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Abstract

A dominating set of a graph G is a set D of vertices of G such that every vertex
outside D is adjacent to a vertex in D. A locating-dominating set of G is a dominating
set D of G with the additional property that every two distinct vertices outside D have
distinct neighbors in D; that is, for distinct vertices u and v outside D, N(u) ∩ D 6=
N(v) ∩ D where N(u) denotes the open neighborhood of u. A graph is twin-free if
every two distinct vertices have distinct open and closed neighborhoods. The location-
domination number of G, denoted γL(G), is the minimum cardinality of a locating-
dominating set in G. Garijo, González and Márquez [Applied Math. Computation 249
(2014), 487–501] posed the conjecture that for n sufficiently large, the maximum value
of the location-domination number of a twin-free, connected graph on n vertices is equal
to ⌊n

2 ⌋. We propose the related (stronger) conjecture that if G is a twin-free graph of
order n without isolated vertices, then γL(G) ≤ n

2 . We prove the conjecture for cubic
graphs. We rely heavily on proof techniques from matching theory to prove our result.

Keywords: Locating-dominating set; Dominating set; Matching.
AMS subject classification: 05C69

1 Introduction

A dominating set in a graph G is a set D of vertices of G such that every vertex outside D is adjacent
to a vertex in D. The domination number, γ(G), of G is the minimum cardinality of a dominating
set in G. The literature on the subject of domination parameters in graphs up to the year 1997
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has been surveyed and detailed in the two books [10, 11]. In this paper, we focus our attention
on a variation of domination, called location-domination, which is widely studied in the literature.
A locating-dominating set is a dominating set D that locates all the vertices in the sense that
every vertex outside D is uniquely determined by its neighborhood in D. The location-domination
number of G, denoted γL(G), is the minimum cardinality of a locating-dominating set in G. The
concept of a locating-dominating set was introduced and first studied by Slater [16, 17] and studied
in [3, 4, 8, 15, 16, 17, 18] and elsewhere.

A classic result due to Ore [14] states that every graph without isolated vertices has a dominating
set of cardinality at most one-half its order. As observed in [8], while there are many graphs (without
isolated vertices) which have location-domination number much larger than one-half their order, the
only such graphs that are known contain many twins, that is, pairs of vertices with the same closed
or open neighborhood. Garijo, González, and Márquez [9] consider the function λ|C∗(n), which is the
maximum value of the location-domination number of a twin-free, connected graph on n vertices.
They prove that for every n ≥ 14, λ|C∗(n) ≥ ⌊n

2 ⌋, and they find different conditions for a twin-free
graph G to satisfy γL(G) ≤ ⌊n

2 ⌋. Motivated by these results, they state the following conjecture.

Conjecture 1 ([9]). There exists a positive integer n1 such that, for every n ≥ n1, λ|C∗(n) = ⌊n
2 ⌋.

We pose the related conjecture that in the absence of twins, the classic bound of one-half the
order for the domination number also holds for the location-domination number.

Conjecture 2. Every twin-free graph G of order n without isolated vertices satisfies γL(G) ≤ n
2 .

We remark that Conjecture 2 implies Conjecture 1. Indeed, if Conjecture 2 is true, then λ|C∗(n) ≤
⌊n
2 ⌋ for all n ≥ 2, which implies, by the results of Garijo et al. [9], that λ|C∗(n) = ⌊n

2 ⌋ for every n ≥ 14.
Moreover, Conjecture 2 is a stronger conjecture than Conjecture 1 in the sense that Conjecture 2
applies to twin-free graphs of arbitrary order with no isolated vertex, while Conjecture 1 is claimed
to hold only for (connected) twin-free graphs of sufficiently large order. 1

Strict inequality may hold in Conjecture 2. Consider, for example, the twin-free, bipartite graph
G formed by taking as one partite set a set S of k ≥ 2 elements, and as the other partite set all the
distinct non-empty subsets of S, and joining each element of S to those subsets it is a member of.
Then, G has order n = k + 2k − 1 and γL(G) = |S| = k = ⌊log2 n⌋. This is a classic construction in
the area of location-domination, see for example [17].

Garijo et al. [9] prove Conjecture 2 for graphs without 4-cycles (which include trees) and for
the class of graphs with independence number at least one-half the order (which includes bipartite
graphs). Further, they prove Conjecture 2 for twin-free graphs satisfying certain conditions on the
upper domination number and the chromatic number. In [8], the authors provide several construc-
tions for twin-free graphs with location-domination number one-half their order. The variety of these
constructions shows that these graphs have a rich structure, which is an indication that Conjecture 2
might be difficult to prove. Further support is given to this conjecture in [8] where it is proved for
split graphs and co-bipartite graphs, and in [7] where it is proved for line graphs. The following
theorem summarizes the known results about Conjecture 2.

Theorem ([8, 9, 12]) Conjecture 2 is true if the twin-free graph G of order n (without isolated
vertices) satisfies any of the following conditions.

1In [8], we attributed Conjecture 2 to the authors of [9] who posed Conjecture 1. However, as correctly
pointed out by the reviewers of the current paper, the statements of Conjecture 1 and Conjecture 2 are dif-
ferent. Hence, although Conjecture 2 is motivated by Conjecture 1, we pose Conjecture 2 as an independent
conjecture which is a strengthening of Conjecture 1.
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(a) ([9]) G has no 4-cycles.
(b) ([9]) G has independence number at least n

2 .
(c) ([9]) G has clique number at least ⌈n

2 ⌉+ 1.

(g) ([9]) G has upper domination number at least n
2 or G has upper domination number at least n

2+1.

(h) ([9]) G has chromatic number at least 3n
4 or G has chromatic number at least 3n

4 + 1.
(d) ([8]) G is a split graph or a co-bipartite graph.
(e) ([7]) G is a line graph.
(f) ([12]) G is a claw-free, cubic graph.

In this paper, we continue to advance the study of Conjecture 2 by proving it for the class of cubic
graphs, as stated in our main theorem:

Theorem 3. If G is a twin-free, cubic graph of order n, then γL(G) ≤ n
2 .

