
Locating Patterns in the De Bruijn Torus

Victoria Horan ∗

Air Force Research Laboratory
Information Directorate

Brett Stevens †

School of Mathematics and Statistics
Carleton University

November 24, 2015

Abstract

The de Bruijn torus (or grid) problem looks to find an n-by-m binary
matrix in which every possible j-by-k submatrix appears exactly once.
The existence and construction of these binary matrices was determined
in the 70’s, with generalizations to d-ary matrices in the 80’s and 90’s.
However, these constructions lacked efficient decoding methods, leading
to new constructions in the early 2000’s. The new constructions develop
cross-shaped patterns (rather than rectangular), and rely on a concept
known as a half de Bruijn sequence. In this paper, we further advance this
construction beyond cross-shape patterns. Furthermore, we show results
for universal cycle grids, based off of the one-dimensional universal cycles
introduced by Chung, Diaconis, and Graham, in the 90’s. These grids
have many applications such as robotic vision, location detection, and
projective touch-screen displays.

1 Introduction

During the Workshop on Generalizations of de Bruijn Cycles and Gray Codes
at the Banff International Research Station in December 2004, Ron Graham
proposed Problem 480: De Bruijn Tori [11]. In short, a de Bruijn torus is an
r × v d-ary array embedded on a torus in which every possible n × m array
appears exactly once. These types of tori or grids are extremely useful in many
applications, such as robotic vision [6] and projected touch screens [5].

∗victoria.horan.1@us.af.mil
†brett@math.carleton.ca
Approved for public release; distribution unlimited: 88ABW-2015-2248.

1

ar
X

iv
:1

50
5.

04
06

5v
2 

 [
m

at
h.

C
O

] 
 2

3 
N

ov
 2

01
5



While much work has been done on the existence of these tori (see [8], for
example), current methods require more efficient decoding algorithms. To cope
with these difficulties, new constructions were developed that produced alterna-
tive window sizes and shapes instead of rectangular subarrays. For example, in
[2] a construction with a cross-shaped window was developed with a decoding
algorithm that allowed for a far more efficient location discovery method. In
this paper, we expand on this work and show a wider range of window options.
With our new construction, we reduce the brute-force complexity of O(d2n) for
a d-ary grid with window size n×n down to O(dn). Coupled with recent work on
the infamous problem of ranking de Bruijn sequences, by choosing appropriate
sequences to base our grid off of, this complexity may be reduced even further
down to O(n3) (using results from [12]) or O(n2) (using results from [14]).

In Section 2 we provide the necessary definitions and relevant background.
Section 3 develops new results on the de Bruijn torus problem, while Section 4
generalizes this problem from de Bruijn sequences to universal cycles. Finally,
Section 5 explores possible future research directions in this area.

2 Background and Definitions

For the unfamiliar reader, we provide the following definitions and brief history
of this research problem.

Definition 2.1. A d-ary de Bruijn sequence of order n is a string D =
x0x1x2 . . . xdn+n−2 such that every n-tuple over the alphabet [d] = {1, 2, . . . , d}
appears exactly once as xixi+1 . . . xi+n−1.

De Bruijn sequences are often cyclic, meaning that the last letter is adjacent
to the first, and n-tuples are allowed to ‘wrap around’ from end to beginning.
In this case, the sequences are often called de Bruijn cycles.

Definition 2.2. A de Bruijn array (or (r, v;n,m)d-array) is an r × v d-ary
array in which every window of size n×m appears exactly once. A de Bruijn
torus is a de Bruijn array in which the last row is adjacent to the first row, and
similarly the last column is adjacent to the first column.

Note that any de Bruijn torus can be easily converted to a de Bruijn array,
but not necessarily vice versa.

Definition 2.3. A pseudo-random sequence is a d-ary de Bruijn sequence
of order n that is missing the term 0n and is developed from a linear feedback
shift register based on a primitive polynomial of degree n.

Definition 2.4. [13] A pseudo-random array is an array in which every
nonzero window appears exactly once, and we will call it an (r, v;n,m)d-PNarray.

