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FINITE CONVEX GEOMETRIES OF CIRCLES

GÁBOR CZÉDLI

Abstract. Let F be a finite set of circles in the plane. We point out that
the usual convex closure restricted to F yields a convex geometry, that is, a
combinatorial structure introduced by P.H. Edelman in 1980 under the name
“anti-exchange closure system”. We prove that if the circles are collinear and
they are arranged in a “concave way”, then they determine a convex geometry
of convex dimension at most 2, and each finite convex geometry of convex
dimension at most 2 can be represented this way. The proof uses some recent
results from Lattice Theory, and some of the auxiliary statements on lattices
or convex geometries could be of separate interest. The paper is concluded
with some open problems.

1. Introduction
All changes after De-
cember 14, 2012, are
in magenta, blue, or
red.

1.1. Aim and motivation. The concept of convex geometries was introduced
by Edelman [25] and [26], see also Edelman and Jamison [27], Adaricheva, Gor-
bunov, and Tumanov [6], and Armstrong [7]. Convex geometries are combinatorial
structures: finite sets with anti-exchange closures such that the emptyset is closed.
They are equivalent to antimatroids, which are particular greedoids, and also to
meet-distributive lattices. Actually, the concept of convex geometries has many
equivalent variants. The first of these variants is due to Dilworth [23], and the
early ones were surveyed in Monjardet [37]. Since it would wander to far if we
overviewed the rest, more than a dozen approaches, we only mention Adaricheva
[3], Abels [1], Caspard and Monjardet [11], Avann [8], Jamison-Waldner [30], and
Ward [41] for additional sources, and Stern [40], Adaricheva and Czédli [4], and
Czédli [13] for some recent overviews. However, we need only a small part of the
theory of convex geometries, and the present paper is intended to be self-contained
for those who know the rudiments of Lattice Theory up to, say, the concept of
semimodularity.

From combinatorial point of view, the finite convex geometries are the interesting
ones. Hence, and also because the tools we use are elaborated only for the finite
case, the present paper is restricted to finite convex geometries. Postponing the
exact definition of convex geometries to Section 2, we present an important finite
example as follows. Let n ∈ N = {1, 2, 3, . . .}, and let E be a finite subset of the
n-dimensional space R

n. The set of all subsets of E is denoted by PowSet(E). For

Y ⊆ E, we define Hull
(n)
E (Y ) = E ∩ ConvHRn(Y ), where ConvHRn(Y ) denotes the
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2 G. CZÉDLI

usual convex hull of Y in R
n. The map Hull

(n)
E : PowSet(E) → PowSet(E) is a

closure operator, and 〈E,Hull
(n)
E 〉 is a finite convex geometry. Convex geometries

of this form are called geometries of relatively convex sets, and they (not only the
finite ones) were studied by Adaricheva [2] and [3], Bergman [9], and Huhn [29].

We know from Bergman [9] that each finite convex geometry G can be embedded

into a geometry 〈E,Hull
(n)
E 〉 of relative convex sets; n depends on G. However, even

if a finite convex geometry is of convex dimension 2, it is not necessarily isomorphic

to some 〈E,Hull
(n)
E 〉.

Besides geometries of relatively convex sets, there exists a more complicated way
to define a convex geometry on a subset B ⊆ R

n by means of the usual convex hull
operator ConvHRn . For definition, let B and A be finite subsets, acting as a base
set and an auxiliary set, of Rn such that ConvHRn(A) ∩ B = ∅. For X ⊆ B, let

Hull
(n,A)
B (X) = B∩ConvHRn(X∪A). By Kenji Kashiwabara, Masataka Nakamura

and Yoshio Okamoto [34], 〈B,Hull
(n,A)
B 〉 is a convex geometry and, moreover, each

finite convex geometry is isomorphic to an appropriate 〈B,Hull
(n,A)
B 〉.

Motivated by the results of [9] and [34] mentioned above, the present paper in-
troduces another kind of “concrete” finite convex geometries that are still based on
the usual concept ConvHRn of convexity. However, our primary purpose is to rep-
resent finite convex geometries in a visual, conceptually simple way. In particular,
we look for a representation theorem that leads to readable figures, at least in case
of small size, because figures are generally useful in understanding a subject. (This
is well exemplified by the role that Hasse diagrams play, even if the present paper
cannot compete with their importance.) The space R

n for n ≥ 3 can hardly offer
comprehendible figures. The real line R

1 = R is too “narrow” to hold overlapping
objects in a readable way, and only few convex geometries can be represented by
it. Therefore, with the exception of Subsection 4.2, we will only work in the plane
R

2. The plane is general enough to represent all finite convex geometries of convex
dimension 2, and also some additional ones.

To accomplish our goal, we start from a finite set F of circles in the plane
R

2, and we define a convex geometry 〈F,HulloF 〉 with the help of forming usual
convex hulls in the plane, analogously to the geometries of relative convex sets.
The structures 〈F,HulloF 〉, called convex geometries of circles, are very close to
the usual closure ConvHR2 : R2 → R

2 and, as opposed to geometries of relatively
convex sets, we can prove that each finite convex geometry of convex dimension at
most 2 is isomorphic to some convex geometry 〈F,HulloF 〉 of circles. Actually, our
representation theorem, the main result of the paper, will assert more by imposing
some conditions on F ; see Figure 1 (without C′

3, D, the grey-colored plane shape
H , and the dotted curves) for a first impression.

This paper uses some lattices as auxiliary tools in proving the main result. In
fact, the theory of slim semimodular lattices has rapidly developed recently, as
witnessed by Czédli [12], [14], and [15], Czédli, Dékány, Ozsvárt, Szakács, and
Udvari [16], Czédli and Grätzer [17], Czédli, L. Ozsvárt, and Udvari [18], Czédli
and Schmidt [19], [20], [21], and [22], Grätzer and Knapp [31], [32], and [33], and
Schmidt [39]. Even if only a part of the results in these papers are eventually needed
here, this progress provides the background of the present work. On the other hand,
some auxiliary statements we prove here, namely some of the propositions, seem
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Figure 1. A concave set of collinear circles (disregard the grey-
colored shape H until the proof of Lemma 3.1)

to be of some interest in the theory of slim semimodular lattices, while some other
propositions could be interesting in the theory of convex geometries.

1.2. Outline. Section 2 gives the basic concepts and formulates two results. Propo-
sition 2.1 asserts that, for every finite set F of circles in the plane, 〈F,HulloF 〉 is a
convex geometry, while our main result, Theorem 2.2, is the converse statement for
the case of convex dimension ≤ 2. The results of Section 2 are proved in Section 3,
where several auxiliary statements are cited or proved, and some more concepts are
recalled. Section 4 contains examples, statements, and open problems to indicate
that although Theorem 2.2 gives a satisfactory representation of finite convex ge-
ometries of convex dimension at most 2, we are far both from settling the case of
higher convex dimensions and from understanding what the abstract class of our
convex geometries of circles is.

1.3. Prerequisites. As mentioned already, the reader is only assumed a little
knowledge of lattices. Besides the first few pages of any book on lattices or par-
ticular lattices, including Grätzer [28], Nation [38], and Stern [40], even the first
chapter of Burris and Sankappanavar [10], which does not even focus on Lattice
Theory, is sufficient. Note that [10] and [38] are freely downloadable.

2. Convex geometries and our results

2.1. Basic concepts and the first result. Assume that we are given a set U
and a map Φ: PowSet(U) → PowSet(U). If X ⊆ Φ(X) = Φ(Φ(X)) ⊆ Φ(Y ) holds
for all X ⊆ Y ⊆ U , then Φ is a closure operator on U . If Φ is a closure operator
on U , Φ(∅) = ∅, and Φ satisfies the so-called anti-exchange property

(2.1)
if Φ(X) = X ∈ PowSet(U), x, y ∈ U \X , x 6= y,

and x ∈ Φ(X ∪ {y}), then y /∈ Φ(X ∪ {x}),

then 〈U,Φ〉 is a convex geometry. Given a convex geometry 〈U,Φ〉, we use the
notation

Lat〈U,Φ〉 = {X ∈ PowSet(U) : X = Φ(X)}

to denote the set of closed sets of 〈U,Φ〉. Actually, the structure Lat〈U,Φ〉 =〈
Lat〈U,Φ〉,⊆

〉
is a lattice, and it is a complete meet-subsemilattice of the powerset

lattice PowSet(U) = 〈PowSet(U),∪,∩〉. It is well-known that Lat〈U,Φ〉 determines
〈U,Φ〉 since we have Φ(X) =

⋂
{Y ∈ Lat〈U,Φ〉 : X ⊆ Y }. Hence, it is natural to
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say that 〈U,Φ〉 can be embedded into or isomorphic to a convex geometry 〈V,Ψ〉, if
the lattice Lat〈U,Φ〉 can be embedded into or isomorphic to Lat〈V,Ψ〉, respectively.

