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A SHARP REFINEMENT OF A RESULT OF ZVEROVICH–ZVEROVICH

GRANT CAIRNS, STACEY MENDAN, AND YURI NIKOLAYEVSKY

Abstract. For a finite sequence of positive integers to be the degree sequence of a finite
graph, Zverovich and Zverovich gave a sufficient condition involving only the length of the
sequence, its maximal element and its minimal element. In this paper we give a sharp
refinement of Zverovich–Zverovich’s result.

1. Introduction

A finite sequence d = (d1, . . . , dn) of positive integers is graphic if it occurs as the sequence
of vertex degrees of a simple graph. The classic theorem of Erdős and Gallai Theorem gives
a necessary and sufficient condition for a sequence to be graphic (see [6, 5, 7]). A theorem of
Zverovich and Zverovich gives a sufficient condition involving only the length of the sequence,
its maximal element and its minimal element. Their result can be stated in the following
equivalent form.

Theorem 1 ([8, Theorem 6]). Suppose that d is a decreasing sequence of positive integers
with even sum. Let a (resp. b) denote the maximal (resp. minimal) element of d. Then d is
graphic if

(1) nb ≥
(a+ b+ 1)2

4
.

It is known that this result is not sharp (see [1]). A sharp bound in the case b = 1 was
given in [2]. The main aim of this paper is to prove the following result, which is sharp for
all a, b and n.

Theorem 2. Suppose that d is a decreasing sequence of positive integers with even sum. Let
a (resp. b) denote the maximal (resp. minimal) element of d. Then d is graphic if

(2) nb ≥























⌊

(a+ b+ 1)2

4

⌋

− 1 : if b is odd, or a + b ≡ 1 (mod 4),

⌊

(a+ b+ 1)2

4

⌋

: otherwise,

where ⌊.⌋ denotes the integer part. Moreover, for any triple (a, b, n) of positive integers with
b < a < n that fails (2), there is a nongraphic sequence of length n having even sum with
maximal element a and minimal element b.
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The paper is organised as follows. In Section 2 we examine condition (2) and rewrite
it in a more convenient form. We then prove that condition (2) is sufficient in Section 3.
The sharpness is shown in Section 5. To establish this we first prove the following result in
Section 4, which may be of independent interest. Here, and in sequences throughout this
paper, the superscripts indicate the number of repetitions of the entry.

Theorem 3. Consider natural numbers b < a < n and suppose that as + b(n − s) is even.
Then for 0 < s < n, the sequence (as, bn−s) is graphic if and only if s2−(1+a+b)s+nb ≥ 0.

Remark. The assumption b < a < n is not restrictive. All sequences with a ≥ n are
obviously nongraphic. For a = b, it follows from Theorem 2 that (an) is graphic if and only
if an is even and a < n.

Throughout the following, d = (d1, . . . , dn) denotes a decreasing sequence with maximal
element d1 = a and minimal element dn = b.

2. The hypothesis

We claim that the inequality (2) can be conveniently expressed according to the following
four disjoint, exhaustive cases:

(I) If a+ b+ 1 ≡ 2bn (mod 4), then (a+ b+ 1)2 ≤ 4bn.
(II) If a+ b+ 1 ≡ 2bn + 2 (mod 4), then (a+ b+ 1)2 ≤ 4bn + 4.
(III) If a+ b is even and bn is even, then (a+ b+ 1)2 ≤ 4bn+ 1.
(IV) If n, a, b are all odd, then (1 + a+ b)2 ≤ 4bn + 5.

First note that in cases (I) and (II), we have
⌊

(a+b+1)2

4

⌋

= (a+b+1)2

4
, while in cases (III) and

(IV),
⌊

(a+b+1)2

4

⌋

= (a+b+1)2

4
− 1

4
.

