover, both S2 = I(Cα(s1, s2)) ∪ {H(s1s2, s3) ∩ S}, and S3 = I(Cα(s1, s3)) ∪
{H(s1s3, s2)∩S} lie inside two disjoint convex regions containing at most 4 points each. Therefore,
the partition S = S1 ∪ S2 ∪ S3 is admissible. �

If there exist three distinct points s1, s2, s3 ∈ S satisfying conditions (A) and (B) of Observation
4, then the three points are said to form a heart with the line segment s2s3 as base and the
point s1 as pivot. The set S is admissible if any three of its points form a heart. Observe that if
s1, s2, s3 ∈ V(CH(S)) and some edge of the triangle s1s2s3 is also an edge of CH(S), then condition
(A) is automatically satisfied. In such cases, s1, s2, s3 form a heart whenever condition (B) holds.

Equipped with the above three observations, we now proceed to prove the admissibility of S.
The proof of the admissibility of S is presented in three separate sections. The first section deals
with the cases |CH(S)| ≤ 5, the second section with the case |CH(S)| = 6, and the third considers
the cases |CH(S)| ≥ 7.

Let V(CH(S)) = {s1, s2, . . . , sk}, with the vertices taken in the counter-clockwise order. While
indexing a set of points from V(CH(S)), we identify indices modulo k.

4.1. |CH(S)| ≤ 5.

Lemma 4.1. S is admissible whenever |CH(S)| ≤ 5.

Proof. Observe that if |CH(S)| = 3, then the admissibility of S is a direct consequence of Obser-
vation 3. Now, we consider the following two cases based on the size of |CH(S)|:

Case 1: |CH(S)| = 4. This implies that |Ĩ(CH(S)| = 9. Therefore, |I(s2s3s4) ∩ S| ≥ 2 or
|I(s1s2s4) ∩ S| ≥ 2. The admissibility of S then follows from Observation 3.

Case 2: |CH(S)| = 5. Suppose that |I(s1s2s3) ∩ S| = a, and |I(s1s4s5) ∩ S| = b. If a ≥ 2
or b ≥ 2, the admissibility of S is guaranteed from Observation 3. Therefore, assume that
both a, b ≤ 1. This implies that |H(s1s3, s4) ∩ S| ≤ 2 and |H(s1s4, s3) ∩ S| ≤ 2. Thus,
the three points s1, s3, s4 satisfy Conditions (A) and (B) of Observation 4 and form a heart

with s3s4 as base and s1 as pivot. Thus, the admissibility of S follows.

�

4.2. |CH(S)| = 6. For any i ∈ {1, 2, 3}, the diagonal d := sisi+3 of the hexagon s1s2s3s4s5s6 is

called an (a, b)−splitter of CH(S), where a ≤ b are integers, if either |H(sisi+3, si+1)∩Ĩ(CH(S))| =

a and |H(sisi+3, si+1)∩ Ĩ(CH(S))| = b, or |H(sisi+3, si+1)∩ Ĩ(CH(S))| = a and |H(sisi+3, si+1)∩

Ĩ(CH(S))| = b.
We now have the following observation:

Observation 5. If any one of the three diagonal s2s5, s1s4, and s3s6 is not a (3, 4)-splitter of
CH(S), then S is admissible.

Proof. It suffices to prove that S is admissible whenever s2s5 is not a (3, 4)-splitter of CH(S).
Suppose the diagonal s2s5 is a (a, b)-splitter of CH(S), with a ≤ 2, and b ≥ 5. Refer to Figure
2(c). W.l.o.g. assume that |I(s1s2s5s6) ∩ S| = a and |I(s2s3s4s5) ∩ S| = b. Now, since b ≥ 5, by
the pigeon-hole principle, either I(s2s3s5) or I(s3s4s5) contains at least 3 points of S. However,
if |I(s3s4s5) ∩ S| ≥ 2, then Observation 3 guarantees the admissibility of S. Therefore, assume
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that |I(s3s4s5) ∩ S| = b′ ≤ 1. This implies that |H(s5s3, s2) ∩ S| ≤ 2 and |H(s5s2, s3) ∩ S| ≤ 4,
and the three points s2, s3, s5 form a heart with s2s3 as base and s5 as pivot (see Figure 2(c)). The
admissibility of S thus follows from Observation 4. �

In light of Observation 5, it suffices to assume that the three diagonals s2s5, s1s4, and s3s6 are
(3, 4)-splitters of CH(S). Consider the partition of the interior of CH(S) by the three diagonals
into 7 disjoint regions Ri as shown in Figure 3(a). Let |Ri| denote the number of points of S inside
region Ri.