As usual, a circle is a set {〈x, y〉 ∈ R
2 : (x−u)2+(y−v)2 = r}, where u, v, r ∈ R

and r ≥ 0. A circle of radius 0 consists of a single point. Since ConvHR2 , the
operator of forming convex hulls, is defined for subsets of R2 rather than for sets
of circles, we introduce a shorthand notation for “points of” (or “point set of”) as
follows. For a set X of circles in R

2, the set of points belonging to some member
of X is denoted by psX. In other words,

(2.2) psX =
⋃

C∈X

C.

For a set F of circles in R
2 and X ⊆ F , we define

(2.3) HulloF (X) =
{
C ∈ F : C ⊆ ConvHR2

(
psX

)}
.

(The superscript circle in the notation will remind us that HulloF is defined on a
set of circles.) The structure 〈F,HulloF 〉 will be called the convex geometry of F ,
and we call it a convex geometry of circles if F is not specified. (We shall soon
prove that it is a convex geometry.) Note that if all circles of F are of radius 0
and E ⊆ R

2 is the set of their centers, then 〈F,HulloF 〉 is obviously isomorphic to

〈E,Hull
(2)
E 〉.

We are now in the position to state our first observation; the statements of this
section will be proved in Section 3.

Proposition 2.1. For every finite set F of circles in R
2, 〈F,HulloF 〉 is a convex

geometry.

2.2. Collinear circles and the main result. If there is a line containing the
centers of all members of F above, then F is a set of collinear circles. For simplicity,
we will always assume that the line in question is the x axis. That is, in case of
a set of collinear circles, all the centers are of the form 〈u, 0〉. For example, F in
Figure 1 is a set of collinear circles; note that the dotted curves and the x-axis do
not belong to F . Note that a set of collinear circles can always be given by a set
of intervals of the real line R; this comment will be expanded in Subsection 4.2.
However, circles lead to a stronger result and more readable figures than intervals.
The label of a circle in our figures is either below the center (inside or outside but
close to the circle), or we use an arrow. The radius of a circle C is denoted by
rad(C). If the center of C is 〈u, 0〉, then

LPt(C) = u− rad(C) and RPt(C) = u+ rad(C)

will denote the leftmost point and the rightmost point of C, respectively. Since we
allow that two distinct circles have the same leftmost point or the same rightmost
point, we also need the following concept. Although circles are usually treated as
endless figures, in case the center of a circle C lies on the x axis, we define the left

end and the right end of C as follows:

LEnd(C) = 〈LPt(C),−rad(C)〉 and REnd
(
C
)
= 〈RPt(C), rad(C)〉.

Left and right ends are ordered lexicographically; this order is denoted by ❁. Thus

LEnd(C) ❁ LEnd(D) ⇐⇒ LPt(C) < LPt(D), or

LPt(C) = LPt(D) and rad(C) > rad(D),
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REnd
(
C
)
❁ REnd

(
D
)

⇐⇒ RPt(C) < RPt(D), or

RPt(C) = RPt(D) and rad(C) < rad(D).

For later reference, note the obvious rules:

(2.4)
LPt(C) < LPt(D) ⇒ LEnd(C) ❁ LEnd(D) and

RPt(C) < RPt(D) ⇒ REnd
(
C
)
❁ REnd

(
D
)
.

Let F be a set of collinear circles. We say that F is a concave set of collinear circles

if for all C1, C2, C3 ∈ F ,

(2.5)
whenever LEnd(C1) ❁ LEnd(C2) and REnd

(
C2

)
❁ REnd

(
C3

)
,

then C2 ⊆ ConvHR2

(
C1 ∪C3

)
.

For illustration, see C1, C2, and C3, or C
′

1, C
′

2, and C
′

3, in Figure 1. Note that since
each C ∈ F is uniquely determined by LEnd(C) and also by REnd

(
C
)
, “❁” in

(2.5) can be replaced by “⊑”. If |{LPt(C1),LPt(C2),RPt(C1),RPt(C2)}| = 4 for
any two distinct C1 and C2 in a set F of collinear circles, then F is called separated.
For example, F \ {C′

3, D} in Figure 1 is a separated, concave set of collinear circles.
Clearly, if F is a separated set of collinear circles, then F is concave iff

(2.6)
whenever LPt(C1) < LPt(C2) and RPt(C2) < RPt(C3),

then C2 ⊆ ConvHR2

(
C1 ∪ C3

)
.

For a finite lattice L, the set of elements with exactly one lower cover, that
is the set of non-zero join-irreducible elements, is denoted by JiL. Dually, MiL
stands for the set of elements with exactly one cover. The convex dimension of a
finite convex geometry 〈U,Φ〉 is the least integer n such that Mi

(
Lat〈U,Φ〉

)
is the

union of n chains. In other words, the convex dimension is the width of the poset
Mi

(
Lat〈U,Φ〉

)
.

We are now in the position of formulating our main result, which characterizes
finite convex geometries of convex dimension at most 2 as the convex geometries of
finite (separated or not necessarily separated) concave sets of collinear circles.

Theorem 2.2.

(A) If F is a finite, concave set of collinear circles in the plane, then 〈F,HulloF 〉
is a convex geometry of convex dimension at most 2.

(B) For each finite convex geometry 〈U,Φ〉 of convex dimension at most 2, there

exists a finite, separated, concave set F of collinear circles in the plane such

that 〈U,Φ〉 is isomorphic to 〈F,HulloF 〉.

3. Proofs and auxiliary statements

3.1. Not necessarily collinear circles.

Proof of Proposition 2.1. For every X ⊆ F , we have

(3.1) ConvHR2(psX) = ConvHR2

(
ps(HulloF (X))

)

since the “⊆” inclusion follows from X ⊆ HulloF (X) while the converse inclusion
comes from the obvious ConvHR2(psX) ⊇ ps(HulloF (X)).

Assume that X ⊆ F , and let Y = HulloF (X). Since C ⊆ ConvHR2(psX) holds for
all C ∈ Y , that is psY ⊆ ConvHR2(psX), we obtain

ConvHR2(psY ) ⊆ ConvHR2(psX).
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Figure 2. Illustrating the proof of Proposition 2.1

We have equality here since Y ⊇ X . This implies HulloF (Y ) = HulloF (X), and it
follows that HulloF is a closure operator with the property HulloF (∅) = ∅. Observe
that a closure operator Φ on U satisfies the anti-exchange property (2.1) iff

(3.2)
if Φ(X) = X ∈ PowSet(U), x0, x1 ∈ U \X ,

and Φ(X ∪ {x0}) = Φ(X ∪ {x1}), then x0 = x1.

Hence, tailoring (3.2) to our situation, we assume X = HulloF (X) ∈ PowSet(F ),
{C0, C1} ⊆ F \ X , and HulloF (X ∪ {C0}) = HulloF (X ∪ {C1}). We have to show
C0 = C1. Combining our assumption with (3.1), we obtain

(3.3) ConvHR2

(
C0 ∪

psX
)
= ConvHR2

(
C1 ∪

psX
)
.

Let Γ and ∆ be the boundary of ConvHR2(psX) and that of the set given in
(3.3), respectively; see the thick closed curves in Figure 2. In the figure, X is
depicted twice: in itself on the left and with Ci on the right. We can imagine Γ
and ∆ as tight resilient rubber nooses around the members of X and X ∪ {Ci},
respectively. Pick an i ∈ {0, 1}. Observe that Ci /∈ X = HulloF (X) implies
Ci 6⊆ ConvHR2(psX) = ConvHR2(Γ). Clearly, ∆ can be decomposed into finitely
many segments K0,K1, . . . ,Km−1, listed anti-clockwise, such that these segments
are of positive length and the following properties hold for all j ∈ {0, . . . ,m − 1}
and i ∈ {0, 1}:

(i) The endpoint of Kj is the first point of Kj+1, where j + 1 is understood
modulo m.

(ii) Either Kj ⊆ Γ, or no inner point of Kj belongs to ConvHR2(Γ).
(iii) If no inner point of Kj belongs to ConvHR2(Γ), then either Kj is a straight

line segment, or Kj is an arc of Ci.
(iv) There exists a t ∈ {0, . . . ,m− 1} such that either

(a) Kt is not a straight line segment and none of its inner points belongs to
ConvHR2(Γ); or

(b) both Kt and Kt+1 are straight line segments and their common point is
outside ConvHR2(Γ).

