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Abstract

Let F = {F1, F2, . . .} be a sequence of graphs such that Fn is a graph

on n vertices with maximum degree at most ∆. We show that there exists an

absolute constant C such that the vertices of any 2-edge-colored complete graph

can be partitioned into at most 2C∆ log∆ vertex disjoint monochromatic copies

of graphs from F . If each Fn is bipartite, then we can improve this bound to

2C∆; this result is optimal up to the constant C.

1 Introduction

Let Kn be a complete graph on n vertices whose edges are colored with r colors
(r ≥ 1). How many monochromatic cycles (single vertices and edges are considered
to be cycles) are needed to partition the vertex set of Kn? This question received much
attention in the last few years. Let p(r) denote the minimum number of monochro-
matic cycles needed to partition the vertex set of any r-colored Kn. It is not obvious
that p(r) is a well-defined function. That is, it is not obvious that there always is a
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partition whose cardinality is independent of n. However, in [18] Erdős, Gyárfás, and
Pyber proved that there exists a constant C such that p(r) ≤ Cr2 log r (throughout
this paper log denotes the natural logarithm). Furthermore, in [18] (see also [26]),
the authors conjectured that p(r) = r.

The special case r = 2 of this conjecture was asked earlier by Lehel and for n ≥ n0

was first proved by  Luczak, Rödl, and Szemerédi [41]. Allen improved on the value of
n0 [1] and recently Bessy and Thomassé [4] proved the original conjecture for r = 2.
For general r the current best bound is due to Gyárfás, Ruszinkó, Sárközy, and
Szemerédi [27] who proved that for n ≥ n0(r) we have p(r) ≤ 100r log r. For r = 3 an
approximate version of the conjecture was proved in [28] but, surprisingly, Pokrovskiy
[43] found a counterexample to the conjecture. However, in the counterexample, all
but one vertex can be covered by r vertex disjoint monochromatic cycles. Thus,
a slightly weaker version of the conjecture still can be true, say that, apart from
a constant number of vertices, the vertex set can be covered by r vertex disjoint
monochromatic cycles.

Let us also note that the above problem was generalized in various directions; for
hypergraphs (see [29] and [48]), for complete bipartite graphs (see [18] and [31]), for
graphs which are not necessarily complete (see [2] and [47]), and for partitions by
monochromatic connected k-regular graphs (see [50] and [51]).

Another area that attracted a lot of interest is the study of Ramsey numbers for
bounded degree graphs. For a graph G, the Ramsey number R(G) is the smallest
positive integer N such that if the edges of a complete graph KN are partitioned into
two color classes then one color class has a subgraph isomorphic to G. The existence
of such a positive integer is guaranteed by Ramsey’s classical result [45]. Determining
R(G) even for very special graphs is notoriously hard (see e.g. [25] or [44]).

In 1975, Burr and Erdős [3] raised the problem that every graph G with n vertices
and maximum degree ∆ has a linear Ramsey number, so R(G) ≤ C(∆)n, for some
constant C(∆) depending only on ∆. This was proved by Chvátal, Rödl, Szemerédi
and Trotter [9] in one of the earliest applications of Szemerédi’s celebrated Regularity
Lemma [52]. Because the proof uses the Regularity Lemma, the bound on C(∆) is
quite weak; it is of tower type in ∆. This was improved by Eaton [17], who proved,
using a variant of the Regularity Lemma, that the function C(∆) can be taken to be

of the form 22O(∆)
.

Soon after, Graham, Rödl, and Ruciński [24] improved this further to C(∆) ≤
2O(∆ log2 ∆) and for bipartite graphs C(∆) ≤ 2O(∆ log∆). They also proved that there
are bipartite graphs with n vertices and maximum degree ∆ for which the Ramsey
number is at least 2Ω(∆)n. Recently, Conlon [10] and, independently, Fox and Su-
dakov [23] have shown how to remove the log ∆ factor in the exponent, achieving
an essentially best possible bound of R(G) ≤ 2O(∆)n in the bipartite case. For the
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non-bipartite graph case, the current best bound is due to Conlon, Fox, and Sudakov
[13] C(∆) ≤ 2O(∆ log∆). Similar results have been proven for hypergraphs: [14, 15, 42]
use the Hypergraph Regularity Lemma and [12] improves the bounds by avoiding the
Regularity Lemma.