A generalization of de Bruijn sequences that allows for combinatorial objects
other than simply d-ary words is a universal string, introduced in [3].

2



Definition 2.5. A universal string, or ustring, over a set of combinatorial
objects C, each of order n, is a sequence U = a0a1 . . . am−1 in which each object
is represented exactly once as a consecutive substring ai+1ai+2 . . . an.

As with de Bruijn sequences, if a universal string is cyclic and wraps around
(i.e. subscript addition is modulo m), we call it a universal cycle or ucycle.
With respect to our previous definitions, a de Bruijn cycle is simply a universal
cycle with C equal to the set of all d-ary strings of length n.

Past work in this area concerns pseudo-random and de Bruijn arrays and
tori with rectangular windows. These results are summarized succinctly below.

Theorem 2.6. There exists an (r, v;n,m)d-array whenever:

• [7] d = 2, r = 2`, v = 2nm−`, where either n < 2` ≤ 2n, or m 6= 2 if ` = n.

• [8] If d has prime decomposition d = Πpα`

` and we define q = dΠp
blogp`

nc
` ,

then r = q and v = dnm/q.

Theorem 2.7. There exists an (r, v;n,m)d-PNarray whenever:

• [13] d = 2, r = 2n − 1, v = 2nm−1/r, and gcd(r, v) = 1.

These results mostly concern the problem of existence and do not explic-
itly discuss algorithms or complexity for locating specific structures. To deal
with the decoding problem, several others considered alternative window shapes.
This method will be explored and generalized in the following section.

Additionally, it is conjectured in [9] that the following necessary conditions
are also sufficient.

Conjecture 2.8. [9] There exists an (r, v;n,m)d-array whenever:

1. rv = dnm (only if it is a torus),

2. r > n or r = n = 1, and

3. v > m or v = m = 1.

3 The De Bruijn Torus Problem

In order to use the structures defined in Section 2 for applications like robot
location, we must be able to determine efficiently where a particular subsequence
occurs. A partial solution to this problem is presented in [2, 15], in which the
authors consider cross-shaped block patterns rather than a rectangular subarray.
These cross-shaped patterns have a set of consecutive blocks horizontally and a
set of consecutive blocks vertically, and these sets overlap in exactly one block.
That is, if we have n horizontal blocks and k vertical blocks, the cross contains
a total of n + k − 1 blocks. In this section, we will present this approach and
expand upon it to allow for a more generalized set of pattern rules. In the next
section, we will also consider universal cycles over other types of combinatorial
objects instead of solely using de Bruijn sequences over d-ary strings.

We begin with some more definitions.

3



Definition 3.1. Let G be a group of order d. Define an equivalence relation
on Gn (or d-ary n-tuples) as follows. We set x ≡ y if and only if x − y =
c · (1, 1, . . . , 1) for some c ∈ G. Then we define the quotient de Bruijn string,
D, to be a string of length dn−1 such that every equivalence class has exactly
one representative appear exactly once in D.

For example, a quotient string for binary de Bruijn sequences is known as
the half de Bruijn sequence. This string utilizes the equivalence relation given
by x ∼ y if and only if

(x1 + y1, x2 + y2, . . . , xn + yn) ∈ {0n, 1n},

with the bitwise addition performed modulo 2. For a good discussion on the
computational complexity of constructing these half de Bruijn sequences (oth-
erwise known as complement-free de Bruijn sequences), see [15]. For quotient
de Bruijn strings over larger alphabets, we provide the following result.

Theorem 3.2. Let G be a group of order d with operation ‘+’. Let A =
a0a1 . . . adn−1−1 be a d-ary de Bruijn sequence for (n − 1)-tuples. Define the
string D = d0d1 . . . ddn−1−1 such that di+1 = ai + di. Then D is a quotient de
Bruijn string.

Proof. First, we note that the equivalence classes for d-ary strings have size d,
and the union of all equivalence classes for d-ary strings of length n has size dn.
Thus since D contains dn−1 different strings, we need only show that no two
representatives from the same equivalence class appear in D.