We start by giving some definitions and notations in Section 2, and we prove Theorem 3 in
Section 3. The essence of our proof of Theorem 3 is to apply the Tutte-Berge Formula and use
matching theory in order to obtain certain desired structures of a cubic graph that will enable us to
construct locating-dominating sets of size at most one-half the order of the graph.

2 Definitions and notation

For notation and graph theory terminology, we in general follow [10]. Specifically, let G be a
graph with vertex set V (G), edge set E(G) and with no isolated vertex. The open neighborhood
of a vertex v ∈ V (G) is NG(v) = {u ∈ V |uv ∈ E(G)} and its closed neighborhood is the set
NG[v] = NG(v)∪ {v}. The degree of v is dG(v) = |NG(v)|. If the graph G is clear from the context,
we simply write V , E, N(v), N [v] and d(v) rather than V (G), E(G), NG(v), NG[v] and dG(v),
respectively. Two distinct vertices u and v of a graph G are open twins if N(u) = N(v) and closed
twins if N [u] = N [v]. Further, u and v are twins in G if they are open twins or closed twins in G.
A graph is twin-free if it has no twins. We use the standard notation [k] = {1, 2, . . . , k}.

Given a set F of edges, we will denote by G − F the subgraph obtained from G by deleting all
edges of F . For a set S of vertices, G− S is the graph obtained from G by removing all vertices of
S and removing all edges incident to vertices of S. The subgraph induced by S is denoted by G[S].
A cycle on n vertices is denoted by Cn and a path on n vertices by Pn. An odd component of G is
a component of G of odd order. The number of odd components of G is denoted by oc(G).

A set D is a dominating set of G if N [v] ∩ D 6= ∅ for every vertex v in G, or, equivalently,
N [S] = V (G). Two distinct vertices u and v in V (G) \ D are located by D if they have distinct
neighbors in D; that is, N(u)∩D 6= N(v)∩D. If a vertex u ∈ V (G) \D is located from every other
vertex in V (G) \D, we simply say that u is located by D. For k ≥ 1 if X is a set of vertices in G
and x ∈ V (G) \X , then the vertex x is said to be k-dominated by X if x has exactly k neighbors
inside X ; that is, |N(x) ∩X | = k.

A set S is a locating set of G if every two distinct vertices outside S are located by S. In particular,
if S is both a dominating set and a locating set, then S is a locating-dominating set. Further, if S
is both a total dominating set and a locating set, then S is a locating-total dominating set (where S
is a total dominating set of G if every vertex of G is adjacent to some vertex in S). We remark that
the only difference between a locating set and a locating-dominating set in G is that a locating set
might have a unique non-dominated vertex.
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An independent set in G is a set of vertices no two of which are adjacent. Two distinct edges in
a graph G are independent if they are not adjacent in G (i.e., the two edges are not incident with a
common vertex). A set of pairwise independent edges of G is called a matching in G. A matching of
maximum cardinality in G is called a maximum matching in G. The number of edges in a maximum
matching of a graph G is called the matching number of G, denoted by α′(G). Let M be a specified
matching in a graph G. A vertex v of G is an M -matched vertex if v is incident with an edge of M ;
otherwise, v is an M -unmatched vertex. If the matching M is clear from context, we simply call a
M -matched vertex a matched vertex and a M -unmatched vertex an unmatched vertex.

3 Proof of Theorem 3

In this section, we present a proof of Theorem 3. Our proof relies heavily on matching theory in
graphs. We begin with some useful definitions and lemmas related to matchings.

3.1 Useful definitions and lemmas

We shall need the following theorem of Berge [1] about the matching number of a graph, which is
sometimes referred to as the Tutte-Berge formulation for the matching number. Recall that oc(G)
denotes the number of odd components in a graph G.

Theorem 4. (Tutte-Berge Formula) For every graph G,

α′(G) = min
X⊆V (G)

1

2
(|V (G)| + |X | − oc(G−X)) .

We shall also need the following structural result about maximum matchings in graphs which is
a consequence of the proof of the Tutte-Berge Formula.

Theorem 5. ([1]) Let G = (V,E) be a graph and let X be a proper subset of vertices of G such
that (|V | + |X | − oc(G − X))/2 is minimum. If M is a maximum matching in G, then |M | =
(|V | + |X | − oc(G −X))/2 and there are exactly oc(G −X)− |X | vertices that are M -unmatched.
Furthermore, if MX is the subset of edges of M that belong to G −X, then every vertex in G −X
is MX-matched, except for exactly one vertex from each odd component of G−X. If U denotes this
set of oc(G−X) vertices that are MX-unmatched, one from each odd component of G−X, then X
is M -matched to a subset of vertices in U .

The structure described in Theorem 5 is illustrated in Figure 1.

Definition of the set DG(M). Let G be a graph and let M be a maximum matching of G. We
define DG(M) to be the collection of all sets D of vertices such that the following holds:

• For every edge uv ∈ M , if exactly one of u and v has a neighbor that is M -unmatched, then
the vertex in {u, v} with an M -unmatched neighbor belongs to D.

• For every edge uv ∈ M , if neither u nor v has an M -unmatched neighbor or if both u and v
have a (common) M -unmatched neighbor, then exactly one of u and v belongs to D.

4
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Figure 1: Example of the structure of a graph with maximum matching M (thickened edges)
with respect to a given set X.

If the graph G is clear from the context, we simply write D(M) rather than DG(M).

Definition of a D-bad pair. Given a set D ⊆ V (G), we define a D-bad pair of vertices as two
vertices in V (G) \D that are not located by D. If the set D is clear from the context, we simply
write that a pair of vertices is a bad pair rather than a D-bad pair.

In our proof, we will use the following lemmas.

Lemma 6. Let G be a cubic graph, let M be a maximum matching of G, and let D ∈ DG(M). Then,
D is a dominating set of G, and each M -unmatched vertex is dominated by at least two vertices of D.