Consider case (I). There are two subcases to consider here. First, if b is even, then
a+ b ≡ −1 (mod 4), so (2) reads

nb ≥

⌊

(a+ b+ 1)2

4

⌋

=
(a+ b+ 1)2

4

or equivalently (a + b + 1)2 ≤ 4bn, as required. The other subcase of case (I) is where b is
odd. Here, (2) reads

nb ≥

⌊

(a+ b+ 1)2

4

⌋

− 1 =
(a+ b+ 1)2 − 4

4

or equivalently (a+b+1)2 ≤ 4bn+4. Note that both sides of this inequality are multiples of 4.
We claim that equality is impossible here, and so the condition is equivalent to (a+b+1)2 ≤
4bn. Indeed, if (a + b + 1)2 = 4bn + 4, then as a + b + 1 ≡ 2bn (mod 4), we would have
4b2n2 ≡ 4bn + 4 (mod 8). Hence b2n2 ≡ bn + 1 (mod 2). But this is impossible, as x2 ≡ x

(mod 2) for all x.
Consider case (II). Here, if b is even, a + b ≡ 1 (mod 4). So, regardless of whether b is

even or odd, (2) reads

nb ≥

⌊

(a+ b+ 1)2

4

⌋

− 1 =
(a+ b+ 1)2 − 4

4
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or equivalently (a+ b+ 1)2 ≤ 4bn + 4, as required.
Consider case (III). There are two subcases to consider here. First, if b is even, then a is

necessarily even, so a + b 6≡ 1 (mod 4), and hence (2) reads

nb ≥

⌊

(a + b+ 1)2

4

⌋

=
(a+ b+ 1)2

4
−

1

4

or equivalently (a+ b+ 1)2 ≤ 4bn+ 1, as required. The other subcase of case (III) is where
b is odd. Here, (2) reads

nb ≥

⌊

(a+ b+ 1)2

4

⌋

− 1 =
(a+ b+ 1)2

4
−

1

4
− 1

or equivalently (a + b + 1)2 ≤ 4bn + 5. We claim that equality is not possible and thus, as
(a + b + 1)2 ≡ 1 (mod 4), the condition is equivalent to (a + b + 1)2 ≤ 4bn + 1. Indeed,
since bn is even, 4bn + 5 ≡ 5 (mod 8). But a + b is even, say a + b = 2k, so we have
(a+ b+1)2 = 4(k2+k)+1 ≡ 1 (mod 8), as k2+k is even for all k. So (a+ b+1)2 = 4bn+5
is impossible.

In case (IV), b is odd, so (2) reads

nb ≥

⌊

(a+ b+ 1)2

4

⌋

− 1 =
(a+ b+ 1)2

4
−

1

4
− 1

or equivalently (a+ b+ 1)2 ≤ 4bn + 5, as claimed.

3. Proof of sufficiency

Suppose that d has even sum and that inequality (2) holds. We consider the 4 cases (I) –
(IV) given in Section 2. The sufficiency in case (I) follows immediately from Theorem 1. For
the other cases, we employ similar ideas to those of [8]. Let us first recall some terminology
and results of [8]. A number k is called a strong index, if dk ≥ k. Note that the set of strong
indices is nonempty as d1 ≥ 1, but not all indices are strong as dn = b < n. The maximal
strong index is denoted km. For j ≥ 0, nj := #{i : di = j}. By [8, Theorem 3], a sequence d

is graphic if and only if it has an even sum and rk ≤ k(n− 1) for all strong indices k, where

rk =
∑k

i=1(di + ink−i).

Let k be a strong index of d. If k ≤ b, then nk−i = 0 for all 1 ≤ i ≤ k, so rk =
∑k

i=1 di ≤
ka ≤ k(n− 1). So we may suppose that k > b.

Lemma 1. We have

(3) rk ≤ k(n− 1) + km(a+ b+ 1)− k2
m − bn,

with equality only possible when k = km and d has the form d = (akmbn−km).

Proof. We have
∑k

i=1 di ≤ ka, which becomes an equality only if d1 = · · · = dk = a.