It is a natural question (initiated by András Gyárfás) to combine the above two
problems and ask how many monochromatic members from a bounded degree graph
family are needed to partition the vertex set of a 2-edge-colored KN . In this paper
we study this problem. Given a sequence F = {F1, F2, . . .} of graphs, we say it is
∆-bounded if each Fn is a graph on n vertices with maximum degree at most ∆. In
general we say that F has some graph property if every graph of F has that property
(e.g. F is bipartite if Fn is bipartite for every n).

We prove the following result on partitions by monochromatic members of F .

Theorem 1. There exists an absolute constant C such that, for every ∆ and every
∆-bounded graph sequence F , every 2-edge-colored complete graph can be partitioned
into at most 2C∆ log∆ vertex disjoint monochromatic graphs from F .

Thus, perhaps surprisingly, we have the same phenomenon as for cycles; we can
partition into monochromatic graphs from F such that their average size is roughly
the same as the single largest monochromatic graph we can find. In the case of a
bipartite F we can eliminate the log ∆ factor from the exponent to get the following
essentially best possible result.

Theorem 2. There exists an absolute constant C such that, for every ∆ and every
bipartite ∆-bounded graph sequence F , every 2-edge-colored complete graph can be
partitioned into at most 2C∆ vertex-disjoint monochromatic copies of graphs from F .

We do not make an effort to optimize the constant C since probably it will be far
from optimal anyway. However, in both theorems we must use at least 2Ω(∆) parts.

Theorem 3. There exists an absolute constant c such that, for every ∆, there is a
bipartite ∆-bounded graph sequence F and there is a 2-edge-coloring of Kn so that
covering the vertices of Kn using monochromatic copies of graphs from F requires at
least 2c∆ such copies.

It would be desirable to close the gap between the upper and lower bounds for non-
bipartite F as well, though doing so may require improved bounds for the Ramsey
numbers of bounded degree graphs. Furthermore, it would be interesting to extend
this problem for more than 2 colors.

Let us also mention one interesting special case of our theorem. The kth power
of a cycle C is the graph obtained from C by joining every pair of vertices with
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distance at most k in C. Density questions for powers of cycles have generated a lot
of interest; in particular the famous Pósa-Seymour conjecture (see e.g. [7, 19, 20, 21,
22, 34, 37, 38, 40]). Theorem 1 implies the following result on the partition number
by monochromatic powers of cycles.

Corollary 1. There exists an absolute constant C so that for every k every 2-colored
complete graph can be partitioned into at most 2Ck log k vertex disjoint monochromatic
kth powers of cycles.

However, we must note that in this case probably the optimal answer is O(k).

2 Notation and tools

For basic graph concepts see the monograph of Bollobás [5].
V (G) and E(G) denote the vertex-set and the edge-set of the graph G. (A,B,E)
denotes a bipartite graph G = (V,E), where V = A ∪ B and E ⊂ A × B. A proper
r-coloring of G is a coloring of its vertices where no two adjacent vertices receive the
same color. For a graph G and a subset U of its vertices, G|U is the restriction to U
of G. N(v) is the set of neighbors of v ∈ V . Hence, |N(v)| = deg(v) = degG(v), the
degree of v. δ(G) stands for the minimum and ∆(G) for the maximum degree in G.
When A,B are subsets of V (G), we denote by e(A,B) the number of edges of G with
one endpoint in A and the other in B. In particular, we write deg(v, U) = e({v}, U)
for the number of edges from v to U . For non-empty A and B,

d(A,B) =
e(A,B)

|A||B|

is the density of the graph between A and B.

Definition 1. The bipartite graph G = (A,B,E) is ε-regular if

X ⊂ A, Y ⊂ B, |X| > ε|A|, |Y | > ε|B| imply |d(X, Y ) − d(A,B)| < ε.

We will often say simply that “the pair (A,B) is ε-regular” with the graph G implicit.