Proof. It follows readily from the two properties of sets D ∈ DG(M), that every M -matched vertex
is dominated by D. If x is an M -unmatched vertex, then since G is cubic, the vertex x is adjacent
to two M -matched vertices that are incident with distinct edges, e1 and e2 say, of M . Hence, by the
construction of D, the set D contains a neighbor of x incident with e1 and a neighbor of x incident
with e2. Thus, x is dominated by at least two vertices of D.

Lemma 7. Let G be a twin-free, cubic graph, let M be a maximum matching of G, and let D ∈
DG(M). Then, the vertices of each D-bad pair are 2-dominated.

Proof. Let {u, v} be a D-bad pair. If u and v were 3-dominated by D, then they would be open
twins, a contradiction. Hence, u and v are dominated by at most two vertices of D. By Lemma 6,
only M -matched vertices can be 1-dominated by D, but if u and v are M -matched vertices, they
would each be dominated by the vertex of D that they are matched to under M and would therefore
not form a D-bad pair, a contradiction. Hence, u and v are 2-dominated by D.
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Lemma 8. Let G be a twin-free, cubic graph. Among all maximum matchings M of G and all sets
D ∈ DG(M), let the matching M0 and the set D0 ∈ DG(M0) be chosen so that the number of D0-bad
pairs is minimum. Then, the vertices of each D0-bad pair are M0-matched vertices.

Proof. LetX be a proper subset of vertices of G such that (|V |+|X |−oc(G−X))/2 is minimum. The
structure of the graph G with respect to the matching M0 and the set X is described in Theorem 5.
Let {u, v} be an arbitrary D0-bad pair. Suppose to the contrary that they are not both M0-matched
vertices. By Lemma 7, both u and v are 2-dominated by D0. By the definition of a set in DG(M0),
if both u and v are M0-unmatched and 2-dominated, they would be open twins, a contradiction.
Therefore, exactly one of u and v is M0-unmatched. Renaming u and v if necessary, we may assume
that u is M0-unmatched. Thus, by Theorem 5, the vertex u belongs to an odd component, Cu say,
of G−X . Let x and y be the two common neighbors of u and v in D0. Let x

′ and y′ be the vertices
M0-matched to x and y, respectively.

Suppose that both x and y belong to Cu. If v /∈ V (Cu), then v ∈ X . But then the vertex
that is M0-matched to v belongs to D0, implying that v would be 3-dominated by D0, contradicting
Lemma 7. Hence, v ∈ V (Cu). If v is matched to neither x nor y by M0, then, once again, v would be
3-dominated by D0, a contradiction. Hence, v is M0-matched to either x or y. Renaming x and y if
necessary, we may assume that xv ∈ M0, and so v = x′. If u and v are adjacent, then u and v would
be closed twins, a contradiction. Hence, u and v are not adjacent. The third neighbor of u, different
from x and y, is therefore the vertex y′ that is M0-matched to y (otherwise, by the definition of
DG(M), u would be 3-dominated, a contradiction). We now consider the set D′ = (D0 \ {y})∪{y′}.

We note that y and y′ have a common M0-unmatched neighbor, namely u, implying that D′ ∈
D(M0). Suppose there is a vertex z different from u that is adjacent to both x and y′. Then, z
is either in X or in Cu. In both cases, z is M0-matched. If z = v, then u and z are open twins,
a contradiction. Since N(y) = {u, v, y′} while z is adjacent to x, we note that z 6= y. Therefore,
z /∈ {v, y} and the M0-matched neighbor of z is in D′, implying that z is 3-dominated by D′. Hence,
the vertex u is the only vertex dominated only by x and y′ in D′ and it is therefore located by
D′. Moreover, both v and y are 1-dominated by D′, and are therefore located by D′ by Lemma 7.
Finally, no other vertex has been affected by the removal of y from D0. Hence, the number of D′-bad
pairs is strictly less than the number of D0-bad pairs, contradicting our choice of D0. Therefore, at
most one of x and y belong to Cu.

Suppose that exactly one of x and y belongs to Cu. Renaming x and y if necessary, we may
assume that x ∈ V (Cu). Then, y ∈ X . If v ∈ X or if v ∈ V (Cu)\{x′}, then v would be 3-dominated
by D0, a contradiction. Hence, v = x′, and so v is M0-matched to x. Since u is 2-dominated by D0,
the vertex u is adjacent to either v or y′. Since y′ belongs to a component of G−X different from
Cu, the vertex u is adjacent to v. But then u and v are closed twins, a contradiction.

Therefore, both x and y belong to X . This implies that u, x′ and y′ belong to three different
components of G − X . In particular, u is adjacent to neither x′ nor y′, implying that the third
neighbor of u different from x and y is an M0-matched vertex and therefore belongs to the set D0

by the construction of sets in DG(M0). Thus, u is then 3-dominated by D0, a contradiction. This
completes the proof of the lemma.

Note that in any twin-free, cubic graph G, every 4-cycle is an induced 4-cycle. The following
structure will play an important role in our proof.

Definition of a bad (D,M)-matched 4-cycle. Let C:uCu
′
CvCv

′
CuC be a 4-cycle in a (twin-free

cubic) graph G, M a matching of G, and D a subset of vertices of G. We say that C is a bad
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(D,M)-matched 4-cycle if uCu
′
C ∈ M , vCv

′
C ∈ M , D ∩ V (C) = {u′

C, v
′
C} and vC is adjacent to

exactly two vertices of D (and so, N(vC) ∩D = {u′
C , v

′
C}).

Given two bad (D,M)-matched 4-cycles, A and B, we say that A is dependent on B via the vertex
u′
A or v′A if uB is adjacent to u′

A or to v′A, respectively. An illustration is given in Figure 2. We note
that if A is dependent on B, then uB is 3-dominated by D.

uA vA

u′A v′A

uBvB

u′Bv′B

Figure 2: Two bad (D,M)-matched 4-cycles A and B, where A is dependent on B via u′A.
Edges of M are thickened. Black vertices belong to D, and white vertices do not.

Given a set S of vertex-disjoint bad (D,M)-matched 4-cycles of a graph G, let
−→
G(S) be the

digraph with vertex set S and where (A,B) is an arc in
−→
G (S) if A is dependent on B. We remark

that since G is cubic, every vertex in
−→
G(S) has out-degree at most 2. Further by definition of a bad

(D,M)-matched 4-cycle, every vertex in
−→
G(S) has in-degree at most 1.