As opposed to Figure 2, note that t in (iv) need not be unique. Clearly, (iv)(b)
holds only iff the radius of Ci is zero; in this case Ci consists of the common point
of Kt and Kt+1, which is the only angle point of ∆ outside ConvHR2(Γ), and we
conclude C0 = C1. Otherwise, if (iv)(a) holds, then (iii) implies that Kt is a
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common arc of C0 and C1, whence we conclude C0 = C1 again. Therefore, HulloF
is an anti-exchange closure operator, and 〈F,HulloF 〉 is a convex geometry. �

3.2. Collinear circles. For a set F of collinear circles and A,B ∈ F , we define
the horizontal interval

HIntF (A,B) = {C ∈ F : LEnd(A) ⊑ LEnd(C), REnd
(
C
)
⊑ REnd

(
B
)
}.

Note that HIntF (A,B) can be empty. If A 6= B and A is inside the circle B, then
A ∈ HIntF (A,B) ∩ HIntF (B,A) but B /∈ HIntF (A,B) ∪ HIntF (B,A). Note also
that, for A ∈ F , the horizontal interval HIntF (A,A) is the set of circles of F that
are inside A, including A itself.

Lemma 3.1. If F is a finite set of collinear circles in the plane, then the following

three statements hold.

(i) {∅} ∪ {HIntF (A,B) : A,B ∈ F} ⊆ Lat〈F,HulloF 〉. If F is concave, then even

the equality {∅} ∪ {HIntF (A,B) : A,B ∈ F} = Lat〈F,HulloF 〉 holds.
(ii) For ∅ 6= X ∈ Lat〈F,HulloF 〉, let A and B denote the circles in X with least

left end and greatest right end, respectively. If F is concave, then the equality

X = HIntF (A,B) = HIntF (A,A) ∨ HIntF (B,B) holds in Lat〈F,HulloF 〉.
(iii) If X ∈ Lat〈F,HulloF 〉, then X =

∨
{HIntF (C,C) : C ∈ X}.

Proof. We can assume F 6= ∅ since otherwise the lemma is trivial. Assume
HIntF (A,B) 6= ∅. Clearly, as indicated in Figure 1 by the grey-colored plane
shape, there exists a convex subset H of R2 such that ps

(
HIntF (A,B)

)
⊆ H but H

includes no C ∈ F \HIntF (A,B) as a subset. (As in the figure, it is always possible
to find an appropriate H whose boundary is the union of an arc of A, that of B,
and four straight line segments. Note that if rad(A) = 0, then the only arc of A
is itself.) This implies that HIntF (A,B) = HulloF (HIntF (A,B)) ∈ Lat〈F,HulloF 〉.
Thus {∅} ∪ {HIntF (A,B) : A,B ∈ F} ⊆ Lat〈F,HulloF 〉.

To prove the converse inclusion under the additional assumption that F is con-
cave, and let ∅ 6= X ∈ Lat〈F,HulloF 〉. Since F is finite, there are a unique
A ∈ X with least left end LEnd(A) and a unique B ∈ X with largest right end
REnd

(
B
)
. Using that F is concave, we obtain that, for every C ∈ HIntF (A,B),

C ⊆ ConvHR2(A ∪ B) ⊆ ConvHR2(psX), that is, C ∈ HulloF (X). This implies
HIntF (A,B) ⊆ HulloF (X) = X . On the other hand, if C ∈ X , then the choice
of A and B gives LEnd(A) ⊑ LEnd(C) and REnd

(
C
)

⊑ REnd
(
B
)
, that is,

C ∈ HIntF (A,B). Hence, X = HIntF (A,B), and we obtain Lat〈F,HulloF 〉 ⊆
{∅} ∪ {HIntF (A,B) : A,B ∈ F}. This proves (i) and the first equality in (ii).

Next, we do not assume that F is concave. If C ∈ X ∈ Lat〈F,HulloF 〉, then
D ⊆ ConvHR2(C) ⊆ ConvHR2(psX) holds for all D ∈ HIntF (C,C). That is, D ∈
HulloF (X) = X for all D ∈ HIntF (C,C). Thus, for all C ∈ X , we have {C} ⊆
HIntF (C,C) ⊆ X , which clearly implies (iii).

Finally, assume again that F is concave. From (iii) and the first equality in (ii),
we obtain X = HIntF (A,B) ⊇ HIntF (A,A) ∨ HIntF (B,B). The reverse inclusion
follows from the assumption that F is concave. Hence, (ii) holds. �

Lemma 3.2. If F is a finite set of collinear circles in the plane, then

Ji
(
Lat〈F,HulloF 〉

)
= {HIntF (A,A) : A ∈ F}.

Proof. Although the statement is intuitively more or less clear, we give an exact
proof. First, we show that, for A ∈ F , HIntF (A,A) ∈ Ji

(
Lat〈F,HulloF 〉

)
. This is
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obvious if |HIntF (A,A)| = 1, that is, if HIntF (A,A) is an atom in Lat〈F,HulloF 〉.
Assume |HIntF (A,A)| ≥ 2. Let B and C be the circles with least left end and
greatest right end in HIntF (A,A) \ {A}, respectively. (They need not be distinct.)
Since the circles of F are determined by their left ends, LEnd(A) 6= LEnd(B),
and we obtain LEnd(A) ❁ LEnd(B) by the definition of HIntF (A,A). Similarly,
REnd

(
C
)
❁ REnd

(
A
)
. Now if D ∈ HIntF (A,A) \ A, then the choice of B and C

gives D ∈ HIntF (B,C). On the other hand, if D ∈ HIntF (B,C), then

LEnd(A) ❁ LEnd(B) ⊑ LEnd(D) and REnd
(
D
)
⊑ REnd

(
C
)
❁ REnd

(
A
)

yield D ∈ HIntF (A,A) \A. Thus HIntF (A,A) \A = HIntF (B,C) ∈ Lat〈F,HulloF 〉
is a unique lower cover of HIntF (A,A), because A ∈ X implies HIntF (A,A) ⊆ X
for all X ∈ Lat〈F,HulloF 〉. Hence, HIntF (A,A) ∈ Ji

(
Lat〈F,HulloF 〉

)
. This proves

Ji
(
Lat〈F,HulloF 〉

)
⊇ {HIntF (A,A) : A ∈ F}.

To prove the converse inclusion, let X ∈ Ji
(
Lat〈F,HulloF 〉

)
. We obtain from

Lemma 3.1(iii) that X = HIntF (A,A) for some A ∈ F . Thus Ji
(
Lat〈F,HulloF 〉

)
⊆

{HIntF (A,A) : A ∈ F}. �

Lemma 3.3. Assume that F is a finite, concave set of collinear circles in the plane,

and |F | ≥ 1. If the circle in F with least left end and that with largest right end

are denoted by Kl and Kr, respectively, then

{∅} ∪ {HIntF (Kl, B) : B ∈ F} and {∅} ∪ {HIntF (A,Kr) : A ∈ F}

are chains in Lat〈F,HulloF 〉, and each nonempty X ∈ Lat〈F,HulloF 〉 is of the form

X = HIntF (Kl, B) ∧ HIntF (A,Kr), that is, HIntF (Kl, B) ∩ HIntF (A,Kr),

where A,B ∈ X are defined in Lemma 3.1(ii).

Proof. Let B1, B2 ∈ F . We can assume REnd
(
B1

)
⊑ REnd

(
B2

)
since “⊑” is a

linear order. By transitivity, HIntF (Kl, B1) ⊆ HIntF (Kl, B2). Therefore, the first
set in the lemma is a chain. By left-right duality, so is the second one.

Next, let ∅ 6= X ∈ Lat〈F,HulloF 〉. We have X = HIntF (A,B) by Lemma 3.1(ii),
and the obvious equality HIntF (A,B) = HIntF (Kl, B) ∩ HIntF (A,Kr) completes
the proof. �

3.3. Lattices associated with convex geometries. One of the many equiva-
lent ways, actually the first way, of defining convex geometries was to use meet-
distributive lattices; see Dilworth [23]. Now we recall some concepts from Lattice
Theory.

A finite lattice L is lower semimodular if whenever a, b ∈ L such that a is covered
by a ∨ b, in notation a ≺ a ∨ b, then a ∧ b ≺ b. Equivalently, if the implication
a ≺ b ⇒ a ∧ c � b ∧ c holds for all a, b, c ∈ L. We will often use the trivial fact
that this property is inherited by intervals and, more generally, by cover-preserving
sublattices. For u 6= 0 in a finite lattice L, let u∗ denote the meet of all lower covers
of u. A finite lattice L is meet-distributive if the interval [u∗, u] is a distributive
lattice for all u ∈ L \ {0}. For other definitions, see Adaricheva [3], Adaricheva,
Gorbunov and Tumanov [6], and Caspard and Monjardet [11]; see also Czédli [13,
Proposition 2.1 and Remark 2.2] and Adaricheva and Czédli [4] for recent surveys
and developments.