Definition 2. (A,B) is (ε, d, δ)-super-regular if it is ε-regular, satisfies d(A,B) ≥ d,
and

deg(a) ≥ δ|B| ∀ a ∈ A, deg(b) ≥ δ|A| ∀ b ∈ B.

An (ε, δ, δ)-super-regular pair is simply called (ε, δ)-super-regular (and in this case the
density condition is not needed).
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We will use frequently the following well-known property of regular pairs claim-
ing that subsets of a regular pair also form a regular pair with somewhat weaker
parameters.

Lemma 1 (Slicing Lemma, Fact 1.5 in [39]). Let (A,B) be an (ε, d, 0)-super-
regular pair (i.e. one with no minimum degree constraint), and, for some β > ε,
let A′ ⊂ A, |A′| ≥ β|A|, B′ ⊂ B, |B′| ≥ β|B|. Then (A′, B′) is an (ε′, d′, 0)-super-
regular pair with ε′ = max{ε/β, 2ε} and |d′ − d| < ε.

Definition 3. Given a k-partite graph G = (V,E) with k-partition V = V1∪ . . .∪Vk,
the k-cylinder V1× . . .×Vk is ε-regular ((ε, d, δ)-super-regular or (ε, δ)-super-regular)

if all the
(

k
2

)

pairs of subsets (Vi, Vj), 1 ≤ i < j ≤ k, are ε-regular ((ε, d, δ)-super-

regular or (ε, δ)-super-regular). Given 0 < α < 1, the k-cylinder V1 × . . . × Vk is
α-balanced if, for every i < j, ||Vi| − |Vj|| ≤ αmin(|Vi|, |Vj|).

Instead of the Regularity Lemma of Szemerédi [52] we will use the following lemma
which Conlon and Fox [11] argued as a consequence of the Duke, Lefmann, and Rödl
weak Regularity Lemma [16].

Lemma 2 ([16] and Lemma 5.3 in [11]). For each 0 < ε < 1/2, any graph G =
(V,E) on at least k vertices has an ε-regular k-cylinder with parts of equal size (i.e.
0-balanced); the size of each part is at least 1

2k
εk

2ε−5
|V |.

We will use the following corollary of this lemma.

Lemma 3 (Lemma 5.4 in [11]). For each 0 < ε < 1/2, any 2-colored complete
graph on at least 22k vertices has, in one of the colors (say in red), an (ε, 1/2, 0)-
super-regular 0-balanced k-cylinder (i.e. one with no minimum degree constraint and
parts of equal size), where the size of each part is at least 1

2(22k)
ε2

4kε−5
n.

Indeed, to get this one applies Lemma 2 for the red subgraph with 22k in place of
k to get an ε-regular 22k-cylinder. Then we may consider the complete graph whose
vertices i correspond to the parts of the cylinder Vi and we color the edge (i, j) by
the majority color in the pair (Vi, Vj). We then apply R(Kk) ≤ 22k and use the fact
that, if (Vi, Vj) is regular in one color, then it is also regular in the other color.

We will also use the Hajnal-Szemerédi Theorem on equitable proper colorings. A
proper coloring is equitable if the numbers of vertices in any two color classes differ
by at most one.

Lemma 4 (Hajnal-Szemerédi Theorem [30]). Any graph with maximum degree
at most ∆ has an equitable proper coloring with ∆ + 1 colors.
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For a simpler proof see also [33].
Our other main tool is a quantitative version of the Blow-up Lemma (see [35, 36]).

Lemma 5 (Quantitative Blow-up Lemma). There exists an absolute constant
CBL such that, given a graph R of order r ≥ 2 and positive parameters δ and ∆,
for any 0 < ε < ( δd

∆

r∆
)CBL the following holds. Let N be an arbitrary positive inte-

ger, and let us replace the vertices of R with pairwise disjoint N-sets V1, V2, . . . , Vr

(blowing up). We construct two graphs on the same vertex-set V =
⋃

Vi. The graph
R(N) is obtained by replacing all edges of R with copies of the complete bipartite
graph KN,N , and a sparser graph G is constructed by replacing the edges of R with
some (ε, d, δ)-super-regular pairs. If a graph H with ∆(H) ≤ ∆ is embeddable into
R(N), then it is embeddable into G.