To show this, we proceed by contradiction and suppose that strings (x1 +
k)(x2+k) · · · (xn+k) and (x1+`)(x2+`) · · · (xn+`) appear starting in positions
p and q in D, respectively. Then we have the following equalities.

dp = x1 + k = ap−1 + dp−1
dp+1 = x2 + k = ap + dp

...
...

dp+n−1 = xn + k = ap+n−2 + dp+n−2

and

dq = x1 + ` = aq−1 + dq−1
dq+1 = x2 + ` = aq + dq

...
...

dq+n−1 = xn + ` = aq+n−2 + dq+n−2

Note that these simplify down to the following.

ap = x2 − x1 = aq
ap+1 = x3 − x2 = aq+1

...
...

ap+n−2 = xn − xn−1 = aq+n−2

4



Thus if both (x1 + k)(x2 + k) · · · (xn + k) and (x1 + `)(x2 + `) · · · (xn + `)
appear in D, then the (n− 1)-tuple (x2 − x1)(x3 − x2) · · · (xn − xn−1) appears
twice in A, which contradicts that A is a de Bruijn sequence.

We will use these quotient strings in the construction of a torus, as defined
below.

Definition 3.3. Let C be a universal cycle for a set of objects over an alphabet
of size d, and let Q be a quotient string for a (possibly different) set of objects
over the same alphabet of size d. The Q×C grid (or torus) is the rectangular
grid with rows labeled from 1 to |Q| and columns labeled from 1 to |C|, and
where the entry in row i and column j is Cj +Qi where ‘+’ denotes the binary
operation for a group G of order d utilizing symbols from our common alphabet.

For example, when considering binary de Bruijn sequences, there will be
2n columns and 2k−1 rows, and addition will be in Z/2Z. When considering
patterns in the k×n torus, we will use the following definition of block patterns,
which will be possible window patterns for our grids.

Definition 3.4. A k × n block pattern in a Q × C torus is a selection of
entries (or blocks) within a subarray of dimension k × n. Here and in other
literature this is often also referred to as a window. When considering not just
the general shape of a block pattern but a specific instance of a block pattern
in a grid, we say that the block pattern is filled.

For example, one possible block pattern in a 4× 4 region is given in Figure
1. In this example, the black blocks represent our block pattern. Several of the
latest de Bruijn torus results utilize cross-shaped patterns. These are patterns
that contain n consecutive blocks in one row, k consecutive blocks in one column,
and one block in common for a total of n + k − 1 blocks. For a cross-shaped
block pattern, the following theorem gives a nice result.

Theorem 3.5. [2] Let D be a binary de Bruijn sequence of order n and Q be
a half de Bruijn sequence of order k. Produce the Q × D grid using binary
addition. Fix some block pattern B that is a k × n cross (i.e. n entries in one
row, k entries in one column, overlapping in exactly one block). Then in the
constructed grid we can find every binary-filled block pattern B exactly once.

We will generalize Theorem 3.5 so that the block pattern is not required to
be cross-shaped, but is required to have certain horizontal and vertical projec-
tions, as well as a few additional restrictions on the connection graph for the
given block pattern. From a given block pattern, we want to create a graph in
which blocks correspond to nodes, edges correspond to nearest neighbors in the
north/south/east/west directions.

Definition 3.6. The connection graph for a k × n block pattern is created
as follows. For each block in the block pattern, draw a node. We then draw
undirected edges corresponding to nearest neighbors in each direction (north,
south, east, and west).

5



Figure 1: A possible block pattern in a 4 × 4 region and its corresponding
connection graph.

Figure 1 shows a block pattern and its corresponding connection graph. In
order to consider finding patterns that will satisfy de Bruijn-type properties, we
will need a few more definitions.

Definition 3.7. The projection of an s × t block pattern on the horizontal
is given as a binary t-sequence in which entry i equals 1 if and only if there is
at least one block used in column i for i ∈ [t]. Similarly, the projection on the
vertical is a binary s-sequence in which we consider the rows instead of columns.
When considering a filled block pattern, we replace the 0’s with ‘-’ and the 1’s
with the appropriate row or column entry. For example, in Figure 2, the row
projection is (a,−,−, a,−,−, a) and the column projection is (a, a,−,−, a).