The study of meet-distributive lattices (and their duals) goes back to Dilworth
[23], 1940. There were a lot of discoveries and rediscoveries of these lattices and
equivalent combinatorial structures (including convex geometries); see [6] and [13],
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Monjardet [37], and Stern [40] for surveys. We recall the following statement; its
origin is the combination of Ward [41] (see also Dilworth [23, page 771], where
[41] is cited) and Avann [8] (see also Edelman [26, Theorem 1.1(E,H)], where [8] is
recalled).

Claim 3.4. Every finite meet-distributive lattice is lower semimodular.

The width of a partially ordered set P , denoted by width(P ), is the smallest
k such that P is the union of k appropriate chains of L. Equivalently, see Dil-
worth [24], width(P ) is the largest k such that there is a k-element antichain in P .
For a finite lattice L, we are interested in the width of MiL. Note that, clearly,
width(MiL) is the smallest k such that the union of k maximal chains of L in-
cludes MiL. Following Grätzer and Knapp [31] and, in the present form, Czédli
and Schmidt [19], finite lattices L with width(MiL) ≤ 2 are called dually slim.
Finite lattices L with width(JiL) ≤ 2 are, of course, called slim.

If L is a lattice and x ∈ L, then the principal ideal {y ∈ L : y ≤ x} is denoted
by ↓x. We have already mentioned that a finite convex geometry G = 〈U,Φ〉
determines a lattice, the lattice Lat(G) = Lat〈U,Φ〉 of its closed sets. Conversely,
if L is a finite meet-distributive lattice, then we can take the combinatorial structure
Geom(L) = 〈JiL, {JiL ∩ ↓x : x ∈ L}〉. Part of the following lemma, which asserts
that finite convex geometries and finite meet-distributive lattices are essentially the
same, was proved by Edelman [25, Theorem 3.3], see also Armstrong [7, Theorem
2.8]. The rest can be extracted from Adaricheva, Gorbunov, and Tumanov[6, proof
of Theorem 1.9]; see also Czédli [13, Lemma 7.4] for more details.

Lemma 3.5. If L is a finite meet-distributive lattice and G = 〈U,Φ〉 is a finite

convex geometry, then the following three statements hold.

(i) Lat(G) is a finite meet-distributive lattice.

(ii) Geom(L) is a finite convex geometry.

(iii) Lat(Geom(L)) ∼= L and Geom(Lat(G)) ∼= G.

3.4. Dually slim, lower semimodular lattices. Finite, slim, semimodular lat-
tices are more or less understood. Therefore, so are their duals, the dually slim,
lower semimodular, finite lattices. The following lemma is practically known, but
we will explain how to extract it from the literature. The notation introduced
before Lemma 3.5 is still in effect.

Lemma 3.6. If Φ is a closure operator on U , then G = 〈U,Φ〉 is a finite convex

geometry of convex dimension at most 2 iff Lat(G) is a finite, dually slim, lower

semimodular lattice.

Proof. In view of Lemma 3.5, all we have to show is that, for a finite lattice L, the
following two conditions are equivalent:

(i) L is meet-distributive and width(MiL) ≤ 2;
(ii) L is lower semimodular and dually slim.

With reference to Ward [41] and Avann [8], we have already mentioned that
meet-distributivity implies lower semimodularity. Thus (i) implies (ii). Conversely,
assume (ii). We conclude that L is meet-distributive by the dual1 of Czédli, Ozsvárt,
and Udvari [18, Corollary 2.2], and width(MiL) ≤ 2 by the definition of dual
slimness. Thus (ii) implies (i). �

1In what follows, dual statements are often cited without pointing out that they are the duals
of the original ones.
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Next, motivated by Lemma 3.6, we will have a closer look at finite, dually slim,
lower semimodular lattices. A finite lattice is planar if it has a planar diagram in the
obvious sense; for more details see the next subsection. Planarity is a great help for
us, because of Part (B) of the following lemma. A cover-preserving M3 sublattice
is a 5-element sublattice {u, a0, a1, a2, v} such that u ≺ ai ≺ v for i ∈ {0, 1, 2}.

Lemma 3.7 (Czédli and Schmidt [19, Lemmas 2.2 and 2.3]). If L is a finite, lower

semimodular lattice, then the following two statements hold.

(A) L is dually slim iff it has no cover-preserving M3 sublattice.

(B) If L is dually slim, then it L is planar, and each of its elements has at most

two lower covers.

3.5. Dual slimness and Carathéodory’s condition. Following Libkin [36],
a finite lattice K is said to satisfy Carathéodory’s condition (CCn) if for any
a, b1, . . . , bk ∈ JiK such that a ≤ b1 ∨ · · · ∨ bk, there are i1, . . . , in ∈ {1, . . . , k}
such that a ≤ bi1 ∨ · · · ∨ bin . Carathéodory’s classical theorem asserts that when-
ever p is a point and X is a subset of Rn−1 such that p belongs to the convex hull
ConvHRn−1(X) of X , then there exists an at most n-element subset Y of X such

that p ∈ ConvHRn−1(Y ). This implies that the lattices Lat〈E,Hull
(n−1)
E 〉 satisfy

(CCn) since their join-irreducible elements are exactly the atoms. We say that a
finite convex geometry 〈U,Φ〉 satisfies (CCn) if so does the corresponding lattice,
Lat〈U,Φ〉. Lower semimodularity is not assumed in the following statement.

Proposition 3.8. Every finite, dually slim lattice satisfies (CC2). Also, every

finite convex geometry of convex dimension at most 2 satisfies (CC2).

Proof. The lattices in question are planar by Czédli and Schmidt [19, Lemma 2.2],
and planar lattices satisfy (CC2) by Libkin [36, Corollary 4.7 and Theorem 3]. The
rest follows from Lemma 3.6. �

Proposition 3.9. Let n ∈ N, and let L1 and L2 be finite lattices satisfying (CCn).
If there exists a bijection ϕ : JiL1 → JiL2 such that

(3.4) for all a, b1, . . . bn ∈ JiL1, a ≤

n∨

i=1

bi ⇐⇒ ϕ(a) ≤

n∨

i=1

ϕ(bi),

then ϕ can be extended to an isomorphism from L1 onto L2.

Proof. First, we show that n is not relevant in (3.4), that is, (3.4) implies the
following property of ϕ:

(3.5) for all a ∈ JiL1 and B ⊆ JiL1, a ≤
∨
B ⇐⇒ ϕ(a) ≤

∨
ϕ(B),

where ϕ(B) = {ϕ(b) : b ∈ B}. Assume that a ≤
∨
B. By (CCn), there exists a

subset C ⊆ B such that |C| ≤ n and a ≤
∨
C. Hence ϕ(a) ≤

∨
ϕ(C) by (3.4), and

ϕ(a) ≤
∨
ϕ(B). The converse implication in (3.5) is obtained by using ϕ−1. For

the sake of Remark 3.10 coming soon, we note that the rest of the proof relies only
on (3.5) and does not use any specific property of L1 and L2.

Next, let ψ : JiL2 → JiL1 denote the inverse of ϕ. We define a map ϕ̂ : L1 → L2

by ϕ̂(x) =
∨
{ϕ(a) : a ∈ ↓x ∩ JiL1}. Similarly, let ψ̂ : L2 → L1 be defined by

ψ̂(y) =
∨
{ψ(b) : b ∈ ↓y ∩ JiL2}. The choice b1 = · · · = bn in (3.4) shows that ϕ

and ψ are order isomorphism. This implies that ϕ̂ and ψ̂ are extensions of ϕ and
ψ, respectively. Using the formula x =

∨
(↓x ∩ JiLi) for x ∈ Li, it is routine to
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check that ψ̂ and ψ are reciprocal bijections. Hence, they are lattice isomorphisms
since they are obviously order-preserving. �

Remark 3.10. If L1 and L2 are finite lattices and ϕ : JiL1 → JiL2 is a bijection
satisfying (3.5), then L1

∼= L2 and ϕ extends to an isomorphism L1 → L2.

3.6. More about dually slim, lower semimodular lattices. Even if ϕ in
Proposition 3.9 is an order-isomorphism, (3.4) with n = 2 may fail; its satisfac-
tion depends mainly on the case where {a, b1, b2} is an antichain. This is one of the
reasons why we are going to have a closer look at dually slim, lower semimodular
lattices. Since dually slim lattices are planar by Lemma 3.7(B), the propositions of
this subsection may look intuitively clear. However, their exact proofs need some
preparation. Fortunately, the theory of planar lattices is satisfactorily developed in
Kelly and Rival [35] at a rigorous level, so we can often rely on results from [35]
instead of going into painful rigorousity. Whenever we deal with a planar lattice,
always a fixed planar diagram is assumed. Actually, most of the concepts, like
left and right, depend on the planar diagram chosen (sometimes implicitly) at the
beginning rather than on the lattice. This will not cause any trouble since our
arguments do not depend on the choice of planar diagrams.

