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Abstract

There is a deep connection between permutations and trees. Certain sub-structures of per-
mutations, called sub-permutations, bijectively map to sub-trees of binary increasing trees. This
opens a powerful tool set to study enumerative and probabilistic properties of sub-permutations and
to investigate the relationships between ’local’ and ’global’ features using the concept of pattern
avoidance.

First, given a pattern µ, we study how the avoidance of µ in a permutation π affects the presence
of other patterns in the sub-permutations of π. More precisely, considering patterns of length 3, we
solve instances of the following problem: given a class of permutations K and a pattern µ, we ask
for the number of permutations π ∈ Avn(µ) whose sub-permutations in K satisfy certain additional
constraints on their size.

Second, we study the probability for a generic pattern to be contained in a random permutation
π of size n without being present in the sub-permutations of π generated by the entry 1 ≤ k ≤ n.
These theoretical results can be useful to define efficient randomized pattern-search procedures
based on classical algorithms of pattern-recognition, while the general problem of pattern-search is
NP-complete.

1 Introduction

Characterizing a class of objects by means of its sub-structures is a general theme in mathematics.
Using the concept of pattern avoidance, we investigate sub-structures of permutations, called sub-
permutations, and demonstrate bijective relations and enumerative and probabilistic results.

Sub-permutations, as defined in Section 2, correspond to the classical concept of sub-trees via
a well known [11, 23] bijection which maps the set of pemutations of size n onto the set of binary
increasing trees (BITs) with n nodes.

The study of patterns in sub-permutations of un-constrained random permutations has been
initiated [8] by Flajolet et al. Using the equivalent sub-tree teminology for BITs, they focus on the
number of times a fixed permutation occurs as a sub-permutation of a larger random permutation.

There is a long standing interest in studying discrete structures constrained by pattern conditions.
The concept of pattern avoidance was introduced by MacMahon [16] and then elaborated by Knuth in
[14] and in [21] by Simion and Schmidt. Lately, several combinatorial structures – trees [6, 8, 10, 19],
lattice paths [4, 20] and compositions of integers [13] – have been analyzed using patterns constraints.

Here, we expand these concepts to sub-permutations and, by means of equivalence, to sub-trees
of BITs, which are constrained by pattern avoiding conditions. This new point of view is introduced
with the general aim of better understanding the relationships between ’local’ and ’global’ features
of pattern avoidance.

In Section 3 we concentrate on patterns of length three. We derive several enumerative and bijec-
tive properties for sub-permutations, relating them with other well-studied combinatorial structures
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such as planar binary trees and lattice paths. These properties are most easily formulated in the
light of the following general problem.

Problem: given a class of permutations K, we ask for the number of permutations π ∈ Avn(µ)
whose sub-permutations in K satisfy certain additional constraints on their size.

In particular, we consider µ = 312 and µ = 123. These two patterns can be taken as represen-
tative of the two clusters of patterns {312, 213, 132, 231} and {123, 321} which are not equivalent
with respect to the standard operators of mirror image, complement and inverse. In Section 3 we
consider four possible instances of class K. For µ = 312 we consider K = Av(213) and K equal to
the set of odd alternating permutations. In particular we prove that, for n→ ∞, taking at random
a permutation in π ∈ Avn(312) the expected value of the size of the biggest sub-permutation of π
belonging to Av(213) grows with log2(n). For µ = 123 we consider K = Av(21) and K = Av(12).
For the latter, we show that the number of permutations of Avn(123), whose biggest non-trivial
decreasing sub-permutation has size bounded by a fixed number j, is related to the number of Dyck
paths of size n avoiding the pattern U j+2D, where U (resp. D) stand for up (resp. down) step in
the path.

In Section 4 we introduce the concept of pattern avoidance in terms of sub-permutations. We
find the probability to detect a pattern 213 in a permutation by looking just at the sub-permutation
generated by the entry k = 2. Then, we generalize our results considering an arbitrary pattern σ
and a general value of the parameter k and we show that our theoretical results are in agreement
with data generated by Monte Carlo random experiments.

We expect that this new kind of pattern related problems will draw a number of practical
applications. For instance, for computational tasks [1, 5], it can be important to know when global
properties of a permutation can be predicted, if only local properties are known or accessible.
The kind of questions formulated here in the context of permutations and BITs are generic for all
combinatorial objects for which a notion of sub-structure is defined.

2 Preliminaries

The set of permutations of size n is denoted by Sn and S =
⋃

n Sn. We assume the reader to be
familiar with the classical concept of pattern avoidance in permutations. The subset of Sn made of
those permutations avoiding the pattern σ is usually denoted by Avn(σ) and Av(σ) =

⋃

n(Avn(σ)).
Let π = π1π2 . . . πn be a permutation. For a given entry πi we define sπ(πi) as the biggest

sub-string1 of π which contains πi and whose entries are greater than or equal to πi. Furthermore
let gπ(πi) be the permutation obtained rescaling sπ(πi). We call gπ(πi) the sub-permutation of π
generated by πi. The set of sub-permutations (gπ(πi))i=1...n is denoted by Gπ. Note that not all
sub-strings of π are (once rescaled) sub-permutations of π. It is crucial that only those maximal
sub-strings are extracted from π whose elements share the property of being greater than or equal
to a given entry of the sub-string. As an example consider the permutation π which is depicted in
Fig. 1 (a). In this case Gπ is made of gπ(5) = gπ(8) = 1, gπ(4) = 12, gπ(7) = 21, gπ(3) = 231,
gπ(6) = 132, gπ(2) = 1243 and gπ(1) = 45312687.