Now we may consider block patterns with non-consecutive projections, rather
than simply the standard de Bruijn sequence. One variation used will be combs
and their corresponding sequences.

Definition 3.8. A comb of order n is a binary sequence x0x1 . . . xs such that
it contains exactly n ones. We will represent the comb as a sequence of indices
for the non-zero entries, i.e. the comb 01011 corresponds to sequence [1, 3, 4].

We think of combs as a modified window. For standard de Bruijn sequences,
we use the comb 11 · · · 1. However, an alternative comb for binary de Bruijn
sequences for strings of length 3 is [0, 2, 4]. Following the notation of [1], this
corresponds to the window O*O*O. One de Bruijn sequence for this comb is the
following.

11010100

This window produces the following sequence of binary triples: 100, 111, 000, 110,
001, 101, 010, 011. De Bruijn sequences for given comb patterns have been stud-
ied in the literature. For example, see [1, 4].

Note that our projection must match the structure of the objects used to
create the torus. In terms of our example in Figure 2, this means that we must

6



have a binary de Bruijn sequence for strings of length 3 with comb [0, 1, 4] and
a binary quotient string for strings of length 3 with comb [0, 3, 6].

The following theorem is our main result, and serves to generalize Theorem
3.5 from [2]. Instead of using simple n × k cross shaped block patterns, our
result allows for a wide variety of block patterns, from block patterns containing
n+k−1 blocks in an n×k subgrid to block patterns of n+k−1 block contained
in a much larger subgrid with a variety of gaps in their projections (i.e. the
projections are combs).

Theorem 3.9. Let S be a de Bruijn sequence for strings of length n over an
alphabet of size d with a given comb pattern P1. Let Q be a quotient string over
the same alphabet of size d with comb pattern P2 for strings of length k. Place
n+ k − 1 blocks on the grid in a block pattern B so the connection graph for B
is a tree, and so that the horizontal projection of B corresponds to P1 and the
vertical projection of B corresponds to P2. Then the grid T produced by Q× S
and addition modulo d contains every possible n+ k − 1 binary combination in
block pattern B exactly once.

Proof. The total number of possible (n + k − 1) combinations is dn+k−1. We
know that S has length dn and Q has length dk−1, so our grid has size dn+k−1.
Thus if we show that we can find any (n + k − 1)-string in our block pattern,
we are done.

Since our connection graph is a tree, label our blocks B1, B2, . . . , Bn+k−1 so
that B1 is a root and every child appears after its parent. This can be done
using a breadth-first search method. Fill in the blocks in this order arbitrarily
with bits to make an arbitrary (n+ k − 1)-binary string x1x2 . . . xn+k−1.

If our string is to appear in the grid, we can determine all row/column labels
as follows. Suppose B1 appears in row labelled a. Then B1 must be in column
a+x1 modulo d. As we work through the list in this fashion, each block Bi must
have exactly one of the row or column labels assigned as we reach it in the list.
Call the known label α. Then the remaining label to be determined will always
be α+xi. Thus we can determine the projection sequence r1r2 . . . rk for the row
labels and c1c2 . . . cn for the column labels, all solely based on our original label
a. Since S is a de Bruijn sequence, we know that (c1 + x)(c2 + x) . . . (cn + x)
must appear in S for all choices of x. Since Q is a quotient string, exactly one of
(r1 +x)(r2 +x) . . . (rk +x) must appear. If (r1 +x)(r2 +x) . . . (rk +x) appears,
our block pattern for this (n + k − 1) combination appears in [(r1 + x)(r2 +
x) . . . (rk + x)]× [(c1 − x)(c2 − x) . . . (cn − x)].

We now give the following example with n = 3 and k = 3. Suppose that
our alphabet is A = {0, 1} which will correspond to white/black, respectively.
Let our comb patterns be the following: P1 = [0, 1, 4] and P2 = [0, 3, 6]. Let
S = 11100100 and Q = 1110. We construct the following torus T from Q× S.