Now, we recall some necessary concepts and statements for planar lattices; the
reader may (but need not) look into [35] for more exact details. Let C be a maximal
chain in a finite planar lattice L (with a fixed planar diagram). This chain cuts
L into a left side and a right side, see Kelly and Rival [35, Lemma 1.2]. The
intersection of these sides is C. If x ∈ L is on the left side of C but not in C, then
x is strictly on the left of C. Let D be another maximal chain of L. If all elements
of D are on the left of C, then D is on the left of C. In this sense, we can speak of
the leftmost maximal chain of L, called the left boundary chain, and the rightmost
maximal chain, called the right boundary chain. The union of these two chains is
the boundary of L. Also, if E is a (not necessarily maximal) chain of L, then the
leftmost maximal chain through E (or extending E) and the rightmost one make
sense. If E = {e1 < · · · < en}, then the leftmost maximal chain of L through E is
the union of the left boundary chains of the intervals [0, e1], [e1, e2], . . . , [en−1, en],
and [en, 1]. (The diagrams of these intervals are the respective subdiagrams of the
fixed diagram of L.) If E = {e} is a singleton, then chains containing e are said
to be chains through e rather than chains through {e}. The most frequently used
result of Kelly and Rival [35] is probably the following one.

Lemma 3.11 (Kelly and Rival [35, Lemma 1.2]). Let L be a finite planar lattice,

and let x ≤ y ∈ L. If x and y are on different sides of a maximal chain C in L,
then there exists an element z ∈ C such that x ≤ z ≤ y.

Next, let x and y be elements of a finite planar lattice L, and assume that they
are incomparable, in notation, x ‖ y. If x ∨ y has lower covers x1 and y1 such that
x ≤ x1 ≺ x∨ y, y ≤ y1 ≺ x∨ y, and x1 is on the left of y1, then the element x is on
the left of the element y. If x is on the left of y, then we say that y is on the right

of x. Let us emphasize that whenever left or right is used for two elements, then
the elements in question are incomparable.

Lemma 3.12 (Kelly and Rival [35, Propositions 1.6 and 1.7]). Let L be finite

planar lattice. If x, y ∈ L are incomparable elements, then the following hold.
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(A) x is on the left of y iff x is on the left of some maximal chain through y iff

x is on the left of all maximal chains through y.
(B) Either x is on the left of y, or x is on the right of y.
(C) If z ∈ L, x ‖ y, y ‖ z, x is on the left of y, and y is on the left of z, then x

is on the left of z.

If {x0, x1, y} is a 3-element antichain such that xi is on the left of y and y is
on the left of x1−i for some (necessarily unique) i ∈ {0, 1}, then y is horizontally

between the elements x0 and x1.

Proposition 3.13. Let L be a finite lattice. If {x0, x1, y} is a 3-element antichain

in L, then the following two statements hold.

(A) If L is planar and y is horizontally between x0 and x1, then y ≤ x0 ∨ x1.
(B) If L is a dually slim, lower semimodular lattice and y ≤ x0 ∨ x1, then y is

horizontally between x0 and x1.

Note that it would be unreasonable to tailor the same condition on L in Parts
(A) and (B). The 5-element, modular, non-distributive lattice M3 indicates that
planarity in itself would not be sufficient in Part (B). On the other hand, although
dual slimness (with or without lower semimodularity) would be sufficient in Part
(A) by Lemma 3.7, in this case the statement would be weaker and we could not
use the dual of Part (A) in the proof of Part (B).

Proof of Proposition 3.13. To prove (A), pick a maximal chain C through y. With-
out loss of generality, we can assume that x0 and x0 ∨ x1 are on the left and x1 is
on the right of C. Applying Lemma 3.11, there exists an element z ∈ C such that
x1 ≤ z ≤ x0 ∨ x1. Belonging to the same chain, y and z are comparable. Since
z ≤ y would contradict x1 6≤ y, we have y < z ≤ x0 ∨ x1, proving (A).

Next, to prove (B) by contradiction, suppose that L is a dually slim, lower
semimodular lattice, y ≤ x0 ∨ x1, but y is not between x0 and x1. Let, say, x0 be
on the left of x1 and x1 be on the left of y. The interval I = [x0∧y, x0∨x1] contains
x0, x1 and y since y ≤ x0 ∨ x1 and, by the dual of Part (A), x0 ∧ y ≤ x1. As an
interval of L, it is lower semimodular, and it follows from Lemma 3.7(A) that this
interval is dually slim. There are two cases.

First, assume y∨x1 = x0 ∨x1. Let E be a maximal chain of I through {x1, x0 ∨
x1}. By Lemma 3.12(A), x0 is on the left of E and y is on the right of E. Note
that the left side of E (including E itself) is a cover-preserving sublattice by Kelly
and Rival [35, Proposition 1.4]; this can also be derived from Lemma 3.11 easily.
Hence, we can pick lower covers x′0, x

′

1 of x0 ∨x1 on the left of E such that x0 ≤ x′0
and x1 ≤ x′1. Similarly, let y′ ∈ I be a lower cover of x0 ∨ x1 such that y ≤ y′

and y′ is on the right of E. If we had x′0 = y′, then E would contain an element z
by Lemma 3.11, necessarily strictly above x1 since y 6≤ x1, such that y ≤ z ≤ x′0,
which would lead to the following contradiction:

y ∨ x1 ≤ z ≤ x′0 ≺ x0 ∨ x1 = y ∨ x1.

Hence, x′0 6= y′. If we had x′0 = x′1 or x′1 = y′, then x0 ∨ x1 ≤ x′1 ≺ x0 ∨ x1 or
y∨x1 ≤ x′1 ≺ x0∨x1 = y∨x1, respectively, would be a contradiction. Hence x′0, x

′

1

and y′ are three distinct lower covers of x0 ∨ x1, which contradicts Lemma 3.7(B).
Second, assume y ∨ x1 6= x0 ∨ x1. Since these elements are in I, we have y <

y ∨ x1 < x0 ∨ x1. Take a maximal chain G of I through {y, y ∨ x1}, and let J
be the left side of G. By Lemma 3.12(A), x0, x1 ∈ J . In J , take a maximal
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chain F through x0, and let K be the right side of F in J . By Lemma 3.12(A)
again, x1 ∈ K. Clearly, K is a cover-preserving sublattice of I, again by Kelly
and Rival [35, Propositions 1.4]. Now F and G are the left and right boundary
chains of K, respectively. Like we obtained it for I, we conclude that K, which is a
cover-preserving sublattice of I (and also of L), is a dually slim, lower semimodular
lattice. By Czédli and Schmidt [20, Lemma 6], MiK ⊆ F ∪G. Therefore, there are
f ∈ F and g ∈ G such that x1 = f ∧ g. Since f ≤ x0 is excluded by x1 6≤ x0 and F
is a chain, x0 < f . Similarly, using that G is a chain and y ‖ x1, we obtain y < g.
Thus y ∨ x1 ≤ g, and we conclude x1 = f ∧ (y ∨ x1). Clearly, f 6= x0 ∨ x1 since
otherwise x1 = (x0 ∨ x1) ∧ (y ∨ x1) = y ∨ x1 ≥ y would contradict x1 ‖ y. Hence
f < x0 ∨ x1, which leads to the contradiction x0 ∨ x1 ≤ f < x0 ∨ x1. �

We also need the following statement.

Proposition 3.14. If L is a finite lower semimodular lattice, a ∈ JiL, b, c ∈ L,
c < a, and a ≤ b ∨ c, then a ≤ b.

Proof. To prove the statement by contradiction, suppose that in spite of the as-
sumptions, a 6≤ b. If we had b < a, then a ≥ b ∨ c together with a ≤ b ∨ c would
contradict a ∈ JiL. Hence b ‖ a. Let d = b ∨ c; we know that a ≤ d. Since b 6 ‖ c
together with b ∨ c ≥ a would contradict {b, c} ∩ ↑a = ∅, we have b ‖ c. Hence,
b < d and we can pick an element e ∈ [b, d] such that e ≺ d. Denoting the unique
lower cover of a by a∗, we conclude

d = e ∨ a = e ∨ a∗, e ‖ a, and e ‖ a∗,

because of the following reasons: c ≤ a∗ yields d = b ∨ c ≤ e ∨ a∗ ≤ e ∨ a ≤ d;
e ≤ a∗ or e ≤ a would contradict b ‖ a; and e ≥ a∗ or e ≥ a would lead to the
contradiction e ≺ d = e ∨ a∗ = e or e ≺ d = e ∨ a = e.