We also observe that there is a strong correspondance between sub-permutations as defined
above and the so-called x-factorizations of a permutation, see [12] and related references. Indeed,
following the notation of [12], the sub-permutation gπ(πi) is obtained by extracting together from
the permutation π the entry πi and the λ and ρ parts of the πi-factorization of π.

The concept of sub-permutations is related to the one of sub-trees. To illustrate this correspon-
dance we make use of a well known bijection [11, 23] between the set Sn and the set of binary
increasing trees of size n, denoted by Tn. We recall that a planar rooted tree t, having n nodes,
belongs to Tn when:

- each node has outdegree 0, 1 or 2. Nodes of outdegree 0 are called leaves ;

- each node (except for the root) can be left or right oriented with respect to its direct ancestor
(see Fig. 1 (b));

1sub-strings are sub-sequences of consecutive elements of π.
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Figure 1: (a) The permutation π = 45312687; (b) the tree associated with π by φ.

- each node is labelled (bijectively) with a number in {1, ..., n} in such a way going from the
root of t to any leaf of t we find an increasing sequence of numbers.

The bijection φ : Tn → Sn is given by the following procedure:

i) given a tree t each leaf of t collapses into its direct ancestor whose label is then modified
receiving on the left the label of the left child (if any) and on the right the label of the right
child (if any). We obtain in this way a new tree whose nodes are labelled with sequences of
numbers;

ii) starting from the obtained tree go to step i).

The algorithm φ ends when the tree t is reduced to a single node whose label is then a permutation
φ(t) of size n. For an example see Fig. 1.

The link between sub-permutations and sub-trees is expressed by the following proposition.

Proposition 1 Given a permutation π = φ(t), let ti be the (re-scaled) sub-tree of t generated by
the node πi, then the sub-permutation gπ(πi) is equal to φ(ti).

By Proposition 1, we have that the size of the sub-permutation gπ(πi) is given by the number of
nodes descending from node πi in the tree t = φ−1(π). In [15] the authors study statistics related to
the number of descendants in subtrees of BITs. In particular, for a random permutation π of size n
expectation and variance of the size of the sub-permutation generated by entry k are

E(|gπ(k)|) =
2n− k + 1

k + 1
and (1)

Var(|gπ(k)|) =
2(n+ 1)(k − 1)(n− k)

(k + 1)2(k + 2)
. (2)

More generally, for a random permutation of size n, the size of the sub-permutation generated by k
is equal to m with probability

Prob(|gπ(k)| = m) =
km

(

n−m−1
k−2

)

n
(

n−1
k−1

) . (3)

3 On the sub-permutations of π ∈ Av(µ) belonging to K
In this section we determine the number of permutations in Avn(µ) whose sub-permutations in K
satisfy certain size-constraints. We consider several instances of µ and K and find new enumerative
results depending on the constraints we require each time.Some of them are connected to already
known combinatorial problems. We will study the patterns µ = 312 and µ = 123. It is well known

3
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Figure 2: The mapping ψ.

that both the classes Av(312) and Av(123) are enumerated by Catalan numbers whose first terms
are

c0 = 1, c1 = 1, c2 = 2, c3 = 5, c4 = 14, c5 = 42, c6 = 132, c7 = 429.

The associated ordinary generating function is [9]

C(x) =
∑

n≥0

cnx
n =

1−
√
1− 4x

2x
, (4)

which has a closed form for its n-th coefficient given by

cn =
1

n+ 1

(

2n

n

)

.

Furthermore, it is well known that the asymptotic behaviour for cn is

cn ∼ 4n√
πn3

.

3.1 µ = 312 and binary rooted planar trees

We denote by Bn the set of binary rooted planar trees with n internal nodes, where each internal
node has outdegree two. It is well known that one can bijectively map the set Bn onto the set
Avn(312). In particular we use a bijection ψ : Bn → Avn(312) which works similarly to the mapping
φ of Section 2, as follows.

Take t ∈ Bn and visit its nodes according to the pre-order traversal labelling each node of
outdegree two in increasing order starting with the label 1 for the root. After this first step one
has a tree labelled with integers at its nodes of outdegree two. Each leaf now collapses to its direct
ancestor which takes a new label receiving on the left (resp. right) the label of its left (resp. right)
child. We go on collapsing leaves until we achieve a tree made of one node which is labelled with a
permutation of size n. See Fig. 2 for an instance of this mapping.

3.1.1 K = Av(213) and caterpillar sub-trees

Let K = Av(213). A tree t in Bn is a caterpillar of size n, if each node of t is a leaf or has at
least one leaf as a direct descendant. Through the bijection ψ we see that, given a permutation
π ∈ Av(312), the parameter γπ(K), that is the size of the biggest sub-permutation of π belonging to
Av(213), corresponds to the size (number of internal nodes) of the biggest sub-tree of ψ−1(π) which
is a caterpillar.