Now, we have the following observation:

s1

s2

s3 s4

s5

s6

q1

q2
R1

R2

R3

R4

R5

R6

R7

CH(S)

α11α12 α21α22

(a)

s1

s2

s3
s4

s5

s6

qi = p

R2

R3

R4

R5

R6

R7

CH(S)

αi1αi2

(b)

UiVi

Empty

Figure 3. Every diagonal of CH(S) forms a (3, 4)-splitter of the hexagon
s1s2s3s4s5s6: (a) Illustration for the proof of Observation 6, (b) The points p, s3, s4
form a heart with s3s4 as base and p as pivot.

Observation 6. If |R4| + |R7| ≥ 2 and |R1| ≥ 1, then there exists a point p ∈ R1 ∩ S such that
the three points p, s3, s4 form a heart with s3s4 as base with p as pivot.

Proof. Let |R4| + |R7| = a ≥ 2. Now, since both the diagonals s1s4 and s3s6 are (3, 4)-splitters
of CH(S), we have |R2| + |R3| = b ≤ 2, |R5| + |R6| = b′ ≤ 2, and |R1| + |R5| + |R6| ≥ 3. Let
q1 ∈ R1∩S be the (3−b)-th angular neighbor of −−→s3s6 in R1. Let U1 = (Cone(q1s3s4)\I(q1s3s4))∩S
and V1 = H(s3q1, s2) ∩ S, and α11 and α12 are the points where the rays −−→s3q1 and −−→s4q1 intersect
the boundary CH(S), respectively (Figure 3(a)). Therefore, |U1| ≤ 4 and |V1| ≤ 4. Now, if
Cone(α11q1α12) ∩ S is empty, then q1(= p) and the result follows.

Otherwise, suppose that Cone(α11q1α12) ∩ S is non-empty. Let q2 ∈ R1 ∩ S be the nearest
angular neighbor of −−→s3q1 in Cone(α11q1α12). Let α21 and α22 be the points where the rays −−→s3q2
and −−→s4q2 intersect the boundary CH(S), respectively. Define, U2 = (Cone(q2s3s4)\I(q2s3s4)) ∩ S
and V2 = H(s3q2, s2) ∩ S. Observe that U2 ⊆ U1 and V2 ⊆ V1, and hence, |U2| ≤ 4 and |V2| ≤ 4.
Therefore, if Cone(α21q2α22) ∩ S is empty, then q2(= p) is the required point.

If Cone(α21q2α22) ∩ S is non-empty, we repeat the same procedure again, until we get a point
p (= qi) ∈ R1 ∩ S with |Ui| ≤ 4, |Vi| ≤ 4, and |Cone(αi1qiαi2) ∩ S| = 0, where qi is the nearest
angular neighbor of −−−→s3qi−1 in R1 ∩ S, Ui = (Cone(qis3s4)\I(qis3s4)) ∩ S, Vi = H(s3qi, s2) ∩ S, and
αi1 and αi2 are the points where the rays −−→s3qi and

−−→s4qi intersect the boundary CH(S), respectively
(see Figure 3(b)). �

The admissibility of S when |CH(S)| = 6 is now proved by considering the following three cases:
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Case 1: |R4|+ |R7| ≥ 2 and |R1| ≥ 1. In this case, Observation 6 guarantees the existence of
a point p ∈ R1 ∈ S such that the three points p, s3, s4 form a heart with s3s4 as base and p
as pivot (see Figure 3(b)).