Since e ‖ a, we have e ∧ a < a. Lower semimodularity yields e ∧ a � d ∧ a = a,
and we obtain e ∧ a ≺ a. Since a∗ ‖ e and e ∧ a ≤ e, the elements a∗ and e ∧ a are
two distinct lower covers of a. This contradicts a ∈ JiL. �

The elements of JiL ∩MiL are called doubly irreducible elements. A principal
filter ↑b of L is a prime filter if ∅ 6= L \ ↑b is closed with respect to joins or,
equivalently, if L \ ↑b is a lattice ideal of L.

Proposition 3.15. Let L be a finite, dually slim, lower semimodular lattice. If

|L| ≥ 3, then the following three statements hold.

(i) L has a maximal doubly irreducible element b, and this b belongs to the bound-

ary of L.
(ii) If x ∈ L and x > b, then x ∈ MiL but x /∈ JiL. Furthermore, ↑b is a chain.

(iii) ↑b is a prime filter of L.

Proof. By Lemma 3.7 (B), L is planar. We know from Kelly and Rival [35, Theorem
2.5] that each finite planar lattice L with at least three elements has a doubly
irreducible element on its boundary. However, we only use this theorem to conclude
JiL∩MiL 6= ∅. Hence, JiL∩MiL contains a maximal element, b. Since MiL is a
subset of the boundary by the dual of Czédli and Schmidt [20, Lemma 6], b belongs
to the boundary. This proves (i).

Let, say, b belong to the right boundary chain Cr of L. The dual of Czédli [15,
Lemma 2.3] asserts Cr ∩ ↑b ⊆ MiL. We claim that ↑b ⊆ Cr . To prove this by
contradiction, suppose ↑b 6⊆ Cr. We obtain that ↑b is not a chain since ↑b ∩ Cr is
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a maximal chain in ↑b. Hence, there are u, v ∈ ↑b such that u ‖ v, and there are
chains b = u0 ≺ u1 ≺ · · · ≺ ut = u and b = v0 ≺ v1 ≺ · · · ≺ vs = v in ↑b. Clearly,
s, t ≥ 1. Let i be the largest subscript such that i ≤ t, i ≤ s, and ui = vi ∈ Cr. This
i exists since u0 = v0 = b ∈ Cr. Since u ‖ v, we have i < s and i < t. There are two
cases. First, if ui+1 6= vi+1, then ui = vi has at least two distinct covers. Second, if
ui+1 = vi+1 /∈ Cr, then ui = vi has at least two distinct covers again: ui+1 = vi+1

and a cover belonging to Cr. Hence, in both cases, ui = vi is meet-reducible and
belongs to Cr, which contradicts Cr ∩ ↑b ⊆ MiL. Therefore, ↑b ⊆ Cr and, since
subsets of chains are chains, ↑b is a chain.

Now, assume x > b. Since x ∈ ↑b = Cr ∩ ↑b ⊆ MiL and b was a maximal doubly
irreducible element, we conclude x /∈ JiL. This proves (ii).

To prove (iii) by contradiction, suppose y ∈ ↑b such that there exist elements
u, v ∈ L \ ↑b with y = u ∨ v. We have u = u1 ∨ · · · ∨ us and v = v1 ∨ · · · ∨ vt for
some u1, . . . , us, v1, . . . , vt ∈ JiL \ ↑b. It follows from Proposition 3.8 that there are
two elements in {u1, . . . , us, v1, . . . , vt} whose join belongs to ↑b. Therefore, there
are incomparable elements p, q ∈ JiL \ ↑b such that b ≤ p∨ q. There are two cases.
First, assume that {p, q, b} is an antichain. Clearly, none of p and q belongs to
Cr, and Lemma 3.12(A) yields that both p and q are on the left of b. This is a
contradiction since Proposition 3.13(B) implies that b is horizontally between p and
q.

Second, assume that {p, q, b} is not an antichain. Since b is join-irreducible and
p, q /∈ ↑b, we cannot have {p, q} ⊆ ↓b. Hence, apart from p-q symmetry, p ‖ b and
q < b. However, now Proposition 3.14 contradicts b ≤ p ∨ q. �

3.7. The rest of the proof. Before formulating the last auxiliary statement to-
wards Theorem 2.2, remember that dual slimness implies planarity by Lemma 3.7(B).

Lemma 3.16. Let L be a finite, dually slim, semimodular lattice with a fixed planar

diagram, and let F be a finite concave set of collinear circles in the plane. Assume

that we have a bijective map ψ : JiL→ F such that for any u, v ∈ JiL,

(i) u ≤ v if and only if ψ(u) ⊆ ConvHR2(ψ(v)), and
(ii) u ‖ v and u is on the left of v if and only if LEnd(ψ(u)) ❁ LEnd(ψ(v)) and

REnd
(
ψ(u)

)
❁ REnd

(
ψ(v)

)
.

These assumptions imply L ∼= Lat〈F,HulloF 〉.

Proof. Lemma 3.2 allows us to define a bijective map ϕ : JiL→ Ji
(
Lat〈F,HulloF 〉

)

by ϕ(u) = HIntF (ψ(u), ψ(u)). Clearly,

ψ(u) ⊆ ConvHR2(ψ(v)) ⇐⇒ HIntF (ψ(u), ψ(u)) ⊆ HIntF (ψ(v), ψ(v)).

Therefore, by Assumption (i), ϕ is an order-isomorphism. Since we want to apply
Propositions 3.8 and 3.9, we are going to show that ϕ satisfies Condition (3.4) with
〈2, a, b, c〉 in place of 〈n, a, b1, . . . , bn〉.

If a ≤ b or a ≤ c, then ϕ(a) ≤ ϕ(b) or ϕ(a) ≤ ϕ(c) since ϕ is an order-
isomorphism. The case b 6 ‖ c is even more evident. Thus, if {a, b, c} is not an
antichain, we have

(3.6) a ≤ b ∨ c ⇐⇒ ϕ(a) ≤ ϕ(b) ∨ ϕ(c).

Next, assume that {a, b, c} is an antichain. So is {ϕ(a), ϕ(b), ϕ(c)} since ϕ is an
order-isomorphism. There are two cases: either a is horizontally between b and c,
or not.
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In the first case, we can assume that b is on the left of a and a is on the left of
c. Proposition 3.13 gives a ≤ b ∨ c, and (ii) yields

(3.7)
LEnd(ψ(b)) ❁ LEnd(ψ(a)) < LEnd(ψ(c)) and

REnd
(
ψ(b)

)
< REnd

(
ψ(a)

)
❁ REnd

(
ψ(c)

)

Since F is concave, (3.7) implies ψ(a) ⊆ ConvHR2

(
ψ(b)∪ψ(c)

)
, which gives ϕ(a) ≤

ϕ(b) ∨ ϕ(c). Hence, (3.6) holds in this case.
In the second case, where a is not horizontally between b and c, we can assume

that a is on the left of b and b is on the left of c. By Proposition 3.13, we have
a 6≤ b ∨ c, and (ii) gives

(3.8)
LEnd(ψ(a)) ❁ LEnd(ψ(b)) ❁ LEnd(ψ(c)) and

REnd
(
ψ(a)

)
❁ REnd

(
ψ(b)

)
❁ REnd

(
ψ(c)

)

Let X = HIntF (ψ(b), ψ(c)). We have {ψ(b), ψ(c)} ⊆ X ∈ Lat〈F,HulloF 〉 by Lemma
3.1, and ψ(a) /∈ X by the definition of horizontal intervals. Since ϕ(b) ∨ ϕ(c) ⊆ X ,
we conclude ϕ(a) 6≤ ϕ(b) ∨ ϕ(c), and (3.6) holds in this case.

Next, assume a > b and a > c, and let a∗ stand for the unique lower cover of
a. Now a∗ ≥ b ∨ c, and we have a 6≤ b ∨ c. Since ψ is an order-isomorphism,
ϕ(a∗) ≥ ϕ(b) ∨ ϕ(c). This gives ϕ(a) 6≤ ϕ(b) ∨ ϕ(c), and (3.6) is fulfilled again.

Finally, up to b-c symmetry, we are left with the case where b ‖ a and c < a.
We can assume b ‖ c since otherwise both sides of (3.6) would obviously be false
and (3.6) would hold. Take a maximal chain C including {c, a}; it does not contain
b. Let, say, b be on the left of C. Now, by Lemma 3.12, b is on the left of c and
also on the left of a. Since ψ(c) ⊆ ConvHR2(ψ(a)) by Assumption (i), we conclude
REnd

(
ψ(c)

)
⊑ REnd

(
ψ(a)

)
. Thus REnd

(
ψ(c)

)
❁ REnd

(
ψ(a)

)
since our circles

are determined by their left ends. This and (ii) yield

(3.9)
LEnd(ψ(b)) ❁ LEnd(ψ(c)) and

REnd
(
ψ(b)

)
❁ REnd

(
ψ(c)

)
❁ REnd

(
ψ(a)

)
.