Let
Pj = Pj(x) =

∑

n≥0

vj,nx
n

be the ordinary generating function counting those permutations π in Avn(µ) having γπ(K) ≤ j, we
observe that Pj must then satisfy the equation

4



Pj = 1 + xPj
2 − 2jxj+1. (5)

Indeed, a tree t whose biggest caterpillar sub-tree is of size at most j, is either a leaf or it is built
by appending to the root of t two trees t1 and t2 of the same class. We must exclude the case in
which one of the two, t1 or t2, has size 0, i.e., is a leaf, and the other one is a caterpillar of size j.
Since there are exactly 2j−1 caterpillars of size j the previous formula follows.

From (5) we obtain

Pj(x) =
1−

√
1− 4x+ 2j+2xj+2

2x
(6)

which gives an expansion, for j = 1, with the following coefficients

1, 1, 0, 1, 2, 6, 16, 45, 126, 358, 1024

which correspond to sequence A025266 of [22]. As stated there, they also count classes of Motzkin
paths satisfying some constraints.

The asymptotic behaviour of the coefficients of Pj follows by standard analytic methods [9].
When n becomes large the coefficients grow like

vj,n ∼ 1

4

√

4ρj − (j + 2)2j+2ρj+2
j

πn3

(

1

ρj

)n+1

, (7)

where ρj is the smallest positive solution of

1− 4x+ 2j+2xj+2 = 0.

Starting from the following inequality

1

4
< ρj <

2

5
,

which is strightforward to prove for all j ≥ 1, and applying the so-called bootstrapping technique [9]
one can show that ρj tends to 1/4 as

ρj =
1

4
+

1

2j+4
+O

(

j

(

2

5

)j
)

.

The main result we want to present in this section concerns the average of γ = γπ(K) when the
size of the permutation π is large.

Proposition 2 Let π ∈ Avn(µ), the expected value of γπ(K) is asymptotically equivalent to log2(n).

Proof. If n ≥ 1 we can express the desired average value as

En(γ) =
1v1,n +

∑

j≥1(j + 1)(vj+1,n − vj,n)

cn

=
−v1,n − ...− vn−1,n + nvn,n +

∑

j≥n(j + 1)(vj+1,n − vj,n)

cn

=
−v1,n − ...− vn−1,n + ncn +

∑

j≥n(cn − vj,n)

cn

=

∑n−1
j=1 (cn − vj,n) + cn +

∑

j≥n(cn − vj,n)

cn

=
cn +

∑

j≥1(cn − vj,n)

cn

= 1 +

∑

j≥1(cn − vj,n)

cn

5



In the previous calculation we have used the fact that for j ≥ n we always have vj,n = cn.
It is sufficient now to find the n-th term of the function

U(x) =
∑

j≥1

(C(x) − Pj(x)) =

√
1− 4x

2x

∑

j≥1

(
√

1 +
2j+2xj+2

1− 4x
− 1

)

.

In what follows we want to find a function Ũ which estimates U near the dominant singularity
1/4. According to [9], when n is large, the n-th term of the Taylor expansion of Ũ provides an
approximation of [xn]U(x). Our approach results to be similar to the one used in Section 3 of [10].

Let us fix x near 1/4 and let us consider the threshold function

j0 = log2
1

|1− 4x| .

Then, supposing j ≥ j0 − 1, we have that

√

1 +
2j+2xj+2

1− 4x
∼
√

1 +
1

2j+2(1− 4x)
∼ 1 +

1

2j+3(1− 4x)
,

while if j < j0 − 1 we can use the approximation

√

1 +
2j+2xj+2

1− 4x
∼
√

1 +
1

2j+2(1− 4x)
∼
√

1

2j+2(1− 4x)
.

For x sufficiently close to 1/4 we estimate U(x) as

U(x) ∼
√
1− 4x

2x
√
1− 4x





j0−2
∑

j≥1

√

1

2j+2



−
√
1− 4x

2x





j0−2
∑

j≥1

1



+

√
1− 4x

2x(1 − 4x)





∑

j≥j0−1

1

2j+3





=
1

4x

j0−2
∑

j≥1

√

1

2j
−

√
1− 4x

2x
(j0 − 2) +

1

16x
√
1− 4x

∑

j≥j0−1

1

2j

=
1

4x

−
√
2 + 2

√
2
√
2−j0

−2 +
√
2

−
√
1− 4x

2x

(

log2

(

1

|1− 4x|

)

− 2

)

+
22−j0

16x
√
1− 4x

=
log(2)

x log(16)
+

√
2 log(2)

x log(16)
− 2

√
2− 8x log(2)

x log(16)
−

√
1− 4x log(2)

x log(16)
−

2
√
1− 4x log

(

1
4−16x

)

x log(16)

∼ −
2
√
1− 4x log

(

1
1−4x

)

x log(16)
.