Case 2: |R4| + |R7| ≥ 2 and |R1| = 0. This implies that |R2| + |R3| ≤ 2, since s1s4 is a
(3, 4)-splitter of CH(S). Thus, |R1| + |R2| + |R3| ≤ 2, which contradicts the assumption
that diagonal s3s6 is a (3, 4)-splitter of CH(S).

Case 3: If the previous two cases do not hold, then by symmetry we must have |R2|+|R7| ≤ 1,
|R4|+ |R7| ≤ 1, and |R6|+ |R7| ≤ 1. Therefore, |R2|+ |R4|+ |R6|+ |R7| ≤ 3 which implies
that |R1| + |R3| + |R5| ≥ 4. By the pigeon-hole principle, one of the three regions R1,
R3, and R5 contains at least two points S. W.l.o.g., assume |R1| ≥ 2. This implies that
|R2| + |R3| ≤ 2, and hence |R4| + |R7| ≥ 1. Combining this with the given inequality we
get, |R4| + |R7| = 1, |R2| + |R3| = 2, and |R1| = 2. For {p} ∈ (R4 ∪ R7) ∩ S, the three
points s1, p, s6 form a heart with s1s6 as base and p as pivot.

4.3. |CH(S)| = 7. In this section we proof the admissibility of S when |CH(S)| = 7. As before
assume that L{2, S} = {p1, p2, . . . , pm}, where the vertices are taken in counter-clockwise order,
and the indices are to be identified modulo m.

Lemma 4.2. S is admissible whenever |CH(S)| = 7.

Proof. If |L{2, S}| = 3, the admissibility of S follows easily from Observation 2. Therefore, 4 ≤
|L{2, S}| ≤ 6. We consider these three cases separately as follows:

p2 p3

p4

p

p1

R1

R2

(a)

R3

R4

z

p2

p3 p4

p

p1

R1

R2

R3

(b)

p5

R4

R5

R

p2

p3 p4

p

p1
R1

R2

R3

(c)

p5

R4

R5

β

Figure 4. Illustration for the proof of Lemma 4.2: (a) |L{2, S}| = 4, (b)
|L{2, S}| = 5 and p ∈ R, and(c) |L{2, S}| = 5 and p /∈ R.

Case 1: |L{2, S}| = 4. Let R1, R2, R3, R4 be the 4 shaded regions outside the second convex
layer, as shown in Figure 4(a). Note that if |R1| + |R3| ≤ 2, then S2 = ((R1 ∪ R3) ∩ S) ∪
L{3, S}, and forms a convex quadrilateral or a 4-pseudo-triangle. Hence, S1 = Hc(p1p4, p2)∩
S, S2, and S3 = Hc(p2p3, p1)∩S is an admissible partition of S. Therefore, we may assume

that |R1|+ |R3| ≥ 3, and, by symmetry, |R2|+ |R4| ≥ 3. As
∑4

i=1 |Ri| ≤ 7, one of the above
inequalities must be an equality. W.l.o.g. assume |R2|+|R4| = 3. Moreover, by Observation
2 it suffices to assume that |R2| = 1 and |R4| = 2, and let p ∈ L{3, S}, be the nearest angular
neighbor of −−→p2p3 inside the second convex layer. Then S2 = (R4 ∩ S) ∪ {p2, p3, p} spans a
5-hole. If R2 ∩ S = {z}, then depending on the position of the point q ∈ L{3, S}, either
|Cone(zpp2)∩S| = 4 or |Cone(zpp3)∩S| = 4. Therefore, the partition S1 = Cone(zpp2)∩S,
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S2 and S3 = (Cone(zpp3) ∩ S) ∪ {z} or the partition S1 = (Cone(zpp2) ∩ S) ∪ {z}, S2 and
S3 = (Cone(zpp3) ∩ S) is admissible for S, respectively.

Case 2: |L{2, S}| = 5. Let L{3, S} = {p} and consider the partition of the exterior of the sec-
ond convex layer into disjoint regions Ri = Cone(pippi+1)\I(pippi+1), for i ∈ {1, 2, 3, 4, 5}.
Let R be shaded region inside the second convex layer as shown in Figure 4(b).