Given a rooted tree T with root r, by an orientation of T we mean orienting every arc of T from
a parent to its child.

3.2 Proof of the main result

We are now in a position to prove our main result, namely Theorem 3. Recall its statement.

Theorem 3 If G is a twin-free, cubic graph of order n, then γL(G) ≤ n
2 .

Proof of Theorem 3. Among all maximum matchingsM of G and all setsD ∈ DG(M), we choose
the matching M0 and the set D0 ∈ DG(M0) so that the number of D0-bad pairs is minimum. Let X
be a proper subset of vertices of G such that (|V |+ |X | − oc(G−X))/2 is minimum. The structure
of the graph G with respect to the matching M0 and the set X is described in Theorem 5.

We now describe the structure of D0-bad pairs:

Claim A. Every D0-bad pair {u, v} belongs to a common bad (D0,M0)-matched 4-cycle, say R.
Further, there exists a set Su,v of vertex-disjoint bad (D0,M0)-matched 4-cycles containing R such
that the following holds:

(a) For every 4-cycle C ∈ Su,v and every vertex x ∈ {u′
C , v

′
C}, either x is adjacent to an

M0-unmatched vertex in G, or C is dependent on some other C′ ∈ Su,v via the vertex x.

(b)
−→
G(Su,v) is an oriented tree rooted at R.

(c) For every 4-cycle C ∈ Su,v, if both u′
C and v′C have an M0-unmatched neighbor, then these

neighbors are distinct and {u′
C , v

′
C} ⊆ X.

Proof of Claim A. Let {u, v} be a D0-bad pair. Thus, u and v are vertices outside D0 that are not
located by D0. By Lemma 7, both u and v are 2-dominated by D0, and by Lemma 8, both u and v
are M0-matched. Let u′ and v′ be the M0-matched neighbors of u and v, respectively. Since u and

7



v are 2-dominated by D0, we note that u′ and v′ are the two common neighbors of u and v in D0.
Thus, Cuv:uu

′vv′u is a bad (D0,M0)-matched 4-cycle in G. As observed earlier, every 4-cycle in G
is an induced 4-cycle. Hence, let x, y, u′′ and v′′ be the neighbors of u, v, u′ and v′, respectively, that
do not belong to this 4-cycle Cuv. Let Du = (D0 \ {u′}) ∪ {u} and let Dv = (D0 \ {v′}) ∪ {v}. We
proceed further with the following series of subclaims.

Claim A.1. The following holds.

(a) If Du /∈ DG(M0), then u′′ is an M0-unmatched vertex that is not adjacent to u.

(b) If Du ∈ DG(M0), then the only Du-bad pair that is not a D0-bad pair is {u′′, z} for some
vertex z. Moreover, u′′ and z are part of a bad (D0,M0)-matched 4-cycle C of G, and Cuv

is dependent on C via the vertex u′.

Proof of Claim A.1. By definition of the sets in the family DG(M0), if Du /∈ DG(M0), then u′′ is an
M0-unmatched vertex and u′′ is not adjacent to u, proving Statement (a) of Claim A.1.

To prove Statement (b), suppose that Du ∈ DG(M0). By our choice of M0 and D0, there are at
least as many Du-bad pairs as D0-bad pairs. The only vertices that could potentially be negatively
affected (in the sense that they are located by D0 but not by Du) by removing u′ from D0 and
replacing it with the vertex u are u′, u′′ and v. By Lemma 7, two vertices forming a Du-bad pair
are 2-dominated by Du. The vertex v is 1-dominated by Du, and hence it is located by Du.

Suppose that u′ is not located by Du from some other vertex outside Du. Then, this vertex must
be x, the neighbor of u not on Cuv. Considering the Du-bad pair {u′, x}, and noting that u′ and
x are 2-dominated by Du, we deduce that u′′ ∈ Du. If x is M0-unmatched, then by the definition
of DG(M0), we would have u ∈ D0 and u′ /∈ D0, a contradiction. Hence, x is M0-matched and
its matched neighbor is in Du. Since x is 2-dominated, we have xu′′ ∈ M0. We now consider the
maximum matching M ′ = (M0 \ {uu

′, vv′}) ∪ {uv′, vu′}, and we let D′ = (D0 \ {u
′}) ∪ {v}.

We note that u′′x ∈ M ′. Since neither u nor u′ has an M ′-unmatched neighbor, we note that
D′ ∈ D(M ′). The only vertices that could potentially be negatively affected (in the sense that they
are located by D0 but not by D′) by these changes are the vertices dominated by u′ in D0 and that
do not belong to D′. The only such vertices are u and u′. By Lemma 7, if two vertices form a
D′-bad pair, then they are 2-dominated by D′. The vertex u is 1-dominated by D′, and hence it is
located by D′. Thus, the vertex u′ is not located by D′ from some other vertex outside D′. Such a
vertex must be adjacent to both v and u′′, and is therefore the neighbor of v outside Cuv, namely
the vertex y. If x = y, then u and v would be open twins, a contradiction. Hence, x 6= y. If y is
M ′-matched, since u′′x ∈ M ′ and u′v ∈ M ′, the vertex y is 3-dominated by D′, a contradiction.
Hence, y is M ′-unmatched (and M -unmatched). Then, since D0 ∈ DG(M0), the vertices y and v′

are adjacent. Hence, y is 3-dominated by D′, a contradiction. Thus, u′ is located by Du.

Therefore, among the vertices dominated by u′ in D0, the vertex u′′ is the only vertex that was
located by D0 but that is not located by Du from some other vertex, z say, outside Du. Thus,
{u′′, z} is the only pair of vertices located by D0 but not by Du. Hence, the number of Du-bad pairs
is the same as the number of D0-bad pairs (since {u, v} is not a Du-bad pair) and we can apply
Lemma 8 to Du to deduce that u′′ and z are M0-matched vertices. By Lemma 7, both u′′ and z
are 2-dominated by Du. Let w and t be the M0-matched neighbors of u′′ and z, respectively. Since
u′′ and z are 2-dominated by Du and Du ∈ DG(M0), we note that w and t are the two common
neighbors of u′′ and z in Du. Thus, the 4-cycle C:u′′wztu′′ is a bad (D0,M0)-matched 4-cycle in
G with u′′ = uC , w = u′

C , z = vC and t = v′C , and Cuv is dependent on C via the vertex u′. This
establishes Statement (b) of Claim A.1. (✷)

Interchanging the roles of u and v in the proof of Claim A.1, we have the following analogous
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result for the vertex v.