Using the previous calculation we can say that

Ũ(x) = −
2
√
1− 4x log

(

1
1−4x

)

x log(16)
(8)

approximates U(x) near its dominant singularity 1/4. It follows that when n→ ∞

En(γ) ∼
[xn]Ũ(x)

cn
.

Applying standard methods [9, 10] to (8) we find that

6



[xn]Ũ(x) ∼ 4n+1 log(n)

log(16)
√
πn3

.

Dividing by the asymptotic behaviour of Catalan numbers gives the claim. �
As a test one can consider the following table where, for several values of n, we compare the true

En(γ) with the approximation given by Proposition 2.

n 10 20 50 100 200 500 1000
En(γ) 3.596 4.172 5.227 6.121 7.058 8.336 9.319
log2(n) 3.321 4.321 5.643 6.643 7.643 8.965 9.965

To conclude this section it is interesting to observe another possible application of the function
Pj described in (6). Indeed the number of permutations in Avn(µ) having no sub-permutation of
size j in K is given by the n-th coefficient of

Pj−1(x) =
1−

√
1− 4x+ 2j+1xj+1

2x
. (9)

We will compare this result with the analogous one provided in the next section.

3.1.2 When K is the set of (odd) alternating permutations

Let K be the set of (odd) alternating permutations. A tree in Bn, where n is odd, is called strictly
binary if, removing the leaves, the remaining nodes have either out-degree 0 or out-degree 2. The
corresponding (through the mapping ψ) sub-set of Avn(µ) consists of permutations π = π1π2...πn
characterized by the following property: either n = 0, 1 or π1 > π2 < π3 > ... < πn . It is well known
that the number of strictly binary trees of size 2m+ 1 is cm.

The ordinary generating function Lj = Lj(x), with j = 2m+ 1, counts those trees in Bn having
at least one strictly binary sub-tree of size j. Equivalently, it can be seen as the function counting
the permutations in Avn(µ) with at least one alternating sub-permutation of size j. Lj must then
satisfy

Lj = cmx
j + xLj

2 + 2xLj(C − Lj), (10)

where C = C(x) is the generating function of Catalan numbers as in (4).
Indeed a tree counted by Lj is either a strictly binary tree of size j (first summand) or it is built

by appending to the root two trees, where at least one of them contains a strictly binary sub-tree
of size j (second and third summand).

By solving (10) we obtain

Lj(x) =

√
1− 4x+ 4cmxj+1 −

√
1− 4x

2x
. (11)

From (11, we can also determine the number of those permutations avoiding the pattern 312 and
without (odd) alternating sub-permutation of size j. This is given by

C(x)− Lj(x) =
1−

√
1− 4x+ 4cmxj+1

2x
. (12)

It is now possible to compare results (9) and (12) for a fixed j = 2m + 1 when m is large. In
other words, we want to measure how the avoidance of the pattern µ = 312 affects the presence
of the pattern 213 in sub-permutations (from (9)) in comparison with the avoidance of alternating
sub-permutations (from (12)). By means of the bijection ψ with trees described before, this gives
a comaprison between caterpillar-shaped subtrees and strictly binary subtrees. Let us consider
am > 1/4 (resp. bm > 1/4) defined as the smallest positive root of 1 − 4x + 4cmx

2m+2 = 0 (resp.

7



1 − 4x + 22m+2x2m+2 = 0). By asymptotic considerations, we know that when m → ∞ both am
and bm tend to 1/4. But we can be more precise: when m is large, the equality

1− 4am + 4cma
2m+2
m = 0 = 1− 4bm + 22m+2b2m+2

m

implies
am
bm

=
−1 + 4mb2m+1

m

−1 + cma
2m+1
m

∼ −1 + (14 )
m+1

−1 + cm(14 )
2m+1

< 1.

For example, if m = 5, we have that am/bm = 0.999765 while the previous approximation gives
0.999766.

By standard methods [9] one can compute the asymptotic behaviour of the n-th coefficient of
(12) as

1

4

√

4am − (2m+ 2)4cma
2m+2
m

πn3

(

1

am

)n+1

while the behaviour of the n-th coefficient of (9) is given by (7) (considering bm = ρj−1) as

1

4

√

4bm − (2m+ 2)22m+2b2m+2
m

πn3

(

1

bm

)n+1

.

From these results follows

Proposition 3 For a fixed and sufficiently large m, when n→ ∞, the ratio

|{π ∈ Avn(µ) : (Gπ ∩ Av(213) ∩ S2m+1) = ∅}|
|{π ∈ Avn(µ) : (Gπ ∩ K ∩ S2m+1) = ∅}| (13)

goes to 0 equally fast as

km

( −1 + (14 )
m+1

−1 + cm(14 )
2m+1

)n+1

, (14)

where km is a constant depending only on m.