Case 2.1: p ∈ R. Observe that
∑5

i=1 |Ri| = 7 and by Observation 2 for every i ∈
{1, 2, 3, 4, 5}, |Ri| ≤ 2. Therefore, w.l.o.g. assume |R1| = 2 (Figure 4(b)). If |R2| +
|R3| = 2 and |R4|+|R5| = 3, then S1 = (R1∩S)∪{p, p1, p2}, S2 = Cone(p1pp4)∩S, and
S3 = (Cone(p2pp4)∩S)∪{p4} is an admissible partition of S. Similarly, for |R2|+|R3| =
3 and |R4|+ |R5| = 2. Otherwise, either R2 ∪R3 or R4 ∪R5 has more than 3 points of
S. W.l.o.g., assume that |R2|+ |R3| ≥ 4. Observation 2 implies that |R2| = |R3| = 2,
and either the partition S1 = (R2 ∩S)∪{p, p2, p3}, S2 = Cone((p2pp5)∩S)∪{p5} and
S3 = Cone(p3pp5)∩S or the partition S1 = (R2∩S)∪{p, p2, p3}, S2 = Cone(p2pp5)∩S
and S3 = (Cone(p3pp5) ∩ S) ∪ {p5}, is admissible for S.

Case 2.2: p /∈ R. W.l.o.g. let p ∈ I(p1p2p5). If |R1|+ |R5| ≤ 3, then S2 = ((R1 ∪ R5) ∩
S) ∪ {p1} spans a |S2|-hole or an empty |S2|-pseudo-triangle. Moreover, S1 = ((R2 ∪
R4)\H(p3p4, p1)) ∩ S) ∪ {p, p2, p3, p4, p5} spans a |S1|-hole. Therefore, the partition
of S given by S1, S2, and S3 = H(p3p4, p1) ∩ S is admissible. Otherwise, |R1| +
|R5| ≥ 4, which implies that |R1| = |R5| = 2, from Observation 2. If |R2| = 0,
then S2 = (R5 ∩ S) ∪ {p, p1, p5} forms a 5-hole and an admissible partition of S is
given by S1 = (Cone(p1pp3) ∩ S) ∪ {p3}, S2, and S3 = Cone(p5pp3) ∩ S. Therefore,
assume that |R2| ≥ 1. Then there exists a point β /∈ S on the line segment p2p3
such that |Cone(p1pβ)∩S| = |Cone(p5pβ)∩S| = 4 (see Figure 4(c)), and the partition
S1 = (R5∩S)∩{p, p1, p5}, S2 = Cone(p1pβ)∩S, and S3 = Cone(p5pβ)∩S is admissible.

Case 3: |L{2, S}| = 6. Consider the subdivision of the exterior of the second convex layer
into 12 regions Ri as shown in Figure 5(a). Note that the regions Ri and Ri+2, for
i ∈ {2, 4, 6, 8, 10, 12} might intersect. Observation 2 implies that S is admissible unless

|
⋃2

b=0Ri+b| ≤ 2, for i ∈ {2, 4, 6, 8, 10, 12}. Adding these inequalities and using the fact that

|
⋃12

b=1Rb| = 7, we get |R1|+ |R3|+ |R5|+ |R7|+ |R9|+ |R11| ≥ 2. This implies that for some
i ∈ {1, 3, 5, 7, 9, 11}, |Ri| 6= 0. W.l.o.g. assume that |R7| 6= 0. Let Z1 = H(p4p6, p5)∩ S and
Z2 = H(p1p3, p2) ∩ S. From Observation 2 we know |Z1| ≤ 5 and |Z2| ≤ 5.

Case 3.1: |R7| = 2. If both |Z1|, |Z2| ≤ 4, then S2 = ((R1 ∪ R7) ∩ S) ∪ {p1, p3, p4, p6}
forms a 6-hole, and the partition S1 = Z1, S2, and S3 = Z3 is an admissible partition
of S. Next, assume that |Z1| = 5 and |Z2| = 2. As |R7| = 2, |R6| = |R8| = 0 by
Observation 2. Moreover, as |Z1| = 5, |R9| 6= 0. If |R9| = 2, then the partition S1 =
((R3∪R9)∩S)∪{p1, p2, p4, p5}, S2 = H(p2p4, p3)∩S, and S3 = H(p1p5, p6)∩S is admissible.
Otherwise, |R9| = 1 and |H(p5p6, p1) ∩ S| = 3. The admissibility of S then follows from
Observation 2.