0 0 0 1 1 0 1 1
0 0 0 1 1 0 1 1
0 0 0 1 1 0 1 1
1 1 1 0 0 1 0 0

7



a

a

a

a

a a

Figure 2: De Bruijn grid and pattern to be located with corresponding connec-
tion graph.

We will construct our grid so as not to require wrap-around, and paint the
tiles black/white according to our instruction. This produces the grid shown in
Figure 2. Now suppose that in this grid we are looking for the specific block
pattern shown next to the grid in the figure. We also include the connection
graph in the figure. If our top left red block appears in column a, then we get
the column/row values shown on the relevant rows and columns.

First, we look at the vertical projection given by 1001001. Where does a se-
quence of type (a,−,−, a,−,−, a) appear? In position/row 4 as (0,−,−, 1,−,−, 1).
This sets our value a = 0. Next, the horizontal projection given by 11001.
Where does the sequence (0, 1,−,−, 1) appear? In position/column 5. This
gives us the position of our robot on the grid, shown in Figure 3.

Finally, we provide a larger, non-binary example in Figure 4. This figure is a
de Bruijn torus for d = 5 with k = 3 and n = 2 over the group G = Z/5Z. This
torus will work to locate any of the following block patterns (amongst others)
that contain four blocks. Note that not included is the two-by-two square, as
this would give a connection graph that contains a cycle.

Let’s consider an example on this figure. Suppose that our block pattern is
given, and we have filled it in as shown below.

0

1

0

3 or

If we assign the first column to have label a, then we get the horizontal
projection is (a, a+ 2) and the vertical projection is (−a,−a+ 1,−a). We begin
with the vertical projection. This could be any of the following (one for each
choice of a): 010, 121, 232, 343, 404. Note that only 404 appears, and it appears
in rows 5-7 from the bottom. Thus we have a = 1. Next we find the horizontal

8



Figure 3: Solution to problem from Figure 2.

projection 13, which appears in columns 8-9 from the left. Hence we find our
entry in the submatrix shown below.

0

1

0

3

2

2

or

This decoding algorithm is summarized below. Note that this algorithm
provides us with an O(|Q| + |S|) search method, instead of the the standard
O(|Q| × |S|), as is needed for arbitrary grids as well as pseudorandom arrays.

Algorithm 1 Decoding Algorithm

1: procedure LocateBlocks(B) . Input: Pattern to locate
2: Determine vertical projection set
3: Search quotient string for vertical projection
4: Determine horizontal projection
5: Search de Bruijn sequence for horizontal projection
6: end procedure

return Vertical location, horizontal location . row, column position

Note that Theorem 3.9 requires that our connection graph be a tree. If it is
not a tree, then it is either disconnected, or it contains a cycle. We investigate
each of these situations independently.

Theorem 3.10. Let S be a de Bruijn sequence for d-ary strings of length n
with a given comb pattern P1. Let Q be a quotient string with comb pattern
P2 for d-ary strings of length k. Suppose that G is a group of order d. Place
n+ k − 1 blocks on the grid in a block pattern B so the connection graph for B
is a forest made up of c components, and so that the horizontal projection of B

9



Figure 4: A de Bruijn torus for d = 5, k = 3, n = 2, and G = Z/5Z, accompanied
by some valid block patterns.

10



corresponds to P1 and the vertical projection of B corresponds to P2. Then the
grid T produced by Q × S using the group G contains every possible n + k − 1
d-ary combination in block pattern B exactly dc−1 times.

Proof. We first note that each component will have its own vertical (and corre-
sponding horizontal) projection. Label the components as C1, C2, . . . , Cc. Using
our column/row labeling procedure outlined in the proof of Theorem 3.9, we will
find column and row labels for each component in terms of a single variable (as-
sociated with whichever row/column started our algorithm). Suppose that the
labeling for Ci is given in terms of ai, and the vertical projection in terms of
ai is given by Vi(ai) while the horizontal projection is given as Hi(ai). That
is, we get a projection labeling similar to the example shown below. Note that
this example is simplified so that the components are grouped clearly. It could
instead be the case that your projections are not consecutive rows/columns, but
mixed.