As previously, this gives {ψ(b), ψ(c)} ⊆ HIntF (ψ(b), ψ(c)) ∈ Lat〈F,HulloF 〉 and
ψ(a) /∈ HIntF (ψ(b), ψ(c)), which implies ϕ(a) 6≤ ϕ(b) ∨ ϕ(c). Since a 6≤ b ∨ c by
Proposition 3.14, (3.6) is satisfied again.

Since (3.6) holds in all cases, ϕ satisfies (3.4). Thus Propositions 3.8 and 3.9
apply. �

Proof of Theorem 2.2. Let F be a finite, concave set of collinear circles in the plane.
Proposition 2.1 yields that 〈F,HulloF 〉 is a convex geometry. Hence, by Lemma 3.5,
Lat〈F,HulloF 〉 is a finite meet-distributive lattice, and it is lower semimodular by
Claim 3.4. We obtain from Lemma 3.3 that this lattice is dually slim. Therefore,
Lemma 3.6 implies that 〈F,HulloF 〉 is a convex geometry of convex dimension at
most 2. This proves part (A).

In view of Lemmas 3.5 and 3.6, Part (B) is equivalent to the following statement:

(C) If L is a finite, dually slim, lower semimodular lattice, then there exists a
finite, separated, concave set F of collinear circles in the plane such that L is
isomorphic to Lat〈F,HulloF 〉.

We prove (C) by induction. By Lemma 3.16, it suffices to construct a pair 〈F, ψ〉
such that F is a finite, separated, concave set of collinear circles in the plane and
ψ : JiL → F is a bijective map satisfying Conditions (i) and (ii) of Lemma 3.16.
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Figure 3. A dually slim lower semimodular lattice L and the
corresponding separated concave set F of collinear circles

Since we are going to construct a separated F , (2.4) allows us to satisfy these two
conditions with leftmost and rightmost endpoints rather than left and right ends.

First, assume that L is a chain or, equivalently, JiL is a chain. We can let F
and ψ be a set of concentric circles and the unique map satisfying Condition (i)
of Lemma 3.16, respectively; clearly, 〈F, ψ〉 is an appropriate pair. More generally,
not assuming that L is a chain, we can prove the existence of an appropriate pair
〈F, ψ〉 by induction on the size |L| of L. Since the case of chains has been settled,
the induction starts at size 4.

Assume that |L| ≥ 4 and for each finite, dually slim, lower semimodular lattice of
smaller size, there exists and appropriate pair. Take a maximal doubly irreducible
element c ∈ L (like b in Proposition 3.15). By left-right symmetry, we can assume
that c is on the right boundary chain of L; see Figure 3, on the left, for illustration.
(The figure serves only as an illustration, so the reader need not check the properties
of L. However, we note that L is obviously a dually slim, lower semimodular lattice
by the dual of Czédli and Schmidt [20, Theorem 12].) Since ↑c is a prime filter
by Proposition 3.15, L′ = L \ ↑c is an ideal of L. As an interval of L, L′ is lower
semimodular. It follows from Lemma 3.7(A) that L′ is dually slim. Hence, by the
induction hypothesis, there exists an appropriate pair 〈F ′, ψ′〉 for L′. We want to
define 〈F, ψ〉 such that F ′ ⊂ F and ψ be an extension of ψ′. By Proposition 3.15(ii),
JiL = JiL′∪{c}. Therefore, our purpose is to find and appropriate circle C and to
let ψ be the map from JiL to F = F ′ ∪{C} defined by ψ(c) = C and ψ(x) = ψ′(x)
for x ∈ JiL′. In the figure, JiL′ = {x1, x2, x3, y1, y2, y3} and JiL = JiL′ ∪ {c} is
the set of black-filled elements. On the right of the figure, we write C, Xi, and Yi
instead of ψ(c), ψ′(xi), and ψ′(yi), respectively; F is the collection of all circles,
and F ′ = F \ {C}.

Since c is on the right boundary chain, Lemma 3.12(A) yields that each x ∈ JiL
is either strictly on the left of c or comparable to c. This together with Proposi-
tion 3.15(ii) imply that JiL′ is the disjoint union of the following two sets:

Jbelow = JiL′ ∩ ↓c and Jleft = {y ∈ JiL′ : y is on the left of c}.

Note that one of these two sets can be empty but their union, JiL′, is nonempty.
In the figure, Jbelow = {x1, x2, x3} and Jleft = {y1, y2, y3}. Condition (i) of
Lemma 3.16 will hold iff

(3.10) LPt(C) < LPt(ψ′(x)) and RPt(ψ′(x)) < RPt(C) for all x ∈ Jbelow.
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Figure 4. Modifying C to make F concave

Similarly, Condition (ii) of Lemma 3.16 will hold iff

(3.11) LPt(ψ′(y)) < LPt(C) and RPt(ψ′(y)) < RPt(C) for all y ∈ Jleft.

The only stipulation that (3.10) and (3.11) tailor on RPt(C) is

(3.12) RPt(C) > max{RPt(ψ′(z)) : z ∈ JiL′};

this can be satisfied easily. Therefore, to see that we can choose LPt(C) such that
(3.10) and (3.11) hold, it suffices to show that

(3.13) for all x ∈ Jbelow and y ∈ Jleft, LPt(ψ
′(y)) < LPt(ψ′(x)).

For x ∈ Jbelow and y ∈ Jleft, there are two cases. First, assume x 6 ‖ y. Clearly,
y 6≤ x, thus x < y. Since Condition (i) of Lemma 3.16 holds for 〈F ′, ψ′〉, we
have LEnd(ψ(y)) ❁ LEnd(ψ(x)) and REnd

(
ψ(x)

)
❁ REnd

(
ψ(y)

)
. This yields

LPt(ψ′(y)) < LPt(ψ′(x)) since F ′ is separated. Second, assume x ‖ y. Let E be
a maximal chain in L that extends {x, c}. Since y is on the left of c, y is on the
left of E by Lemma 3.12(A). Hence, again by Lemma 3.12(A), y is on the left of x.
Therefore, using Condition (ii) of Lemma 3.16 for the appropriate pair 〈F ′, ψ′〉, we
conclude LEnd(ψ′(y)) ❁ LEnd(ψ′(x)). This implies LPt(ψ′(y)) < LPt(ψ′(x)) since
F is separated. Thus (3.13) holds, and so do (3.10) and (3.11).

Since (3.10) and (3.11) are strict inequalities, we can choose both LPt(C) and
RPt(C) infinitely many ways. Therefore, we can choose C so that F be separated.

Finally, we have to show that F is concave. Since F ′ is concave and separated,
the only case we have to consider is

(3.14) LPt(C1) < LPt(C2) and, automatically, RPt(C2) < RPt(C),

where C1, C2 ∈ F ′; we have to show

(3.15) C2 ⊆ ConvHR2(C1 ∪ C).

Suppose that after choosing C, (3.15) fails for some C1, C2 ∈ F ′, see Figure 4. The
circle C is in the interior of the region between the two common tangent lines h1
and h2 of C1 and C2. Let t be the tangent line of C through 〈LPt(C), 0〉, and
let Pi be the intersection point of hi and t for i ∈ {1, 2}. If RPt(C) tends to
infinity while LPt(C) is unchanged, then the arc of C between h1 and h2 with
middle point 〈LPt(C), 0〉 approaches the line segment P1P2. Therefore, replacing
C by C′ such that LPt(C′) = LPt(C) and RPt(C′) is sufficiently large, we have
C2 ⊆ ConvHR2(C1 ∪C

′) and (3.12). We can treat all pairs 〈C1, C2〉 ∈ F ′ ×F ′ with
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Figure 5. Here Lat〈F,HulloF 〉 is the 128-element boolean lattice

Figure 6. An 〈F,HulloF 〉 that does not satisfy (CC4)

LPt(C1) < LPt(C2), each after each, because RPt(C) can always be enlarged. This
proves that F is concave for some C. �

4. Odds and ends

Remark 4.1. It is not hard to see that Theorem 2.2 remains valid if we consider
closed discs or open discs instead of circles, and modify the definitions accordingly.
The advantage of circles is that they are easier to visualize and label in figures.
Open discs are particularly less pleasant than circles since they cannot be singletons.
Note that we cannot use semicircles or half discs since, by the following example,
the corresponding structure is not a convex geometry in general.