Case 3.2: |R7| = 1. In fact, by symmetry and Case 3.1 we can assume that |Ri| ≤ 1 for
all i ∈ {1, 3, 5, 9, 11}. If |Z1| = |Z2| = 4, the partition S1 = Z1, S2 = ((R1 ∪ R7) ∩ S) ∪
{p1, p3, p4, p6}, S3 = Z2 is admissible for S. Therefore, assume that |Z1| = 5 and |Z2| = 3.
If |R8|+ |R9| ≤ 1, then |H(p5p6, p1) ∩ S| ≥ 3 and admissibility follows from Observation 2.
As |R9| ≤ 1 by assumption, this implies that |R8| = |R9| = 1. Therefore, |R10| = 0.
Case 3.2.1: |R11| = |R12| = 1. In this case the partition of S given by S1 = ((R11∪R5)∩
S) ∪ {p2, p3, p5, p6}, S2 = H(p2p6, p1) ∩ S, and S3 = H(p3p5, p4) ∩ S is admissible.

Case 3.2.2: |R11| = 0 and |R12| = 2. Then |R1| = |R2| = 0.



ON PSEUDO-CONVEX PARTITIONS OF A PLANAR POINT SET 9

Case 3.2.2.1: |R3| = 1. Then the admissible partition of S is given by S1 =
((R9 ∪R3)∩S)∪{p1, p2, p4, p5}, S2 = H(p1p5, p6)∩S, and S3 = H(p2p4, p3)∩S.

Case 3.2.2.2: |R3| = 0 but |R5| = 1. Then S1 = ((R11 ∪R5)∩S)∪ {p2, p3, p5, p6},
S2 = H(p2p6, p1) ∩ S, and S3 = H(p3p5, p4) ∩ S is admissible.

Case 3.2.2.3: |R3| = |R5| = 0 and |R4| = 2. Observation 2 then implies that
|R5| = |R6| = 0 and |H(p2p3, p6) ∩ R7 ∩ S| = 0. Therefore, S2 = R7 ∪ R8 ∪
{p2, p3, p4} forms a 5-hole, which together S1 = R4 ∪ {p1, p6}, and S3 = R9 ∪
R12 ∪ {p5} forms an admissible partition.

�

4.4. |CH(S)| = 8. In this section we proof the admissibility of S when |CH(S)| = 8. As before
assume that L{2, S} = {p1, p2, . . . , pm}, where the vertices are taken in counter-clockwise order,
and the indices are to be identified modulo m.

Lemma 4.3. S is admissible whenever |CH(S)| = 8.

Proof. If |L{2, S}| = 3 and none of the outer halfplanes induced by the three edges of the second
convex layer contains more than two points of V(CH(S)), then |V(CH(S))| ≤ 2×3 < 8. Therefore,
it suffices to assume that 4 ≤ |L{2, S}| ≤ 5.

p2

p3 p4

p1

R1

R2

R3

(a)

p5
R4

R7

p6

R8

R9

R10

R5

R6

R11

R12

p2 p3

p4

p

p1

R1

R2

(b)

α

β

R3

R4

p2

p3 p4

p1

R1

R2

R3

(c)

p5

R4

R5

R8

R7

R6

R10

R9

R′

2

Figure 5. Illustration for the proof of Lemma 4.2 with |L{2, S}| = 6, and Illustra-
tion for the proof of Lemma 4.3: (b) |L{2, S}| = 4, (c) |L{2, S}| = 5.