Claim A.2. The following holds.

(a) If Dv /∈ DG(M0), then v′′ is an M0-unmatched vertex that is not adjacent to v.

(b) If Dv ∈ DG(M0), then the only Dv-bad pair that is not a D0-bad pair is {v′′, z} for some
vertex z. Moreover, v′′ and z are part of a bad (D0,M0)-matched 4-cycle C of G, and Cuv

is dependent on C via the vertex v′.

Let R denote the bad (D0,M0)-matched 4-cycle Cuv:uu
′vv′u, where u = uR, u

′ = u′
R, v = vR and

v′ = v′R. We now show the existence of a set Su,v of vertex-disjoint bad (D0,M0)-matched 4-cycles
containing R such that conditions (a) and (b) in the statement of Claim A hold. If both u′ and v′

have an M0-unmatched neighbor, then we let Su,v = {R} and we are done.

Otherwise, renaming vertices if necessary, we may assume, by Claim A.1 and Claim A.2, that
Du ∈ DG(M0) and that R is dependent on a bad (D0,M0)-matched 4-cycle C via vertex u′

R. Now,
since by Claim A.1(b) the number of Du-bad pairs is the same as the number of D0-bad pairs (hence
Du also minimizes the number of bad pairs), we can apply Claim A.1 and Claim A.2 to C, Du and
to the Du-bad pair {uC , vC}. This shows that each of u′

C and v′C either have an M0-unmatched
neighbor, or C is dependent on some other bad (D0,M0)-matched 4-cycle via this vertex. Repeating
this process as long as possible yields a set Su,v of bad (D0,M0)-matched 4-cycles, where for each
bad (D0,M0)-matched 4-cycle in Su,v different from R there is some other bad (D0,M0)-matched
4-cycle in Su,v that depends on it, and satisfies the properties in Claim A.1 and Claim A.2. This
establishes Statement (a) of Claim A. Moreover we have the following.

Claim A.3. Any two distinct 4-cycles in Su,v are vertex-disjoint.

Proof of Claim A.3. Let A : uAu
′
AvAv

′
A and B : uBu

′
BvBv

′
B be two distinct 4-cycles of Su,v. If they

have a common vertex, since their vertices are pairwise M0-matched, they must have two vertices in
common, and these vertices must be M0-matched to each other. But then, the vertex that belongs
to both A and B but does not belong to D0 must be 3-dominated by D0, a contradiction. (✷)

Now, consider the digraph
−→
G(Su,v), which by Claim A.3 is well-defined. The following properties

hold in the digraph
−→
G(Su,v). Recall that the distance from a vertex x to a vertex y in a directed

graph D is the minimum length among all directed paths from x to y in D.

Claim A.4. The following holds.

(a) R has in-degree 0 in
−→
G(Su,v).

(b) Every vertex in
−→
G(Su,v) different from R has in-degree exactly 1.

(c)
−→
G(Su,v) has no directed cycle.

Proof of Claim A.4. To see that Statement (a) holds, observe that if some bad (D0,M0)-matched 4-
cycle C was dependent on R say, on vertex uR, then uR would be 3-dominated byD0, a contradiction.

For Statement (b), we show firstly that
−→
G(Su,v) has maximum in-degree 1. Suppose to the

contrary that for some bad (D0,M0)-matched 4-cycle A in Su,v, there are two other bad (D0,M0)-
matched 4-cycles B and C of Su,v that are both dependent on A. Since B is dependent on A, the
vertex uA is adjacent to u′

B or v′B. Since C is dependent on A, the vertex uA is adjacent to u′
C or

v′C . Thus, the vertex uA has degree at least 4, a contradiction. We show secondly that R is the only

vertex in
−→
G(Su,v) with in-degree 0. As observed in the paragraph immediately preceding Claim A.3,

for each bad (D0,M0)-matched 4-cycle in Su,v different from R there is some other bad (D0,M0)-
matched 4-cycle in Su,v that depends on it. Therefore, every bad (D0,M0)-matched 4-cycle in Su,v
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different from R has in-degree at least 1 in
−→
G(Su,v). Therefore, by our earlier observations, every

bad (D0,M0)-matched 4-cycle in Su,v different from R has in-degree exactly 1 in
−→
G(Su,v).

For Statement (c), suppose to the contrary that
−→
G(Su,v) contains a directed cycle C:C1C2 . . . CkC1

for some k ≥ 2. By Statement (a), we know that R has in-degree 0 and therefore cannot belong to

this cycle. However, there is a (directed) path from R to every other vertex in
−→
G(Su,v). Among

all vertices in the directed cycle C, let Ci be chosen so that the distance from R to Ci in
−→
G(Su,v)

is minimum where i ∈ [k]. Let P be a shortest (directed) path from R to Ci in
−→
G(Su,v) and let B

be the vertex that immediately precedes Ci on the path P (possibly, B = R). Since the distance

from R to B in
−→
G(Su,v) is less than the distance from R to Ci in

−→
G (Su,v), the vertex B does not

belong to the directed cycle C. Therefore, Ci has in-degree at least 2 in
−→
G(Su,v), contradicting

Statement (b). This completes the proof of the claim. (✷)

By Claim A.4(c), if there is a cycle in
−→
G(Su,v), it cannot be an oriented cycle. But then some

vertex in that cycle must have in-degree at least 2, contradicting Claim A.4(b). Hence, Claim A.4

implies that
−→
G(Su,v) is an oriented tree rooted at R, and we have proved Statement (b) of Claim A.