In the following table we compare the values of the ratio of Proposition 3 with the asymptotic
ratio (14) for m = 5 and different values of n.

n 50 500 1000 5000 10000
ratio (13) 0.986 0.887 0.789 0.308 0.095

km = 1 in (14) 0.988 0.889 0.791 0.310 0.096

3.2 µ = 123, a generating tree approach

In what follows let µ = 123 be fixed. Permutations which are the union of two decreasing subse-
quences have been studied since long [14]. It is known that they are characterized by the property of
having no increasing subsequence of length 3. Thus the entries of a permutation π ∈ Av(µ) can be
seen as points lying on two non-intersecting lines as depicted in Fig. 3. Viceversa, each permutation
which can be drawn in such a way avoids µ. A point p1 on the line D is covered by a point p2 of
the upper line U if p2 is on the right and above p1. In order to avoid redundancies in the two-line
representation of a permutation we have to respect the following rule: a point belongs to the upper
line U if and only if it covers at least one point of D.

It is useful to observe that the set Avn+1(µ) can be generated by the permutations of Avn(µ)
adding the rightmost entry. Taken π ∈ Avn(µ), let us define u(π) as the right-most point placed on
the line U (if any) and let l(π) be the number of elements which are placed on D with a smaller
ordinate than u(π). In order to create a permutation π′ of size n+1 we add on the right of π a new
element p′. If p′ is placed on the D line then l(π′) = l(π) + 1. Otherwise p′ can be placed on the U
line in exactly l(π) different ways, see Fig. 4. In this case l(π′) ranges between 1 and l(π).

8
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In conclusion, we have described a generating tree procedure which starts with the single element
permutation and, always adding the rightmost entry, generates all the permutations in Av(123).
Furthermore, if we consider (l) = (l(π)) the previous procedure can be summarized as

(l) (1), (2), ..., (l + 1). (15)

This rule can be viewed as a tree generating procedure, where a label (l) is a node with (l + 1)
descendants. If the starting label (i.e. the root of the tree) is (0), the number of nodes at level n is
given by cn. More details on generating trees and their applications to enumerative problems can
be found in [2, 3, 24].

3.2.1 K = Av(21), the biggest increasing sub-permutation

Let K = Av(21) and let γπ(K) ∈ {1, 2} be the size of biggest increasing sub-permutation of a given
π ∈ Av(µ). Notice that γπ(K) = 2 if and only if the first (from left to right) three entries of π
are in the order 231. Indeed, if a < b are the entries of an increasing sub-permutation of size 2,
such a sub-permutation is the one generated by a. It follows that a must be the leftmost entry
of π while b the topmost. In order to ’close’ the sub-permutation, we also need the presence of a
point c < a placed immediately on the right of b. For instance, the permutation π = 132 has its
biggest increasing sub-permutation of size 1 (and not 2) because, with notations of Section 2, one
has gπ(1) = 132, gπ(2) = 21 and gπ(3) = 1.

To count the permutations π ∈ Av(µ) of size n(π) ≥ 3 with the biggest increasing sub-
permutation of size 2 we have just to consider rule (15) with a starting point given by (2) = l(231).

The ordinary generating function

M2(x, y) =
∑

π

xn(π)yl(π)

satisfies the functional equation

(

1 +
xy2

1− y

)

M2(x, y) = x3y2 +
xy

1− y
M2(x, 1) (16)

which can be solved by the kernel method [2, 18] finding

M2(x, 1) =
1

4

(

−1 +
√
1− 4x

) (

−1 +
√
1− 4x+ 2x

)

.

A closed formula for the coefficients is given by

[xn]M2(x, 1) =
3(2n− 4)!

(n− 3)!n!
(withn ≥ 3).

In conclusion we can state that

Proposition 4 If n ≥ 3, the number of permutations in Avn(123) having an increasing sub-
permutation of size 2 is

an =
3(2n− 4))!

(n− 3)!n!
.

Furthermore, the ones having the biggest increasing sub-permutation of size 1 are (with n ≥ 3)

bn = cn − an,

where cn is the n-th Catalan number.

For n = 3, ..., 10 the following table shows the values of an and bn.
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n = 3 4 5 6 7 8 9 10
an 1 3 9 28 90 297 1001 3432
bn 4 11 33 104 339 1133 3861 13364

The coefficients an are the (shifted) entries of sequence A000245 of [22], while the numbers bn
do not appear there.

3.2.2 K = Av(12) and pattern avoidance in Dyck paths

Let K = Av(12). Thus, in this section, we investigate decreasing sub-permutations of a given
π ∈ Av(µ).

Based on the two line representation of π, which is described at the beginning of Section 3.2, we
can observe that there are two kinds of decreasing sub-pemutations. More precisely, if gπ(πi) is a
decreasing sub-permutation of size j, either gπ(πi) corresponds to a sequence of j adjacent points
(adjacent with respect to their abscissas) lying on the line U or gπ(πi) consists of the first j entries
of π (that are therefore placed on the line D). In the latter case, the sub-permutations is said to be
trivial (see Fig. 3). Indeed, if πi is on the line U , then all the entries of gπ(πi) belong to the same
line. On the other hand, if πi is placed on D, then there is no entry of U on the left of πi. Such
an entry should indeed cover an entry placed on D. The latter would be also present in gπ(πi) that
would then be not decreasing.

It can also be noticed that the entries of a non-trivial decreasing sub-permutations are always
introduced (reading from left to right) by an ascending step of the permutation.

For instance, the permutation depicted in Fig. 3 has three non-trivial decreasing sub-permutations,
the one generated by the entry 9 and introduced by the ascent 7− 9, the one generated by 6 intro-
duced by 3 − 6 and the biggest one which is generated by 5 and still introduced by the ascent step
3− 6.