Thus, roughly speaking, regular cylinders behave as complete partite graphs from
the viewpoint of embedding bounded degree subgraphs. Note that, in either of the
proofs [35, 36], the dependence of ε on the other parameters was not computed ex-
plicitly. To prove Lemma 5 one has to go through the proof, say from [36], and make
all the dependencies of the parameters explicit. All the details are presented in [49].
Note that for the proof of Theorem 1 we could use d = δ, we need the stronger version
for the proof of Theorem 2, as δ may be much smaller than d.

In particular we will need the following consequence of the Blow-up Lemma.

Lemma 6. There exists an absolute constant CBL such that, given positive parameters

δ, d, and ∆, and given a ∆-bounded graph sequence F , for any 0 < ε < 1
2

(

( δ
2
)(d

2
)∆

∆(∆+2)

)CBL

the following holds. Let G = (V,E) be a (∆ + 2)-partite graph with (∆ + 2)-partition
V = V1 ∪ . . . ∪ V∆+2, where the cylinder V1 × . . .× V∆+2 is (ε, d, δ)-super-regular and
ε-balanced. Then we can partition the vertex set into at most (∆ + 3) vertex disjoint
copies of graphs from F .

Indeed, note first that by the Blow-up Lemma (Lemma 5 with r = ∆ + 2), if
the cylinder is 0-balanced, then it is enough to check the statement for the complete
(∆ + 2)-partite graph with the same partite sets. But then the Hajnal-Szemerédi
Theorem (Lemma 4) implies that we may cover the cylinder with a single graph from
F (even if we had only ∆ + 1 partite sets instead of ∆ + 2).

If the cylinder is not 0-balanced (but ε-balanced), then first we eliminate the small
discrepancies among the sizes. For each index i ∈ [∆ + 2] define vi = |Vi| and take
v = maxi(vi). Then, for each set S ⊆ [∆ + 2] of size ∆ + 1, define wS = v− vi where i
is the unique index not contained in S. For each such set S, by the Blow-up Lemma,
we may find a copy of a graph from F that uses wS vertices from each Vi with i ∈ S.
Thus, we use (∆ + 2) such graphs, one for each S.
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After this procedure, the number of vertices remaining in Vi is

vi −
∑

S:i∈S
wS = vi −

∑

S

wS + w[∆+2]\{i} = v −
∑

S

wS (≥ (1 − (∆ + 2)ε)v) . (1)

That is, after this procedure, the cylinder is 0-balanced, and we may cover the re-
maining vertices with a single graph from F by the Blow-up Lemma. Indeed, the
Slicing Lemma (Lemma 1) and (1) imply that the remaining cylinder is (2ε, d/2, δ/2)-
super-regular and 0-balanced so we may indeed apply the Blow-up Lemma (Lemma
5). We use a total of at most (∆ + 3) graphs.

3 Proof of Theorem 1

For technical reasons, it will be convenient to prove a stronger version of Theorem 1.

Theorem 4. There exists an absolute constant C so that if F1 and F2 are ∆-bounded
graph sequences and every graph in F1,F2 has an equitable proper coloring with χ1, χ2

colors, respectively, then every 2-edge-colored complete graph can be partitioned into at
most 2C(χ1+χ2+∆) log∆ vertex disjoint red copies of graphs from F1 and monochromatic
blue copies of graphs from F2.

To see that this implies Theorem 1, note again that by the Hajnal-Szemerédi
Theorem (Lemma 4) any graph of maximum degree at most ∆ has an equitable
proper coloring with ∆ + 1 colors.

To avoid redundancy, for the rest of this section F1 and F2 will be ∆-bounded
sequences.

We have three main tools for finding monochromatic copies of graphs. One of
these is the Blow-up Lemma (Lemma 6). Another is applying bounds on Ramsey
numbers:

Lemma 7. There exists an absolute constant C1 such that given a 2-edge-colored Kn

and an ε > 0, we may cover all but an εn fraction of the vertices using vertex disjoint
monochromatic red copies of graphs from F1 and blue copies of graphs from F2 while
using at most 2C1∆log∆ log(1/ε) such copies.