It remains to prove Statement (c) of Claim A. Let C ∈ Su,v be a bad (D0,M0)-matched 4-
cycle where both u′

C and v′C have an M0-unmatched neighbor, u′′ and v′′ say, respectively. These
neighbors are clearly distinct, since otherwise u′

C and v′C are open twins. By Theorem 5, the two
M0-unmatched vertices u′′ and v′′ belong to distinct odd components of G − X . Suppose to the
contrary that uC ∈ X . Then, by Theorem 5, u′

C /∈ X and u′
C belongs to an odd component of G−X

that contains no M0-unmatched vertex. However, u′
C is adjacent to the M0-unmatched vertex u′′

which implies that u′
C belongs to the same odd component of G −X as the M0-unmatched vertex

u′′, a contradiction. Hence, uC /∈ X . Analogously, vC /∈ X .

If neither u′
C nor v′C belong to X , then u′′ and v′′ belong to the same components of G −X , a

contradiction. Hence, renaming u′
C and v′C , if necessary, we may assume that v′C ∈ X . Thus, vC

belongs to an odd component of G−X that contains no M0-unmatched vertex. If u′
C /∈ X , then vC

would be in the same odd component of G −X as the M0-unmatched vertex u′′, a contradiction.
Hence, u′

C ∈ X . This establishes Statement (c) of Claim A and completes the proof of Claim A. (✷)

An example of a subgraph of G corresponding to a set Su,v that contains six bad (M0, D0)-matched
4-cycles is illustrated in Figure 3(a) (where the edges of M0 are thickened, black vertices belong to
D0 and white vertices do not, and square white vertices are M0-unmatched vertices).

We now return to the proof of Theorem 3. Our strategy is to modify the set D0 in such a way that
the resulting set becomes a locating-dominating set of G of cardinality at most one-half the order
of G. Consider the set of D0-bad pairs. By Claim A, each such D0-bad pair {u, v} belongs to a bad
(D0,M0)-matched 4-cycle R and there is a set Su,v of vertex-disjoint bad (D0,M0)-matched 4-cycles

such that
−→
G(Su,v) is an oriented tree rooted at R. We note that, given two D0-bad pairs {u, v} and

{x, y}, the trees
−→
G (Su,v) and

−→
G(Sx,y) are vertex-disjoint, and furthermore no bad (D0,M0)-matched

4-cycles of
−→
G(Su,v) and

−→
G(Sx,y) share any vertex. Indeed, by similar arguments as in Claim A.3

and Claim A.4, we would otherwise contradict the definition of a bad (D0,M0)-matched 4-cycle.

Now, given a D0-bad pair {u, v}, consider any leaf C of
−→
G(Su,v). By Claim A(a), the vertices

u′
C and v′C both have a distinct M0-unmatched neighbor, say u′′

C and v′′C , respectively. Further, by
Claim A(c), both u′

C and v′C belong to X .

For each D0-bad pair {u, v}, we select an arbitrary leaf C of
−→
G(Su,v) and associate the pair of

vertices u′′ = u′′
C and v′′ = v′′C of M0-unmatched neighbors of u′

C and v′C , respectively, with the pair
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uR vR

u′R v′R

uC1
vC1

u′C1
v′C1

uC2
vC2

u′C2
v′C2

uC3
vC3

u′C3
v′C3

uC4
vC4

u′C4
v′C4

uC5
vC5

u′C5
v′C5

(a) The structure around the
D0-bad pair.

R

C1

C2

C3 C4

C5

(b) The oriented
tree

−→
G(SuR,vR).

uR vR

u′R v′R

uC1
vC1

u′C1
v′C1

uC2
vC2

u′C2
v′C2

uC3
vC3

u′C3
v′C3

uC4
vC4

u′C4
v′C4

uC5
vC5

u′C5
v′C5

(c) The modification of D0

around {uR, vR} when associ-
ating it with the leaf C5 of
−→
G(SuR,vR). The vertices of
each circled pair get swapped
in D0.

Figure 3: Example of a D0-bad pair {uR, vR} with the set of bad (D0,M0)-matched 4-
cycles SuR,vR = {R,C1, . . . , C5}. The edges of M0 are thickened; squared vertices are
M0-unmatched; black vertices belong to D0.

{u, v}, and we write f(u, v) = {u′′, v′′}. Let V ∗ be the set of all M0-unmatched vertices associated
with some D0-bad pair. We define the (multi)graph G∗ on the vertex set V ∗ by adding an edge
joining u′′ and v′′ for each D0-bad pair {u, v} such that f(u, v) = {u′′, v′′}. As remarked earlier,
the vertices u′′ and v′′ are distinct, implying that G∗ has no loops (although it may have multiple
edges), no isolated vertices, and is subcubic (that is, has maximum degree at most 3). Our aim is
to add at most |V ∗|/2 vertices to D0 and to locally modify D0 around the D0-bad pairs in order to
obtain a locating-dominating set, D′, of cardinality

|D′| ≤ α′(G) +
|V ∗|

2
≤ α′(G) +

n− 2α′(G)

2
=

n

2
.

We now describe the construction of such a set D′. Let D∗ be a minimum dominating set of G∗.
Since G∗ has no isolated vertex, |D∗| ≤ |V ∗|/2. Since G∗ has maximum degree at most 3 and since
every vertex outside D∗ is adjacent to at least one vertex of D∗ in G∗, we note that G∗ −D∗ has
maximum degree at most 2. We now build a locating-dominating set from D0 by adding D∗ to D0

and by propagating modifications of D0 along the oriented trees associated with all D0-bad pairs.
More precisely, we perform our propagation as follows.