In what follows, we denote by γUπ the size of the biggest non-trivial decreasing sub-permutation
of π and we study the number of π’s such that γUπ is at most j.

Given π, it is useful to consider the point d(π) defined as the right-most point placed on the
line D. With the terminology of Section 3.2, the parameter v = v(π) is defined as the number of
points placed on the line U which are covering d(π). In the permutation of Fig. 3 we have v(π) = 0.
Looking at the recursive contruction of Av(µ), which has been defined in Section 3.2, we observe
that, in order to create only permutations satisfying γU ≤ j, it is sufficient to avoid at each step
the construction of a permutation with a v-value greater than j. This corresponds to use the rules
of the form

(l) (l′) (with l′ ≤ l) (17)

no more than j times consecutively.
If we put the same restrictions on a particular recursive construction holding for Dyck paths [7],

it turns out that the statistic γUπ ≤ j is equivalent to determine the number of those paths avoiding
the pattern U j+2D (defined below) and having a fixed size. This problem on paths has been deeply
studied in the literature, see for example [20] as well as the following sequences of [22]: A001006,
i.e., the one of Motzkin numbers, for the case j = 1, A036765 for the case j = 2 and A036766 for
j = 3.

We assume the reader is familiar with the definition of Dyck paths. The set of Dyck paths of
semi-length n is denoted by Dn and it is a well known fact that |Dn| = cn. We represent a path p
as a sequence of up U and down D steps. We define a block (or a primitive Dyck path [7]) of p as a
minimal sub-string (made of consecutive entries) which is still Dyck path and which starts at height
0 in p. For example, if p = UUDUDDUD, then there are only two blocks inside p: UUDUDD
made by the first six steps and UD which corresponds to the last two entries of p.

The set Dn+1 can be generated recursively by the paths in Dn according to a construction which
we use to show the main result of this section. Let

p = b1...bk−1bk
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be a path of Dn decomposed in terms of its blocks, where k > 0. In order to create a path p′ of
semi-length n+ 1 we add two steps U and D inside p in k + 1 possible ways. Obtaining

p′ =UDp or (18)

p′ =Ub1...biDbi+1...bk (1 ≤ i ≤ k). (19)

In both cases we add an U step at the beginning creating the left-most block of p′. In [7] this
decomposition is called first return decomposition. If p is a path, let l(p) be the number of its blocks.
The construction above corresponds then to the generating tree associated with the rules already
described in (15). In particular, (18) is associated with (l) (l + 1).

Now, we are ready to prove the following result.

Proposition 5 The number of permutations π ∈ Avn(µ) having γ
U
π ≤ j equals the number of paths

in Dn avoiding U j+2D

Proof. Considering what we have already shown previously, we have to prove two facts: i) if we use
the rule (l) (l′) with l′ ≤ l for more than j consecutive times in the construction of a path p, then
p contains the considered pattern; ii) if p contains U j+2D, then it has been created using rule (17)
consecutively at least j + 1 times. To prove i) it is enough to observe that we obtain a path which
starts as U j+1b1... if we start from a generic path b1...bk and we apply (17) j+1 times consecutively.
The claim follows because b1 starts as b1 = U iD..., with i > 0. To prove ii) let us suppose that
U j+2D is inside a path p and let us denote by T the generating tree associated with rules (18) and
(19). Observe that we can move inside T going from p to the root simply removing, step-by-step,
the left-most entry U of p and the corresponding D. We must find, at some point, an ancestor of p
which starts as U j+2D.... To buid this ancestor, the last j + 1 applications of the construction rule
belong to case (19). �

4 Pattern avoidance looking at sub-permutations

Using the terminology of Section 2 it is obvious that, for any pattern σ, each permutation π satisfies
the following equivalence

π ∈ Av(σ) ⇐⇒ gπ(1) ∈ Av(σ).

This is due to the fact that gπ(1) = π. This does in general not hold for an entry k > 1. Given
k > 1 and a pattern σ, it seems interesting to consider permutations π for which

π ∈ Av(σ) ⇐⇒ gπ(k) ∈ Av(σ).

In other words we seek π such that if it contains σ (σ ≺ π), then also σ ≺ gπ(k). We denote the set
of such permutations by Av(σ; k). Furthermore note that in terms of probability one has

Prob(π ∈ Av(σ)|gπ(k) ∈ Av(σ)) = Prob(π ∈ Av(σ; k))

or equivalently
Prob(σ ≺ π and σ ⊀ gπ(k)) = Prob(π /∈ Av(σ; k)) (20)

which quantifies the presence of the pattern σ in π depending on its presence in the sub-
permutation generated by the entry k.

For a fixed n, we expect the value for Prob(π /∈ Avn(σ; k)) to increase from 0 to 1 when k goes
from k = 1 to k = n. Using randomly generated permutations, this behaviour is depicted in Fig. 5
for several patterns of different lengths. The size of the random pemutation π is fixed at n = 50.
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Figure 5: Plot of the probability Prob(π /∈ Av50(σ; k)) for patterns σ = 213, 1324, 25314 (from bottom
to top).