Example 4.2. Let

H1 = {〈x, y〉 : x2 + y2 = 4 and x ≤ 0}, H2 = {〈x, y〉 : x2 + y2 = 1 and x ≥ 0}.

Rotating H2 around 〈0, 0〉 by angle π/100, we obtain a half circle H3. Since H5−i

belongs to ConvHR2(H1 ∪Hi) for i ∈ {2, 3}, the anti-exchange property fails, and
we do not obtain a convex geometry from {H1, H2, H3}.

The following example shows that the convex dimension of 〈F,HulloF 〉 can be
arbitrarily large even if the circles in F are collinear.

Example 4.3. Let F be an n-element set of collinear circles. Assume that there is
an additional circle K such that every circle C ∈ F is internally tangent to K; see
Figure 5 for n = 7, where the dotted curve is an arc of K. Clearly, Lat〈F,HulloF 〉 =
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Figure 7. Illustrating the proof of Proposition 4.5

〈PowSet(F ),⊆〉 is the 2n-element boolean lattice, and the convex dimension of
Lat〈F,HulloF 〉 is n.

Proof. The equality Lat〈F,HulloF 〉 = 〈PowSet(F ),⊆〉 is obvious. Since

Mi 〈PowSet(F ),⊆〉 = {F \ {C} : C ∈ F}

is an n-element antichain, the convex dimension is n. �

While 〈E,Hull
(2)
E 〉 satisfies Carathéodory’s condition (CC3) for every finite set

E of points of the plane, the following example shows that circles are essentially
different from points.

Example 4.4. For each natural number n, there exists an (n + 2)-element set F
of circles in the plane such that 〈F,HulloF 〉 does not satisfy (CCn). For example,
we can take the inscribed circle of a regular (n+ 1)-gon and n+ 1 additional little
circles whose centers are the vertices of the (n+ 1)-gon; see Figure 6 for n = 4.

This example has no collinear counterpart since we have the following proposi-
tion.

Proposition 4.5. If F is a finite set of collinear circles, then 〈F,HulloF 〉 satisfies

Carathéodory’s condition (CC2).

Proof. In view of Lemma 3.2, we have to show the following: if C,D1, . . . , Dk ∈ F
such that C ⊆ ConvHR2(D1 ∪ · · · ∪Dk), then there exist i, j ∈ {1, . . . , k} such that
C ⊆ ConvHR2(Di ∪Dj). Let G be the boundary of ConvHR2(D1 ∪ . . . Dk); see the
thick closed curve in Figure 7, where k = 5 and F contains the solid circles and
possibly some other circles not indicated. (The dotted circle need not belong to F .)
Clearly, G can be divided into circular arcs and straight line segments of common
tangent lines of some circles belonging to {D1, . . . , Dk}; these parts are separated
by black-filled points in the figure. Keeping its center fixed, we enlarge C to C′

such that C′ ⊆ ConvHR2(D1 ∪ . . . Dk) and C
′ is internally tangent to G at a point

T ∈ G ∩ C′. There are two cases.
In the first case, we assume that T belongs to a circular arc of G. In the figure,

T in this case is not indicated; it can be any point of the closed circular arc V1V2.
This arc is also an arc of some member, Dm, of F . Clearly, C′ = Dm. Thus Dm

and C are concentric circles, and C ⊆ ConvHR2(Dm). Hence, we can let i = m
and j = m. Observe that circular arcs of length 0 cause no problem since then the
radius of Dm is zero, the center of Dm belongs to G, and C = Dm.
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In the second case, we assume that T belongs to a straight line segment PQ of
G. Now C′ is the dotted circle in the figure, and its center is U . We can assume
that T /∈ {P,Q} since otherwise the previous case applies. Clearly, P is a point
of a unique Di with center Ui, and Q is on a unique Dj with center Uj . Since
the radii PUi, TU and QUj are all perpendicular to the common tangent line PQ,
it follows that U is between Ui and Uj , and C

′ ⊆ ConvHR2(Di ∪ Dj). Therefore,
C ⊆ ConvHR2(Di ∪Dj). �

For a class U of structures, let IU denote the class of structures that are iso-
morphic to some members of U . We consider the following classes of finite convex
geometries; by circles we mean circles in the plane.

Kconcave

collinear
= I {〈F,HulloF 〉 : F is a finite, concave set of collinear circles},

Kcollinear = I {〈F,HulloF 〉 : F is a finite set of collinear circles},

Kplanar = I {〈F,HulloF 〉 : F is a finite set of circles},

Rdim=n

points
= I {〈E,Hull

(n)
E 〉 : E is a finite subset of Rn},

Gall = the class of all finite convex geometries.

Results by Adaricheva [3] and Bergman [9] show that

(4.1) Rdim=2

points
⊂ Rdim=3

points
⊂ Rdim=4

points
⊂ . . . .

We obtain from Examples 4.3 and 4.4, Theorem 2.2(A), and Proposition 4.5 that

(4.2) Kconcave

collinear
⊂ Kcollinear ⊂ Kplanar and, clearly, Rdim=2

points
⊆ Kplanar.

If E ⊆ R
2 consists of three non-collinear points and their barycenter, then the

convex geometry 〈E,Hull
(2)
E 〉 does not satisfy (CC2), and we conclude from Propo-

sition 4.5 that

(4.3) Rdim=2

points
6⊆ Kcollinear.

In the lattices associated with members of Rdim=n

points
, all join-irreducible elements are

atoms. This implies that

(4.4) for all n ≥ 2, Kconcave

collinear
6⊆ Rdim=n

points
.

4.1. Some open problems. In spite of (4.1), (4.2), (4.3), and (4.4), we do not
have a satisfactory description of the partially ordered set

(4.5) 〈{Kconcave

collinear
,Kcollinear,Kplanar,Gall,R

dim=1

points
,Rdim=2

points
,Rdim=3

points
, . . . },⊆〉.

In particular, we do not know whether

Rdim=3

points

?
⊆ Kplanar or Kplanar

?
= Gall holds.

If we augment the set (4.5) with convex geometries obtained from n-dimensional
spheres or, say, coplanar three-dimensional spheres, then the problem becomes even
more difficult. Finally, while Theorem 2.2 describes Kconcave

collinear
in an abstract way, we

have no similar descriptions for Kcollinear and Kplanar.
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4.2. Representation by 1-dimensional circles (added on May 19, 2013).
Let F be a finite subset of {〈a, b〉 : a, b ∈ R and a ≤ b}. Its elements will be called
1-dimensional circles. If C = 〈a, b〉 ∈ F , then a = LPt(C) and b = RPt(C) are
the left and right endpoints of C, respectively. Formulas (2.2) and (2.3) still make
sense, and we clearly obtain that 〈F,HulloF 〉 is a convex geometry. When reading
the first version of the present paper, Adaricheva [5] observed that Theorem 2.2
has the following corollary.

Corollary 4.6 (Adaricheva [5]). Up to isomorphism, finite convex geometries of

convex dimension at most 2 are characterized as the convex geometries 〈F,HulloF 〉,
where F ⊆ {〈a, b〉 : a, b ∈ R and a ≤ b} and F is finite.

Proof. Let 〈U,Φ〉 be a convex geometry of dimension at most 2. Theorem 2.2 yields
a finite, separated, concave setM of collinear circles such that 〈U,Φ〉 ∼= 〈M,HulloM 〉.
For C ∈ M , let ϕ(C) = 〈LPt(C),RPt(C)〉. Let F = {ϕ(C) : C ∈ M}. By (2.5),
ϕ : 〈M,HulloM 〉 → 〈F,HulloF 〉 is an isomorphism. This proves the non-trivial part;
the trivial part has already been mentioned. �

As opposed to the proof above, it is far less easy to derive Theorem 2.2 from
Corollary 4.6, because a finite set F of 1-dimensional circles is rarely of the form
{ϕ(C) : C ∈M} for a set M of concave, collinear circles.
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72–95 (1995)
[37] Monjardet, B.: A use for frequently rediscovering a concept. Order 1, 415–417 (1985)
[38] Nation, J. B.: Notes on Lattice Theory. http://www.math.hawaii.edu/∼jb/books.html

[39] Schmidt, E.T.: Congruence lattices and cover preserving embeddings of finite length semi-
modular lattices. Acta Sci. Math. Szeged 77, 47–52 (2011)

[40] Stern, M.: Semimodular Lattices. Theory and Applications, Encyclopedia of Mathematics
and its Applications 73. Cambridge University Press (1999)

[41] Ward, M.: Structure Residuation. Annals of Mathematics (2) 39, 558-568 (1938)

E-mail address: czedli@math.u-szeged.hu

URL: http://www.math.u-szeged.hu/∼czedli/

University of Szeged, Bolyai Institute. Szeged, Aradi vértanúk tere 1, HUNGARY
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