Step 1: We first consider all D0-bad pairs associated with a pair of vertices of G
∗ at

least one vertex of which belongs to the set D
∗. Let {u, v} be such a D0-bad pair, and let u′′

and v′′ be the vertices of V ∗ such that f(u, v) = {u′′, v′′}. Adopting our earlier notation, let u′′ = u′′
C

and v′′ = v′′C , where C is the chosen leaf in the tree
−→
G(Su,v). Let R be the bad (D0,M0)-matched
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4-cycle in Su,v containing u and v. Renaming u′′ and v′′, if necessary, we may assume that u′′

belongs to D∗. We now consider the unique (directed) path P of
−→
G(Su,v) joining R to C and we

modify D0 along P as follows. First, replace u′
C with uC in D0. If B is the parent of C in

−→
G(Su,v)

(and so, B is the vertex on the (R,C)-path P that immediately precedes C) and B is dependent
on C via x′

B , where xB ∈ {uB, vB}, we replace x′
B with xB in D0. We continue this process until

we perform the modification in the root R. This exchange argument in the oriented tree
−→
G(Su,v)

associated with the subgraph of G corresponding to the set Su,v illustrated in Figure 3(a) is shown
in Figure 3(c). This process is done for all D0-bad pairs associated with a pair of vertices of G∗ with
at least one member in D∗. Let D′ be the resulting modified set D0.

Claim B. The set of (D′ ∪D∗)-bad pairs is a proper subset of the set of D0-bad pairs.

Proof of Claim B. Let {u, v} be an original D0-bad pair associated with a pair of vertices of G∗ at
least one of which belongs to the set D∗. Since at least one of u and v now belongs to D′, the pair
{u, v} is not a (D′ ∪D∗)-bad pair. It suffices to check the pairs of vertices that could possibly have
been affected by the exchange arguments; that is, all vertices previously dominated by a vertex that
has been removed from D0 to construct D′ (this includes all vertices removed from D0 to construct
D′). A vertex affected by the modification belongs to a bad (D0,M0)-matched 4-cycle A in the

selected path of
−→
G(Su,v) for some D0-bad pair {u, v} that is associated with a pair of vertices of

G∗ at least one of which belongs to the set D∗. Let the vertex set of A be {xA, yA, x
′
A, y

′
A} with

{xA, yA} = {uA, vA}, where x′
A has been replaced with xA in D′.

It is sufficient to check that the vertices x′
A, yA and the neighbor, z say, of x′

A not in A are
located by D′ ∪ D∗ or belong to D′ ∪ D∗. We observe that even though D′ might not belong to
D(M), the set D′ contains exactly one vertex from each edge in M0. We note that every vertex
that was removed from D0 during the exchange arguments when constructing D′ is either adjacent
to a vertex of D∗ or is adjacent to no M0-unmatched vertex. Hence, the vertices of D0 that are
adjacent to an M0-unmatched vertex that does not belong to D∗ are not removed from D0 during
the exchange arguments, implying by Lemma 6 that every M0-unmatched vertex is adjacent to at
least two vertices in D′ ∪D∗ or belongs to D∗. It follows that every vertex that is 1-dominated by
D′ ∪D∗ is located by this set. In particular, irrespective of whether y = u or y = v, the vertex yA
is 1-dominated by D′ ∪D∗ and is thus located by D′ ∪D∗.

Suppose that z is an M0-unmatched vertex. Then, by construction, z ∈ D∗. In this case, x′
A

is dominated by z and xA but by no other vertex in D′ ∪ D∗. If another vertex w is also only
dominated by z and xA from D′ ∪ D∗, then such a vertex cannot be M0-unmatched because the
set of M0-unmatched vertices forms an independent set. But then w is dominated by xA, z and its
M0-matched neighbor, a contradiction. Hence, if z is M0-unmatched, then x′

A is located by D′∪D∗.

Suppose that z is not anM0-unmatched vertex. Thus, z belongs to another bad (D0,M0)-matched

4-cycleB of
−→
G(Su,v) where z = uB and where A is dependent on B via x′

A (as illustrated in Figure 2).
If z /∈ D′, then both z and x′

A are 1-dominated by D′∪D∗ and hence are located by D′∪D∗. Finally,
if z ∈ D′, then x′

A is only dominated by z and xA from D′ ∪D∗. Suppose to the contrary that some
other vertex w is also only dominated by z and xA from D′ ∪ D∗. Then, w must be the neighbor
of z in B that was removed from D0, namely the vertex w = u′

B (recall that z = uB). Thus, u′
B is

adjacent to xA. If A = R, then xA ∈ {u, v} and xA would be 3-dominated by D0, a contradiction.
Hence, A 6= R. If x = v, then we contradict the fact that vA is adjacent to exactly two vertices
of D0, namely to u′

A and v′A, and therefore could not be adjacent to u′
B ∈ D. Hence, x = u. But

then B would be dependent on A via w = u′
B. However, recall that A is dependent on B via u′

A,

implying that
−→
G(Su,v) would contain a 2-cycle joining A and B, a contradiction. Hence, if z is not

an M0-unmatched vertex, then once again x′
A is located by D′ ∪ D∗. This completes the proof of
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Claim B. (✷)

By Claim B, the set of D′-bad pairs is a proper subset of the set of D0-bad pairs, implying that
all remaining D′-bad pairs are associated with a pair of vertices of G∗ neither of which belong to
the set D∗.

Step 2: We next consider all remaining D
′-bad pairs associated with a pair of vertices

of G
∗ neither of which belong to the set D

∗. For each such D′-bad pair {u, v}, we have
f(u, v) = {u′′, v′′} where {u′′, v′′} ⊆ V ∗ \ D∗. Let C be a component of G∗ − D∗ that contains
at least one edge. As observed earlier, G∗ − D∗ has maximum degree at most 2. Thus, C is a
path or a cycle. If C is a path, let C be given by c0c1 . . . ck−1, while if C is a cycle, let C be given
by c0c1 . . . ck−1c0 (possibly, C is a 2-cycle). We now consider an edge cic(i+1) mod k in C, where
i ∈ {0, . . . , k − 2} if C is a path and where i ∈ {0, . . . , k − 1} if C is a cycle. Let {u, v} be a D0-bad
pair such that f(u, v) = {ci, c(i+1) mod k}, and let B be the bad (D0,M0)-matched 4-cycle of Su,v

such that one of ci and c(i+1) mod k is adjacent to u′
B and the other to v′B. Let ci be the neighbor of

x′
B , where xB ∈ {uB, vB}. We now propagate modifications of D′ along a path in

−→
G (Su,v) in the

same way as we did in Step 1, except that we start the modifications of D′ along the oriented tree
by replacing x′

B with xB and then continuing exactly as before. The resulting modification of D′

ensures that for every vertex in C, at most one of its neighbors is removed from D0. This process
is done for all D0-bad pairs associated to a pair of vertices of G∗ neither of which belong to the set
D∗. Let D′′ be the resulting modified set D0.