Computational aspects. From an algorithmic point of view, it is a difficult task to decide
whether a permutation σ is contained as pattern in a text-permutation π. In fact, in its generality,
this problem is NP-complete [1, 5]. Therefore, predicting the presence of a pattern based on the
inspection of a limited part of the input text-permutation, can make an appreciable difference in
terms of running-time of a pattern recognition procedure.

A sub-permutations approach and knowledge of the probability (20) can be used to introduce a
probabilistic aspect to pattern search. Considering sub-permutations, for a ’probabilistic’ version of
any search algorithm one can make the following statement: in case the pattern σ is not detected
in gπ(k) according to the given search procedure, then σ is in π with probability

Prob(σ ≺ π|σ ⊀ gπ(k)) =
Prob(π /∈ Av(σ; k))

Prob(gπ(k) ∈ Av(σ))
. (21)

Observe that focusing on gπ(k) reduces the size of the input text-permutation for the search-
procedure according to (1) and (2). For instance, if k = 3, on average we pass from an input of
size n to roughly n/2. Vice versa, if k is large, say n = O(k), then the input for the original search
procedure is on average a constant. For example, k = n/2 gives E(gπ(k))) ≃ 3. In this cases, when
the expectation for |gπ(k)| is a constant K and assuming the knowledge of the cardinality |AvK(σ)|,
the denominator of (21) can be approximated by considering gπ(k) as a random permutation of size
K.

Below, we investigate the behaviour of Prob(π /∈ Avn(σ; k)) for random pemutations of size n.
We start by providing an exact result for the Catalan pattern σ = 213 and the sub-permutations
generated by the entry k = 2.

4.1 The cardinality of Av
n
(213; 2) and generalizations

We proceed counting those permutations π ∈ Sn such that 213 ≺ π and gπ(2) ∈ Av(213). Given π
of size n, we denote by m the lowest entry of π such that m 6= 1 and m /∈ sπ(2). Observe that m
could not exist. In order to have π /∈ Avn(213; 2) only three distinct situations are possible.

i) The entry 2 is placed on the left of 1 and m exists;

ii) the entry 2 is placed on the right of 1 and 213 ≺ gπ(m);

iii) the entry 2 is placed on the right of 1 and gπ(m) ∈ Av(213). Observe that in this case we find
213 ≺ π if and only if m < M , whereM is defined as the biggest entry of π belonging to gπ(2).

13



Let us denote by i the cardinality of gπ(2), then we have 1 ≤ i ≤ n− 1 and n− i − 1 gives the
number of entries in gπ(m). The number of permutations corresponding to i) is then

n−2
∑

i=1

ci (n− i− 1)!

(

n− 2

i− 1

)

. (22)

Similarly, the number of possible instances of ii) is given by

n−4
∑

i=1

ci ((n− i− 1)!− cn−i−1)

(

n− 2

i− 1

)

. (23)

Finally, in case iii) we have
n−2
∑

i=1

ci cn−i−1

((

n− 2

i− 1

)

− 1

)

. (24)

These three results gives the following

Proposition 6 The number of permutations of size n wich are not in Avn(213; 2) is given by

|Sn \Av(213; 2)| = 2(n− 2)!

(

n−4
∑

i=1

ci
(i − 1)!

)

+ 2(n− 2)(n− 3)cn−3 (25)

+ 2(n− 2)cn−2 − cn + 2cn−1,

where cnis the n-th Catalan number.

It follows that the cardinality of Avn(213; 2) is given by

|Avn(213; 2)| = n!− |Sn \Av(213; 2)|
and, for 3 ≤ n ≤ 10, the numbers are

5, 16, 68, 392, 2905, 25508, 251188, 2703440,

which are not listed in [22].
When n is large we can approximate the sum inside parentheses in (25) with a constant

h = lim
n→∞

n−4
∑

i=1

ci
(i− 1)!

= 11.75330... . (26)

An asymptotic approximation of |Sn \Av(213; 2)| is then given by

2(n− 2)!h.

The probability that a permutation of size n→ ∞ does not belong to Av(213; 2) is then

Prob(π /∈ Avn(213; 2)) ∼
2h

n2
. (27)

Generalazing to other patterns σ. Observe that equation (27) depends only on the constant
h (besides n). This constant can be determined with high accuracy from the first few, say 50,
summands in (26). This suggests that often one does not need to know for every n the number of
permutations in Avn(σ) to determine the behaviour of Avn(σ; k)/n!. In fact, if k = 2 and for n
large,

Prob(π /∈ Avn(σ; 2)) ∼
2hσ
n2

, (28)
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where

hσ = lim
n→∞

n−1−|σ|
∑

i=1

|Avi(σ)|
(i− 1)!

.

Note that the sum in (28) converges because of the Stanley-Wilf bound [17]. The constant hσ can
be approximated using the first values of (|Avn(σ)|)n. The reasoning which leads to (28) is the
following. As done for the case Av(213; 2), let us consider a permutation π /∈ Avn(σ; 2). Let i be the
size of gπ(2) and m the lowest entry of π with m 6= 1 and m /∈ sπ(2). There are two basic cases for
π depending on the presence of the pattern σ in gπ(m). If gπ(m) /∈ Av(σ), the number of possible
π’s is given by

2(n− 2)!





n−1−|σ|
∑

i=1

|Avi(σ)|
(i − 1)!