Moreover,
∑k

i=1 ink−i =
∑k−1

j=0(k− j)nj ≤ (k − b)
∑k−1

j=0 nj , with equality only possible when

all the n0, n1, . . . , nk−1, but nb are zeros; that is, when
(

di ≤ k − 1 ⇒ di = b
)

. Furthermore,

k−1
∑

j=0

nj = #{i ∈ {1, 2, . . . , n} : di ≤ k − 1} ≤ #{i : n ≥ i > km},
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since for i ≤ km we have di ≥ dkm ≥ km ≥ k. Thus
∑k−1

j=0 nj ≤ n − km, which becomes an

equality only when dkm+1 ≤ k − 1. Thus
∑k

i=1 ink−i ≤ (k − b)(n − km), with equality only
possible when dkm+1 = · · · = dn = b; indeed, if dkm+1 ≤ k − 1 and

(

di ≤ k − 1 ⇒ di = b
)

,
then dkm+1 = b and so dkm+1 = · · · = dn = b. Thus

(4) rk ≤ ka + (k − b)(n− km),

with equality only possible when d = (ak, dk+1, . . . , dkm, b
n−km). As a ≥ dkm ≥ km, we have

a+ 1− km ≥ 1. Thus, using k ≤ km, inequality (4) gives

rk ≤ ka+ (k − b)(n− km) = k(n− 1) + k(a + 1− km) + bkm − bn

≤ k(n− 1) + km(a + 1− km) + bkm − bn

= k(n− 1) + km(a+ b+ 1)− k2
m − bn,

as required, with equality only possible when k = km and d = (akm , bn−km). �

Now consider cases (II) – (IV) separately. In case (III), the maximal value of the right-
hand side of (3), regarded as a quadratic in km, is attained at km = 1

2
(a + b + 1 ± 1) and

is equal to k(n− 1) + 1
4
((a + b + 1)2 − 1)− bn. Thus the inequality (a + b + 1)2 ≤ 4bn + 1

implies rk ≤ k(n− 1) and so the sequence d is graphic by [8, Theorem 3].
In case (II), the (unique) maximal value of the right-hand side of (3) for an integer km is

attained at km = 1
2
(a + b + 1) and is equal to k(n − 1) + 1

4
(a + b + 1)2 − bn, but the sum

of the sequence (a
1
2
(a+b+1), bn−

1
2
(a+b+1)) is odd, so the inequality (3) becomes strict, hence

rk ≤ k(n− 1) + 1
4
(a + b+ 1)2 − bn − 1. Thus the inequality (a + b+ 1)2 ≤ 4bn + 4 implies

rk ≤ k(n− 1) and therefore the sequence d is graphic by [8, Theorem 3].
In case (IV), d is not of the form (as, bn−s) since, as a, b and n are all odd, the sequences

of the form (as, bn−s) have odd sum, contrary to our hypothesis. So by Lemma 1, the
inequality (3) is not strict. As the maximum of the right hand side of (3) is attained for
km = 1

2
(a + b + 1 ± 1), we get rk ≤ k(n − 1) + 1

4
((a + b + 1)2 − 1) − bn − 1, which implies

rk ≤ k(n− 1) whenever (a+ b+ 1)2 ≤ 4bn+ 5.

4. Two-element sequences

Proof of Theorem 3. We apply the Erdős–Gallai Theorem, which says that d is graphic if
and only if its sum is even and for each integer k with 1 ≤ k ≤ n,

(EG)
k

∑

i=1

di ≤ k(k − 1) +
n

∑

i=k+1

min{k, di}.

For the sequence d = (as, bn−s), we consider (EG) in 5 cases:

(i) If k > s and k ≤ b, then (EG) reads

as + b(k − s) ≤ k(k − 1) + (n− k)k = k(n− 1).

We have as + b(k − s) = bk + s(a − b) < bk + k(a − b) = ka ≤ k(n − 1), so (EG)
holds in this case.
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(ii) If k ≤ s and k ≤ b, then (EG) reads

ak ≤ k(k − 1) + (n− k)k = k(n− 1),

which is true as a ≤ n− 1.
(iii) If k ≤ s and a < k, then (EG) reads

ak ≤ k(k − 1) + (s− k)a + (n− s)b.

As a ≤ k− 1, we have ak ≤ k(k− 1) ≤ k(k− 1) + (s− k)a+ (n− s)b, so (EG) holds
in this case.

(iv) If k > s and k > b, then (EG) reads as+ b(k − s) ≤ k(k − 1) + (n− k)b; that is

(5) k2 − k(1 + 2b) + nb+ bs− as ≥ 0.

(v) If k ≤ s and b < k ≤ a, then (EG) reads

ak ≤ k(k − 1) + (s− k)k + (n− s)b = (s− 1)k + (n− s)b.