Proof. By the bound in [13] (see Theorem 2.6), any 2-edge-colored Kn contains
either a red copy of F1 or a blue copy of F2 for any two graphs F1, F2 with maximum
degree at most ∆ that are on n′ = 2−C1∆ log∆n (assume for simplicity that this is an
integer) vertices. Pick any graph in F1 ∈ F1 and F2 ∈ F2 with n′ vertices, find a copy
in an appropriate color of one of these in our Kn, remove the vertices of this copy
from the graph, and recurse on the remaining n − n′ vertices. Note the number of
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remaining vertices is (1− 2−C1∆ log∆)n ≤ e−2−C1∆ log∆
n, so after repeating this process

2C1∆log∆ log(1/ε) times, we are left with a graph on at most e− log(1/ε)n = εn vertices,
as desired. ✷

The final tool we have is a simple greedy embedding of bounded degree bipartite
graphs into very dense bipartite graphs.

Lemma 8. Given a bipartite graph H = (A,B,E) where every vertex of B has degree
at most ∆, a bipartite graph G = (A′, B′, E ′) where every vertex of A′ has degree at
least (1 − 1/(2∆))|B′| and where |B′| ≥ 2|B|, and an injection φ : A → A′, the
function φ extends to an injective homomorphism from H to G.

Proof. We will embed the vertices of B = {b1, b2, . . . , bk} one at a time (in this
order). Once we have embedded b1, . . . , bi, we show how to embed b = bi+1. Note that
b must be embedded in a way consistent with its neighbors; i.e., b must be contained
in the common neighborhood (in G) of φ(NH(b)). Since b has degree at most ∆ and
all of the vertices in A′ have degree at least (1− 1

2∆
)|B′|, by a union bound the number

of vertices in B′ consistent with the neighbors of b is at least

|B′| − ∆
1

2∆
|B′| =

|B′|

2
≥ |B|.

Since we have embedded only i < |B| vertices so far, at least one of the above
|B| vertices has not yet had any vertex embedded to it; to this vertex we embed
b. When this procedure embeds bk, the embedding is complete, and is an injective
homomorphism that extends φ by construction. ✷

We will combine these three tools to prove Theorem 4. We basically follow the
greedy-absorbing proof technique that originated in [18] and is used in many papers in
this area (e.g. [27], [31], [51]). We establish the desired bound in the following steps.

• Step 1: First we find a special object, a regular cylinder, that is dense in a color
(say red) as given by Lemma 3.

• Step 2: Then we remove the cylinder and by iterating Ramsey’s Theorem as it
was done in Lemma 7 we cover most of the remaining vertices with monochro-
matic copies of graphs from F1,F2.

• Step 3: Finally we add the few vertices that are neither in the cylinder nor
covered by monochromatic copies to the cylinder; since there will be few vertices
added, this will not affect the regularity of the cylinder and the cylinder will
absorb these vertices. Indeed, if it were the case that all of the vertices in the
cylinder had large enough degrees in red to all the other partite sets, then the
Blow-up Lemma (Lemma 6) would allow us to cover all of them with a few
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red subgraphs from F1. By regularity, there may be few vertices that fail to
meet this minimum degree condition, and they must have large degree in blue
to one of the sets in the cylinder. Inductively, we will partition these remaining
vertices into either red copies of graphs in F1 or blue copies of graphs obtainable
by taking a graph F2 from F2 and removing an equitable color class. Then we
will use the fact that these vertices have large degree in blue and Lemma 8 to
“glue in” the missing parts of the F2 graphs by using some vertices from the
cylinder.

We now proceed with proving Theorem 4. The proof is by induction on χ1 + χ2.
If either χ1 or χ2 is 1, then the result is trivial, as every graph in the corresponding
collection is an independent set. Otherwise, assume both χ1 and χ2 are at least 2.
Let any 2-edge-colored Kn be given. We may assume that n is at least 22(∆+2) since
otherwise we can cover it by isolated vertices. We may also assume ∆ ≥ 2. Let

ε = 2−C2∆, k = ∆ + 2, and η =
1

2(22k)

(

ε

2

)24k( ε
2
)−5

, (2)

with some sufficiently large absolute constant C2 (independent of ∆). Apply Lemma
3 with parameter ε/2 to the 2-coloring to get a 0-balanced k-cylinder V = V1∪· · ·∪Vk,
where, for each i, 1 ≤ i ≤ k, we have |Vi| ≥ η|V |, and there is a color, say red, so that
the cylinder is (ε/2, 1/2, 0)-super-regular in the red subgraph.