Case 1: |L{2, S}| = 4. Let L{3, S} = {p}, and R1, R2, R3, R4 be the 4 shaded regions outside
the second convex layer as shown in Figure 5(b). Note that if |R1| + |R3| ≤ 3, then
S2 = ((R1 ∪ R3) ∩ S) ∪ {p} forms a convex quadrilateral or a 4-pseudo-triangle. Hence,
S1 = Hc(p1p4, p2) ∩ S, S2, and S3 = Hc(p2p3, p1) ∩ S is an admissible partition of S.
Therefore, we may assume that |R1| + |R3| ≥ 4 and |R2| + |R4| ≥ 4. This implies that

|R1| = |R2| = |R3| = |R4| = 2, as
∑4

i=1 |Ri| ≤ 8. Let α be the point of intersection of
the diagonals of the quadrilateral p1p2p3p4. W.l.o.g., assume that p ∈ I(p2p3α). Then the
points p, p2, p3 and along with two points in R4 ∩ S form a 5-hole. The remaining 8 points
can be partitioned into two disjoint convex regions with 4 points each, because there exists a
point β on the line segment p1p4 such that |Cone(βαp2)∩S| = 4 and |Cone(βαp3)∩S| = 4
(see Figure 5(b)).

Case 2: |L{2, S}| = 5. Consider the partition of the exterior of the second convex layer into
regions Ri’s as shown in Figure 5(c). Observation 2 implies that S is admissible unless
|Ri| + |Ri+1| + |Ri+2| ≤ 2, for i ∈ {1, 3, 5, 7, 9}. Adding these 5 inequalities and using the
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fact that
∑10

i=1 |Ri| = 8 we get, |R1| + |R3| + |R5| + |R7| + |R9| ≤ 2, that is, |R2| + |R4|+
|R6| + |R8|+ |R10| ≥ 6. Therefore, one of these 5 regions must contain exactly two points
of V(CH(S)). W.l.o.g., assume that |R2| = 2. Let Z1 = {H(p3p5, p4)\R7}∩V(CH(S)) and
Z2 = {H(p3p1, p2)\R7} ∩ V(CH(S)).
Case 2.1: |R7| ≥ 1. We have |R5|+ |R6| ≤ 1 and |R8|+ |R9| ≤ 1. Therefore, |Z1∪{p4}| =
a1 ≤ 4 and |Z2 ∪ {p2}| = a2 ≤ 4. Now, |R7| = 6 − (a1 + a2) and there exists a point
α ∈ R7\S such that both Cone(αp3p1)∩ S and Cone(αp3p5)∩ S contain 4 points and
{p1, p3, p5} ∪ (R2 ∩ V(CH(S))) spans a 5-hole. Therefore, S is admissible.

Case 2.2: |R7| = 0. Let R′
2 = H(p4p5, p1) ∩ R2. We know that |Z1| ≤ 4, |Z2| ≤ 4, and

|Z1| + |Z2| = 6. If |Z1| = |Z2| = 3, the partition S1 = Z1 ∪ {p4}, S2 = Z2 ∪ {p2},
and S3 = (R2 ∩ S) ∪ {p1, p3, p5} is admissible. Otherwise, either |Z1| = 4 or |Z2| = 4.
W.l.o.g. let |Z1| = 4. This implies that |R6| = 2, |R3| + |R4| = 2 and |R′

2| = 0. Let
si ∈ S be the first angular neighbor of −−→p1p3 in R6. Then set {p1, p5, si} ∪ (R2 ∩ S)
spans a 5-hole and the admissibility of S follows.

�

4.5. |CH(S)| = 9. The proof of Theorem 3.1 can now be completed with the following simple
observation:

Observation 7. S is admissible whenever |CH(S)| ≥ 9.

Proof. Let |CH(S)| = k ≥ 9. This implies that |L{2, S}| = 13− k ≤ 4, and so, there must exist an
outer halfplane induced by an edge of L{2, S} containing more than two points of S. The result
now follows from Observation 2. �

5. Conclusions

In this paper we prove that every set of 13 points, in general position, can be partitioned into
three disjoint regions each of which span an empty convex polygon or an empty pseudo-triangle.
This proves that the pseudo-convex partition number ψ(n) ≤ ⌈3n

13
⌉, thus answering a question posed

by Aichholzer et al. [1].
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