Claim C. No D0-bad pair is a (D′′ ∪ D∗)-bad pair. Further, the set of (D′′ ∪ D∗)-bad pairs is a
proper subset of the set of (D′ ∪D∗)-bad pairs.

Proof of Claim C. It suffices to check as before the pairs of vertices that could possibly have been
affected by the exchange arguments; that is, all vertices previously dominated by a vertex that has
been removed from D′ to construct D′′ as well as all vertices removed from D′ to construct D′′. The
proof is the same as in the proof of Claim B, except for the vertices in G∗ −D∗. We therefore only
prove that vertices that belong to components of G∗ −D∗ that contain at least one edge are located
by D′′ ∪ D∗. Let c be such a vertex in G∗ − D∗. As observed earlier, such a vertex c belongs to
either a path component or a cycle component of G∗ −D∗. Further, the modifications of D′ when
constructing D′′ ensure that for every vertex in G∗ −D∗, at most one of its neighbors is removed
from D0.

We show next that c was 3-dominated by D0. Suppose to the contrary that the vertex c is not
3-dominated by D0 and therefore, by definition of D(M), is adjacent to both ends of some edge pq
of M0. In this case, since c has degree at least 1 in G∗ −D∗ and therefore degree at least 2 in G∗,
the edge pq must be an edge xBx

′
B , where xB ∈ {uB, vB}, in a bad (D0,M0)-matched 4-cycle B of

Su,v for some D0-bad pair {u, v}. However by Claim A(c), the vertex x′
B belongs to X . Therefore

the vertex xB , which is M0-matched to x′
B, belongs to an odd component of G−X that contains no

M0-unmatched vertex. However, the M0-unmatched vertex c, which is adjacent to xB, belongs to
the same component of G−X as xB , a contradiction. Hence, the vertex c was 3-dominated by D0.

We show now that vertex c is located by D′′ ∪ D∗. If c is 3-dominated by D′′ ∪ D∗, then this
follows from the twin-freeness of G. Hence we may assume that c is not 3-dominated by D′′ ∪D∗.
Since the vertex c was 3-dominated by D0, and at most one of its neighbors is removed from D0,
this implies that the vertex c has exactly two neighbors in D′′ (and no neighbors in D∗ in G), and
is therefore 2-dominated by D′′ ∪D∗. Suppose to the contrary that there is a vertex w that is not
located from c by D′′ ∪D∗. Let d be a vertex in D∗ that is adjacent to c in G∗. Then there exists
a D0-bad pair {u, v} such that f(u, v) = {c, d}.
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Let B be the bad (D0,M0)-matched 4-cycle of Su,v such that one of c and d is adjacent to u′
B

and the other to v′B . Let c be the neighbor of x′
B, where xB ∈ {uB, vB}. By Step 1, we know that

x′
B ∈ D′′ and yB ∈ D′′. Therefore, the vertex w must be the vertex xB . Let z be the neighbor of

c in D′′ that is different from x′
B . Since the set of neighbors of c in D′′ is a subset of the set of

its neighbors in D0, we note that {x′
B, z} ⊂ D0. If xB = vB , then vB would be 3-dominated by

D0, contradicting the fact that B is a bad (D0,M0)-matched 4-cycle. Similarly, if xB = u, then u
would be 3-dominated by D0, a contradiction. Hence, xB = uB and in Su,v there is a bad (D0,M0)-
matched 4-cycle that depends on B via the vertex z. But then z has at least two neighbors apart
from c and xB , contradicting the fact that G is cubic. Therefore, the vertex c is located by D′′∪D∗.
This completes the proof of Claim C. (✷)

Claim C implies that there is no (D′′∪D∗)-bad pair. Thus, the setD′′∪D∗ is a locating-dominating
set of G. Therefore,

γL(G) ≤ |D|+ |D∗| ≤ α′(G) + γ(G∗) ≤ α′(G) +
|V ∗|

2
≤ α′(G) +

n− 2α′(G)

2
=

n

2
.

This completes the proof of Theorem 3.

3.3 Tight examples

We remark that the prisms C3 ✷K2 and C4 ✷K2 (shown in Figure 4(a) and 4(b), respectively) have
location-domination number exactly one-half their order. However, it remains as an open problem
to characterize all twin-free, cubic graphs G of order n that satisfy γL(G) = n

2 . Note that the prisms
Ck ✷K2 for k ≥ 5 do not belong to this family.

(a) C3✷K2 (b) C4✷K2

Figure 4: The prisms C3✷K2 and C4✷K2.

4 Conclusion

We conclude the paper with several intriguing open problems and questions that we have yet to
solve.

Problem 1. Characterize the extremal graphs that achieve equality in the bound of Theorem 3; that
is, characterize the connected twin-free, cubic graphs having location-domination number exactly
one-half their order.

Problem 2. Determine whether the result of Theorem 3 can be strengthened by proving Conjec-
ture 2 for subcubic graphs.

Problem 3. Determine whether Theorem 3 can be extended to connected cubic graphs in general
(allowing twins) with the exception of a finite set of forbidden graphs. Two such forbidden graphs
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are the complete graphK4 and the complete bipartite graphK3,3, but it is possible that these are the
only two exceptions. Proving this would still be weaker than proving the conjecture of Henning and
Löwenstein [12] that every cubic graph different from K4 and K3,3 has a total locating-dominating
set of size at most one-half its order.

Problem 4. Determine whether every connected twin-free, cubic graph G satisfies γL(G) ≤ α′(G).
More generally, determine classes of twin-free graphs G satisfying γL(G) ≤ α′(G). We remark that
Garijo et al. [9] proved that every nontrivial twin-free graph G without 4-cycles satisfies γL(G) ≤
α′(G), and therefore Conjecture 2 holds for these graphs.
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