By Lemma 7, using at most 2C1∆log∆ log(2/(ε2η)) copies, we may cover all but
ε2ηn/2 vertices of Kn \ V with monochromatic graphs in the appropriate color from
F1,F2. Take the remaining ε2ηn/2 vertices and add them to the cylinder in such
a way that the cylinder remains as balanced as possible. Note that since we added
at most ε2ηn/2 vertices in this way, the resulting cylinder V ′ = V ′

1 ∪ · · · ∪ V ′
k is

(ε, 1/3, 0)-super-regular in red.
Take δ = 1

2∆
. We classify the vertices of V ′ based on their red degrees. We say

that a vertex v is good for i if either v ∈ V ′
i or the red degree of v to V ′

i is at least
δ|V ′

i |/2, and we say that it is good if it is good for every V ′
i . By regularity, at most

an ε fraction of the vertices of V ′
j fail to be good for i, and so at most an ε fraction

of the vertices of V ′ fail to be good for V ′
i . Define, for each i, Bi to be the set of

vertices that are not good for i but are good for every j that is smaller than i. By
construction, the Bi’s partition the vertices of V ′ that are not good, and every vertex
in Bi has red degree to V ′

i at most δ|V ′
i |/2. Remove the vertices in ∪k

i=1Bi from the
cylinder. Denote the resulting partite sets by V ′′

i , 1 ≤ i ≤ k. Since

|V ′′
i | ≥ (1 − ǫk)|V ′

i | ≥ (1 − δ/2)|V ′
i |,

we have that every vertex in Bi has red degree at most δ|V ′′
i | to V ′′

i . Therefore, it has
blue degree at least (1− δ)|V ′′

i | to V ′′
i . Furthermore, since we removed at most kε|V ′

i |

9



(≪ δ|V ′
i |/4 if C2 is large enough) vertices from each V ′

i and the remaining vertices
were all good, the Slicing Lemma (Lemma 1) implies that the resulting cylinder
V ′′ = V ′′

1 ∪ · · · ∪ V ′′
k is (2ε, 1/4, δ/4)-super-regular in red.

Define a ∆-bounded sequence F ′
2 of graphs by taking, for each m, a graph from F2

on
⌈

χ2

χ2−1
m
⌉

vertices, taking an equitable proper coloring of this graph into χ2 parts,

and removing a part of size ⌈m/(χ2 − 1)⌉. The resulting graph has m vertices and
an equitable proper coloring into (χ2 − 1) parts. Therefore, by induction, we may
partition each Bi into at most 2C(χ1+χ2+∆−1) log∆ red copies of graphs from F1 and
blue copies of graphs from F ′

2. Denote by F ′
1, F

′
2, . . . , F

′
ℓ the blue copies of graphs from

F ′
2 in such a partition. Each F ′

i may be obtained from some Fi in F2 by removing
an equitable color class Si from Fi. Define a bipartite graph H whose vertex sets are
A = V (F ′

1)∪V (F ′
2)∪ · · · ∪V (F ′

ℓ) and B = S1 ∪S2 ∪ · · · ∪Sℓ so that the edges leaving
V (F ′

i ) are to Si and, along with the edges of the monochromatic F ′
i , form a copy

of Fi. Note that |V (Fi)| ≤ 2|V (F ′
i )| + 1 ≤ 3|V (F ′

i )|, and so |B| ≤ 3|Bi| ≤ 3kε|V ′
i |.

By Lemma 8, there is an embedding of B into some V ′′′
i ⊆ V ′′

i so that, along with
the identity embedding on A, it forms a homomorphism from H into the blue edges
of G. This embedding extends every monochromatic copy of a graph in F ′

2 to a
monochromatic copy of a graph in F2.