1

2

c

. . .

Vc

...

V2

V1

H1 H2 · · · Hc

As stated previously, each of these projections is dependent on the input
variable ai ∈ [d]. We must find a k-tuple in the quotient de Bruijn string
such that each Vi(ai) has an equivalence class representative in the correct
location. Considering all possible combinations of all possible equivalence class
representatives, there are dc different possible strings that we must look for in
our quotient string Q. However, since only one from each equivalence class
appears in Q, we will able to locate exactly dc−1 of them in Q, and these will
be total vertical projections for the connection graph. Each one of these total
vertical projections appearing in Q will produce a corresponding total horizontal
projection. Hence the pattern we are attempting to locate will in fact appear
dc−1 times in our grid.

Theorem 3.11. Let S be a de Bruijn sequence for d-ary strings of length n with
a given comb pattern P1. Let Q be a quotient string with comb pattern P2 for
d-ary strings of length k. Suppose that G is a group of order d. Place n+ k− 1
blocks on the grid in a block pattern B so the connection graph for B contains
a cycle, and so that the horizontal projection of B corresponds to P1 and the
vertical projection of B corresponds to P2. Then there exists an n+ k− 1 d-ary

11



combination in block pattern B that cannot be found within the grid T produced
by Q× S using group G.

Proof. Suppose that our connection graph contains a cycle. Then there exists
a block Bi in the connection graph that has two neighbors preceding it in the
ordering that was determined. Call these neighbors Bs and Bt. When we
determine the row and column labels for our blocks, depending on some variable
a, the blocks Bs and Bt provide a row label r(a) and a column label c(a) for Bi.
When we are given a filled-in block pattern to locate in the grid, we will only
be able to find block patterns in which the entry for Bi is equal to r(a) + c(a).
That is, if Bi = b, we must have b = r(a) + c(a). Note that this will completely
determine our value for a, and so our vertical projection will be specific and
cannot be replaced with a different representative from the same equivalence
class. As exactly one representative from each class appears in Q, this implies
that for exactly one choice of b ∈ [d] we can find the filled-in block pattern, but
for the d− 1 other choices we cannot.

4 Variations on the De Bruijn Torus Problem

We now consider using other combinatorial objects rather than d-ary strings.
This requires us to jump from the world of de Bruijn sequences to the land of
universal cycles. To start, we generalize our definition of quotient strings to
consider objects other than d-ary strings.

Definition 4.1. Let C be a set of combinatorial objects, and suppose that we
have an equivalence relation defined over the set that provides a partition of
C into parts P1, P2, . . . , Pt. A quotient string for C is a string that contains
exactly one consecutive substring from each part exactly once. It is essentially
a universal cycle for a set of equivalence class representatives.

We now consider k-permutations. For this we introduce a few new defini-
tions.

Definition 4.2. A difference pattern for a k-permutation of [n] given by
x1x2 . . . xk is the string d1d2 . . . dk−1 where di = xi+1 − xi. A difference se-
quence for k-permutations of [n] is a universal string over all possible difference
patterns for k-permutations of [n].

The difference sequence for k-permutation is the quotient string that we will
use to produce grids. A necessary requirement for this is a proof that such
difference sequences exist.

Lemma 4.3. There exists a difference sequence for k-permutations of [n] for
all n, k ∈ Z+ with 3 ≤ k < n.

Proof. First, we will construct the transition digraph, Gd, for difference patterns
for k-permutations of [n], with the following vertex and edge sets.

12



Vertices: d1d2 . . . dk−2 where d1d2 . . . dk−2dk−1 is a difference pattern for a
k-permutation of [n] for some dk−1.

Edges: d1d2d3 . . . dk−2 → d2d3 . . . dk−2dk−1, where d1d2d3 . . . dk−2dk−1 is a
valid difference pattern for a k-permutation of [n].

As is standard practice in the universal cycle literature, we will show that this
graph is eulerian by illustrating that it is both balanced and weakly connected.
Once this graph is known to be eulerian, we can find a difference sequence for
k-permutations of [n] simply by following any Euler tour in Gd. To prove that
Gd is eulerian, we construct a second (separate but related) digraph, Gp. This
graph Gp is the transition digraph for k-permutations of [n] is the graph with
the following vertex and edge sets.