This condition holds if a ≤ s− 1. If a ≥ s, (EG) is (a− s+ 1)k ≤ (n− s)b and the
most restrictive case occurs when k = s. Here the condition is

(6) s2 − (1 + a + b)s+ nb ≥ 0.

From the above we see that (as, bn−s) is graphic if and only if (6) holds and (5) holds for all
k > s, k > b.

Lemma 2. s2 − (1 + a + b)s + nb ≥ 0 if and only if k2 − k(1 + 2b) + nb + bs − as ≥ 0 for
all k ∈ {s, s+ 1, . . . , n}.

Proof. Fix n, a, b, s and let ∆k = k2−k(1+2b)+nb+sb−as. So ∆s = s2− (1+a+ b)s+nb,
and hence one direction in this lemma is trivial. For the other direction, note that ∆k is
quadratic in the integer k and takes its minimum value at the integers b and b + 1. The
minimum value of ∆k is

∆b = b2 − b(1 + 2b) + nb+ bs− as = bn− b2 − b− s(a− b).

Suppose that ∆s ≥ 0 and that ∆k < 0 for some integer k > s. Then s ≤ b − 1 and ∆b < 0,
so s(a− b) > bn− b2 − b and hence (b− 1)(a− b) ≥ s(a− b) > bn− b2 − b. Expanding gives
so ab− a + 2b > bn. Hence, as b < a,

bn < ab− a+ 2b < ab+ b = b(a + 1)

and so n < a+ 1. But this is impossible as a < n, by assumption. �

This completes the proof of Theorem 3. �

5. Proof of Necessity

Assume that (2) fails for the triple (a, b, n), where b < a < n. We will exhibit a nongraphic
sequence d of length n having even sum with maximal element a and minimal element b. We
consider the same four cases (I) – (IV) given in Section 2. So our assumption is respectively:

(I) a + b+ 1 ≡ 2bn (mod 4), and (a+ b+ 1)2 > 4bn.
(II) a + b+ 1 ≡ 2bn+ 2 (mod 4), and (a+ b+ 1)2 > 4bn+ 4.
(III) a + b is even and bn is even, and (a+ b+ 1)2 > 4bn + 1.
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(IV) n, a, b are all odd, and (1 + a+ b)2 > 4bn+ 5.

In cases (I) – (III), the proposed sequences have the form d = (as, bn−s), where respectively:

(I) s =
a+ b+ 1

2
; (II) s =

a+ b+ 3

2
; (III) s =

a+ b

2
.

In case (I), s2− (1+a+ b)s+nb = − (1+a+b)2

4
+nb < 0 and so d is nongraphic by Theorem 3.

Moreover, d has sum

as + b(n− s) =
a(a + b+ 1)

2
+

b(2n− (a + b+ 1))

2
=

(a− b)(a + b+ 1) + 2bn

2
.

In case (I), a+ b is odd, so a− b is odd and a+ b+ 1 ≡ 2bn (mod 4), so

(a− b)(a + b+ 1) + 2bn ≡ 2bn+ 2bn ≡ 0 (mod 4).

Thus d has even sum. Cases (II) and (III) are treated in exactly the same manner.
In case (IV), a, b, n are all odd. Here we consider the decreasing sequence d = (d1, . . . , dn) =

(a
a+b

2 , b+1, b
2n−(a+b)−2

2 ). Let s = a+b
2
. We will show that the sequence fails the s-th inequality

of the Erdős-Gallai Theorem. By assumption, (2s + 1)2 > 4nb + 5, so nb < s2 + s − 1. As
nb is odd, this implies nb ≤ s2 + s− 3. Thus b+ 1 ≤ s2 + s− nb+ b− 2. Therefore,

s
∑

i=1

di = as > as− 2 = (2s− b)s− 2

= s(s− 1) + [s2 + s− nb+ b− 2] + (n− s− 1)b

> s(s− 1) + b+ 1 + (n− s− 1)b

= s(s− 1) +
n

∑

i=s+1

min{s, di}.

So (EG) fails for k = s. Finally, d has even sum since, as a, b, n ≡ 1 (mod 2),

as+ (b+ 1) + (n− s− 1)b ≡ s+ 0 + s ≡ 0 (mod 2).

This completes the proof of Theorem 2.
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