−
n−1−|σ|
∑

i=1

|Avi(σ)|
(i− 1)!

× |Avn−i−1(σ)|
(n− i− 1)!



 .

If gπ(m) ∈ Av(σ) then the number of possible π’s is bounded from the top by

2(n− 2)!

n−1
∑

i=1

|Avi(σ)|
(i − 1)!

× |Avn−i−1(σ)|
(n− i− 1)!

.

It follows that

2(n− 2)!



hσ −
n−1−|σ|
∑

i=1

|Avi(σ)|
(i− 1)!

× |Avn−i−1(σ)|
(n− i− 1)!



 (29)

≤ |Sn \Av(σ; 2)|

≤ 2(n− 2)!



hσ +

n−1
∑

i=n−|σ|

|Avi(σ)|
(i − 1)!

× |Avn−i−1(σ)|
(n− i− 1)!



 . (30)

The sums appearing in (29) and (30) go to zero for n large. In particular, using the Stanley-Wilf
bound [17] with |Avn(σ)| ≤ cn, the sum in (29) satisfies

n−1−|σ|
∑

i=1

|Avi(σ)|
(i − 1)!

× |Avn−i−1(σ)|
(n− i− 1)!

≤ cnPol.(n)

n!

n
∑

i=0

(

n

i

)

=
(2c)nPol.(n)

n!
→ 0.

Dividing by n! we obtain the desired result

Prob(π /∈ Avn(σ; 2)) ∼
2hσ
n2

.

Approximations for higher values of k. If π is a random permutation of size n large
enough, we can assume that

Prob(σ ⊀ gπ(k) and σ ≺ π) ≃ Prob(σ ⊀ gπ(k)).

Thus

Prob(π /∈ Avn(σ; k)) ≃
n−k+1
∑

m=1

Prob(|gπ(k)| = m and σ ⊀ gπ(k))

=
n−k+1
∑

m=1

Prob(|gπ(k)| = m)× Prob(σ ⊀ gπ(k)| size(gπ(k)) = m).
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Figure 6: (Top) Plot of Prob(π /∈ Av50(213; k)) for 1 ≤ k ≤ 50. Dots are obtained experimentally via
computer simulation. The line is drawn according to (31). (Bottom) Plot of Prob(π /∈ Avn(213; k))
for small values of k and 15 ≤ n ≤ 50. From bottom to top we set k = 2, 3, 4, 5 respectively. Points
correspond to experimental data while lines represent theoretical results according to (31).

Averaging over all possible permutations π of size n, we take the sub-permutation gπ(k) as a random
permutation of size 1 ≤ m ≤ n− k + 1 with probability given by (3). Thus we estimate

Prob(π /∈ Avn(σ; k)) ≃
k

n
(

n−1
k−1

)

n−k+1
∑

m=1

m
(

n−m−1
k−2

)

m!
· |Avm(σ)|. (31)

For instance, if |σ| = 3, (31) can be computed using Catalan numbers and the result can be compared
with simulation-data used to obtain Fig. 5 (bottom line). This is done in Fig. 6.

Note that (31) can be rewritten as

Prob(π /∈ Avn(σ; k)) ≃
k(k − 1)

n(n− 1)

n−k+1
∑

m=1

(

n−m−1
k−2

)

(

n−2
k−2

) × |Avm(σ)|
(m− 1)!

. (32)

This shows that, from a theoretical point of view, in order to compute the considered probability,
there is no need to know the complete enumeration of the sequence (|Avm(σ)|)m. Indeed, the sum
in (32) converges because so does

∑∞
m=1 |Avm(σ)|/(m− 1)!. For any 2 ≤ k ≤ n we thus define

wσ,n,k =
n−k+1
∑

m=1

(

n−m−1
k−2

)

(

n−2
k−2

) × |Avm(σ)|
(m− 1)!

(33)

and we have the following
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Figure 7: Plot of Prob(π /∈ Av50(1324; k)) for 2 ≤ k ≤ 50. Points are obtained experimentally via
random generation. The line is drawn according to (34) using the first 20 terms of the sequence
|Avm(1324)|.

Proposition 7 For a random permutation π of size n and 2 ≤ k ≤ n we have

Prob(π /∈ Avn(σ; k)) ≃ wσ,n,k ·
k(k − 1)

n(n− 1)
, (34)

where wσ,n,k converges to a constant (33) when n is large enough.

For instance, take σ = 1324 and n = 50. Consider the first 20 terms of the sequence |Avn(1324)|
([22] seq. A061552). We approximate w1324,50,k as

w1324,50,k ≃
min(20,50−k+1)

∑

m=1

(

50−m−1
k−2

)

(

50−2
k−2

) × |Avm(σ)|
(m− 1)!

.

Then we can test the estimate given in (34) with data from simulations for n = 50 (middle line in
Fig. 5). The result is depicted in Fig. 7.
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