Vertices: x1x2 . . . xk−1 where x1x2 . . . xk−1xk is a k-permutation of [n] for
some xk.

Edges: x1x2x3 . . . xk−1 → x2x3 . . . xk−1xk where x1x2x3 . . . xk−1xk is a k-
permutation of [n].

Now that we have both digraphs defined, we show a special relationship
between Gd and Gp by looking at the mapping ϕ : Gp 7→ Gd, which maps each
k-permutation’s prefix to the prefix of its difference pattern. This mapping is
equivalent to contracting each difference pattern’s equivalence class in Gp to
produce Gd. To prove that this statement is true, we need only show that there
is an edge from X− = x1x2 . . . xk−1 to X+ = x2x3 . . . xk−1xk if and only if there
is an edge from DX− to DX+ , the corresponding difference sequences.

First, we note that DX− = d1d2 . . . dk−2 where di = xi+1−xi for i ∈ [k− 2],
and DX+ = δ2δ3 . . . δk−1 where δi = xi+1 − xi for i ∈ {2, 3, . . . , k − 1}. Hence
d2d3 . . . dk−2 = δ2δ3 . . . δk−2, and so we have DX− → DX+ in Gd.

For the reverse, suppose that we have an edge d1d2 . . . dk−2 → d2d3 . . . dk−1
in Gd. Then the difference pattern D = d1d2 . . . dk−1 corresponds to a class of

k-permutations of [n] of the form
(
x, x+ d1, x+ d1 + d2, . . . , x+

∑k−1
i=1 di

)
(for

any x ∈ [n]). These k-permutations correspond to the following edges in Gp.(
x, x+ d1, x+ d1 + d2, . . . , x+

k−2∑
i=1

di

)

→

(
x+ d1, x+ d1 + d2, . . . , x+

k−2∑
i=1

di, x+

k−1∑
i=1

)
Thus our mapping ϕ performs as stated. In other words, ϕ maps classes of n
vertices in Gp to one representative in Gd, and maps classes of n edges in Gp to
one edge in Gd.

Next, from [10], we know that Gp is eulerian. Now we can use our mapping
ϕ to prove that Gd is eulerian too, as the k-permutation digraph is connected if
and only if Gd is connected. Lastly, because of our mapping ϕ, it is clear that
the Gd is balanced if and only if Gp is balanced. Hence the Gd is eulerian.

Now that we know the correct quotient string exists, we use a construction
similar to that in Theorem 3.9 to produce our main result for this section.

13



Theorem 4.4. Let S be a universal cycle for k-permutations of [n] and let D be
a difference string for `-permutations of [n]. Let G be a group of order n, with
elements labelled by [n] and operation ⊕. Construct the torus for D×S over G
and call it T . Fix a block pattern B such that we have k blocks horizontally and
` blocks vertically. Fill block pattern B with elements from G arbitrarily such
that the k horizontal blocks form a k-permutation and the ` vertical blocks form
an `-permutation. Then this filled block pattern must appear exactly once in T .

We now provide an example and consider the following. If we want to pro-
duce a torus for 2-permutations of [4], we need a universal cycle for this set
(for the horizontal) and a difference string as well (for the vertical). In this
example, we will use the Klein-4 group for our group G, with addition given by
the following group table.

⊕ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

Our universal cycle is given by 013120230321, and our quotient string is
given by 013. Then our 2× 2 torus is the following 3× 12 grid.

⊕ 0 1 3 1 2 0 2 3 0 3 2 1
0 0 1 3 1 2 0 2 3 0 3 2 1
1 1 0 2 0 3 1 3 2 1 2 3 0
3 3 2 0 2 1 3 1 0 3 0 1 2

For example, in the example for 2-permutations of [4], consider our grid
constructed previously and the marked block pattern.