The only vertices we have not covered with monochromatic copies of graphs from
F1 or F2 are the vertices in each set of the form V ′′

i \V ′′′
i . Since again we removed an

additional at most kε|V ′
i | (≪ δ|V ′′

i |/8 if C2 is large enough) vertices from each V ′′
i , the

Slicing Lemma (Lemma 1) again implies that the remaining cylinder is (2ε, 1/4, δ/8)-
super-regular in red. Then this remaining cylinder may be covered by at most k+1 =
∆ + 3 red subgraphs from F1 by Lemma 6. Note that the conditions of the lemma
are satisfied if C2 is a sufficiently large absolute constant. Indeed, we have to check
the following inequality

ε =
1

2C2∆
<

1

4

(

( 1
32∆

)(1
8
)∆

∆(∆ + 2)

)CBL

=
1

4(32∆2(∆ + 2)8∆)CBL

,

which is true if C2 is sufficiently large compared to CBL.
The total number of monochromatic subgraphs used in the partition is at most

2C1∆ log∆ log(2/(ε2η)) + (∆ + 2)2C(χ1+χ2+∆−1) log∆ + (∆ + 3) =

= 2C1∆ log∆ log(2/(ε2η)) +
(∆ + 2)

2C log∆
2C(χ1+χ2+∆) log∆ + (∆ + 3) ≤ 2C(χ1+χ2+∆) log∆,

as desired, if C is sufficiently large compared to C1 and C2. Indeed, here by using (2)
we have

log(2/(ε2η)) = log(2/(ε2)) + log(1/η) =
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= (2C2∆ + 1) log 2 + log 2 + 2(∆ + 2) log 2 + 24(∆+2)+5(C2∆+1)(C2∆ + 1) log 2 ≪ 2C∆.

✷

4 Proof of Theorem 2

The proof is almost identical to the proof of Theorem 1 above. First, a major differ-
ence is that in Lemma 7 we may use the better Ramsey bound for bipartite graphs,
thus giving us the improved bound 2C1∆ log(1/ε). Second, here the induction has
only one step, after one step the chromatic number goes down to 1 and we may cover
each Bi by one graph. This gives us the bound

2C1∆ log(2/(ε2η)) + (∆ + 2) + (∆ + 3) ≤ 2C∆,

as desired. Note that, rather than using the Hajnal-Szemerédi theorem, given any
∆-bounded bipartite graph sequence F , we may create a new sequence Gn of ∆-
bounded graphs that have proper equitable 2-colorings so that Gn is a union of at
most 3 graphs from F ; we do this by taking Gn to be two copies of Fn/2 if n is even
and two copies of F(n−1)/2 and a copy of F1 if n is odd. This would allow us to work
with k = 3 (instead of ∆ + 2), so we may find a regular 3-cylinder in Step 1. ✷

We should also note the above argument is not particular to bipartite graphs; it
works for χ-partite graphs if χ is a constant (e.g. tripartite graphs); for any constant
χ we get a constant C(χ) and the bound above becomes 2C(χ)∆.

5 Proof of Theorem 3

We wish to show that there exists a ∆-bounded bipartite sequence F = {F1, F2, . . .}
and, for n sufficiently large, a two-edge-coloring of Kn that cannot be partitioned into
fewer than 2Ω(∆) monochromatic copies of graphs from F . To see this, for every n take
Gn to be a bipartite graph on n vertices of degree at most ∆ and, for n sufficiently
large, with Ramsey number at least 2Ω(∆)n, as given by the result of Graham, Rödl
and Ruciński [24]. We define F2i recursively; take F20 = G1. Then define F2i to be the
disjoint union of F2i−1 with G2i−1 . For integers of the form 2i + j with j < 2i, define
F2i+j to be the disjoint union of F2i with an independent set on j vertices. Under
this definition, each Fn is a bipartite graph on n vertices with maximum degree at
most ∆. Furthermore, for n0 < n1, Fn0 is a subgraph of Fn1 . Finally, taking i to
be the largest integer with 2i ≤ n, Fn contains a copy of G2i−1 and so has Ramsey
number at least 2Ω(∆)2i−1 = 2Ω(∆)n (for n sufficiently large). Take F = {F1, F2, . . .}.
Now, for N sufficiently large, take a 2-edge-coloring of a complete graph on 2Ω(∆)N
vertices without a monochromatic copy of FN (this is possible by the condition on the
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Ramsey number). Since the sequence of graphs is increasing, this coloring also does
not contain a monochromatic copy of any Fn for n > N . Therefore, any partition of
the vertex set into monochromatic copies of graphs from F must use at least 2Ω(∆)

such copies. ✷

6 Concluding Remarks

There are various interesting potential generalizations of Theorem 1. One may ask if
the theorem holds for r colors for any positive integer r.

Conjecture 1. For every positive integer r there exists a constant Cr (depending on
r) such that, for every ∆-bounded sequence F , every r-edge-colored complete graph
can be partitioned into at most 2∆Cr

vertex disjoint monochromatic graphs from F .

Since bounds on Ramsey numbers were key in proving the theorem for r = 2, it is
worth noting that Conlon, Fox, and Sudakov [13] proved that, for any fixed number
of colors r, for any graph G on n vertices of maximum degree ∆ the Ramsey number
on r colors Rr(G) is at most 2Cr∆2

n. The primary difficulty is replacing the step that
uses Lemma 8 to account for the larger number of colors.

Recently Böttcher, Kohayakawa, Taraz, and Würfl [6] proved a generalization of
the Blow-up Lemma for graphs of bounded arrangeability without vertices of large
degree. An a-arrangeable graph is one in which the vertices may be ordered such
that the neighbors to the right of any vertex v have at most a neighbors to the left
of v in total. They generalize the Blow-up Lemma from graphs of bounded degree
to n-vertex graphs of bounded arrangeability with maximum degree at most

√
n

logn
.

Furthermore, Chen and Schelp [8] proved that for every a there is some constant
C(a) so that the Ramsey number of any a-arrangeable graph on n vertices is at most
C(a)n. The best bound that is known for C(a), again due to Graham, Rödl and
Ruciński [24], is C(a) ≤ 2Ca(log a)2 . One may hope to combine these two results to get
another possible generalization of Theorem 1.

We say a sequence F = {F1, F2, . . .} is a-nicely-arrangeable if each Fn is a graph on

n vertices that is a-arrangeable with maximum degree at most
√
n

log(n)
. Using techniques

similar to those found in this paper, one can prove:

Theorem 5. There exists an absolute constant C so that, for every positive integer a
and every a-nicely-arrangeable sequence F , every 2-edge-colored complete graph can
be partitioned into at most 2Ca6 vertex disjoint monochromatic graphs from F .

The primary change from the techniques in this paper necessary to prove the above
theorem is to adapt the use of Lemma 8. Currently, we use it to take a pair of graph

12



sequences F1 and F2 along with a nearly-complete bipartite graph, recurse on one of
the parts of the bipartite graph to find copies of graphs either from F1 or from graphs
obtained from F2 by removing a color class, and extend the smaller graphs using
the nearly-complete bipartite graph. Instead, in the proof for arrangeable graphs,
we recurse on one of the parts of the nearly-complete bipartite graph to find copies
of graphs from F1 and F2 (without any color class removed), along with another
nearly-complete bipartite graph. This gives a nearly-complete tripartite graph, and
we may continue to recurse until we have a nearly-complete multipartite graph into
which we may embed our a-nicely-arrangeable graphs.

Finally, let us mention that since by now both the Regularity Lemma and the
Blow-up Lemma has been generalized to hypergraphs (see [46] and [32], respectively),
perhaps we can generalize our result to hypergraphs as well.

Acknowledgements. The first author is indebted to Jacob Fox and the second
author to András Gyárfás and Endre Szemerédi for helpful conversations on the topic.

References

[1] P. Allen, Covering two-edge-coloured complete graphs with two disjoint
monochromatic cycles, Combinatorics, Probability and Computing, 17(4), 2008,
pp. 471-486.

[2] J. Balog, J. Barát, D. Gerbner, A. Gyárfás, G.N. Sárközy, Partitioning edge-2-
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