3 2 0 2 1 3 1 0 3 0 1 2

1 0 2 0 3 1 3 2 1 2 3 0

0 1 3 1 2 0 2 3 0 3 2 1

5 Future Work

There are many directions for future research to consider. One of the most
obvious concerns our original motivation from Problem 480 [11]: how do we
modify our methods to allow for cycles in the connection graph? The original
task is to use a block pattern that is simply a rectangle, which potentially
contains many cycles.

Corresponding to our variations that utilize universal cycles, there are many
open problems simply by consider the various combinatorial objects that have
been ‘ucycled’. For example, these could consider subsets, partitions, weak
orders, etc. The vast literature on ucycles provides plenty of opportunities for
future work.

14



Finally, when we consider the real-world applications we must allow for
things like sensor failure. Is there any way to build redundancy into our tori
so that if utilized for robotic vision (self-detection for robots on the grid), can
our methods handle the failure of one sensor (i.e. losing one block in our block
pattern)? Alternatively, can we make this method robust to rotations? In other
words, if the robot rotates 90◦, is it still able to self-locate?

As we consider potential applications and variations, there is a plethora of
research possibilities available.

References

[1] Abbas Alhakim, Steve Butler, and Ron Graham. “De Bruijn Sequences with
Varying Combs.” Integers, Vol 14A (2014), #A1.

[2] A.M. Bruckstein, T. Etzion, R. Giryes, N. Gordon, R.J. Holt, and D.
Shuldiner, “Simple and Robust Binary Self-Location Patterns”, IEEE Trans.
Inf. Theory, 58:7 (July 2012), 4884-4889.

[3] F. Chung, P. Diaconis, and R. Graham, “Universal Cycles for Combinatorial
Structures”, Discrete Math. 110 (1992), 43-59.

[4] J.N. Cooper and R.L. Graham, “Generalized de Bruijn Cycles”, Ann. Comb.
8 (2004), 13-25.

[5] J. Dai and C.R. Chung, “Touchscreen Everywhere: On Transferring a Nor-
mal Plane Surace to a Touch-Sensitive Display”, IEEE Trans. Cybern. 44:8
(Aug 2014), 1383-1396.

[6] P. Diaconis and R. Graham, Magical Mathematics: The Mathematical Ideas
that Animate Great Magic Tricks, Princeton University Press (2011).

[7] T. Etzion, “Constructions for Perfect Maps and Pseudorandom Arrays”,
IEEE Trans. Inf. Theory, 34:5 (Sep 1988), 1308-1316.

[8] G. Hurlbert and G. Isaak, “New Constructions for De Bruijn Tori”, Des.
Codes Cryptogr., 6 (1995), 47-56.

[9] G. Hurlbert, C.J. Mitchell, and K.G. Paterson, “On the Existence of de
Bruijn Tori with Two by Two Windows”, J. Combin. Theory Ser. A, 76
(1996), 213-230.

[10] B.W. Jackson, “Universal cycles of k-subsets and k-permutations”, Discrete
Math., 117 (1993), 141-150.

[11] B. Jackson, B. Stevens, and G. Hurlbert, “Research Problems on Gray
Codes and Universal Cycles”, Discrete Math., 309 (2009), 5341-5348.

[12] T. Kociumaka, J. Radoszewski, and W. Rytter, “Computing the kth Lyn-
don word and decoding lexicographically minimal de Bruijn sequence”, Lec-
ture Notes in Computer Science, 8486 (2014), 726-737.

15



[13] F.J. MacWilliams and N.J.A. Sloane, “Pseudo-Random Sequences and Ar-
rays”, Proc. IEEE, 64:12 (Dec 1976), 1715-1729.

[14] J. Sawada and A. Williams, “Ranking necklaces, Lyndon words, and de
Bruijn sequence in O(n2)-time”, Submitted.

[15] E.R. Scheinerman, “Determining Planar Location Via Complement-Free
de Bruijn Sequences Using Discrete Optical Sensors”, IEEE Trans. Robot.
Autom., 17:6 (Dec 2001), 883-889.

16


	1 Introduction
	2 Background and Definitions
	3 The De Bruijn Torus Problem
	4 Variations on the De Bruijn Torus Problem
	5 Future Work

