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Abstract

For a finite set X, a family of sets F ⊆ 2X and a positive integer q, we consider two types
of two player, perfect information games with no chance moves. In each round of the (1 : q)
Waiter-Client game (X,F), the first player, called Waiter, offers the second player, called Client,
q + 1 elements of the board X which have not been offered previously. Client then chooses one
of these elements which he claims and the remaining q elements are claimed by Waiter. Waiter
wins this game if by the time every element of X has been claimed by some player, Client has
claimed all elements of some A ∈ F ; otherwise Client is the winner. Client-Waiter games are
defined analogously, the main difference being that Client wins the game if he manages to claim
all elements of some A ∈ F and Waiter wins otherwise. In this paper we study the Waiter-Client
and Client-Waiter versions of the non-planarity, Kt-minor and non-k-colorability games. For
each such game, we give a fairly precise estimate of the unique integer q at which the outcome
of the game changes from Client’s win to Waiter’s win. We also discuss the relation between our
results, random graphs, and the corresponding Maker-Breaker and Avoider-Enforcer games.

1 Introduction

The theory of positional games on graphs and hypergraphs goes back to the seminal papers of Hales
and Jewett [20], of Lehman [31] and of Erdős and Selfridge [16]. It has since become a highly developed
area of combinatorics (see, e.g., the monograph of Beck [3] and the recent monograph [23]). The
most popular and widely studied positional games are the so-called Maker-Breaker games. Let p and

∗School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom. Email:
d.hefetz@bham.ac.uk. Research supported by EPSRC grant EP/K033379/1.
†School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University,

6997801, Israel. Email: krivelev@post.tau.ac.il. Research supported in part by USA-Israel BSF Grant 2010115 and
by grant 912/12 from the Israel Science Foundation.
‡School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom. Email:

WET916@bham.ac.uk.

1

ar
X

iv
:1

41
2.

13
46

v2
  [

m
at

h.
C

O
] 

 1
4 

O
ct

 2
01

5



q be positive integers, let X be a finite set and let F be a family of subsets of X. In each round of
the biased (p : q) Maker-Breaker game (X,F), Maker claims p previously unclaimed elements of X
and then Breaker responds by claiming q previously unclaimed elements of X. Maker wins this game
if, by the time every element of X has been claimed, he has claimed all elements of some set A ∈ F ;
otherwise Breaker is the winner. The set X is called the board of the game, the elements of F are
called the winning sets and the integers p and q are Maker’s bias and Breaker’s bias, respectively.
Since this is a finite, perfect information game with no chance moves and no possibility of a draw, one
of the two players must have a winning strategy. Moreover, it is not hard to see that Maker-Breaker
games are bias monotone, that is, claiming more board elements than his bias specifies per round
cannot harm that player. In particular, there exists a unique positive integer bF such that Breaker
has a winning strategy for the (1 : q) game (X,F) if and only if q ≥ bF ; we refer to this integer as
the threshold bias of the Maker-Breaker game (X,F).

The so-called Avoider-Enforcer games form another class of well-studied positional games. In such
games, Enforcer aims to force Avoider to claim all elements of some set A ∈ F . Avoider-Enforcer
games are sometimes referred to as misère Maker-Breaker games. There are two different sets of
rules for Avoider-Enforcer games: strict rules under which the number of board elements a player
claims per round is precisely his bias and monotone rules under which the number of board elements
a player claims per round is at least as large as his bias (for more information on Avoider-Enforcer
games see, for example, [24, 22, 23]).

One major motivation for studying biased Maker-Breaker and Avoider-Enforcer games is their relation
to the theory of random graphs via the so-called probabilistic intuition. Consider, for example, a (1 : q)
Maker-Breaker game (X,F), where X = E(Kn) is the edge-set of the complete graph on n vertices.
The following heuristic argument, first employed by Chvátal and Erdős in [12], can be used to predict
the winner of this game. This heuristic suggests that the player who has a higher chance to win the
game when both players are playing randomly is also the one who wins the game when both players
are playing optimally. More precisely, if the random graph G(n,m) with m =

⌈(
n
2

)
/(q + 1)

⌉
edges

contains all edges of some A ∈ F with probability tending to 1 as n tends to infinity, then Maker has
a winning strategy for (E(Kn),F). If, on the other hand, this probability tends to 0 as n tends to
infinity, then (E(Kn),F) is Breaker’s win. This is highly unexpected as, in any positional game, both
players have deterministic optimal strategies. Moreover, in most natural games, playing randomly
against an optimal opponent leads to very poor results. As noted above, this is just a heuristic and
does not always predict the outcome of the game correctly. Nevertheless, the probabilistic intuition
is remarkably useful. Natural examples where this heuristic predicts the winner correctly, include the
connectivity game (that is, F consists of all connected subgraphs of Kn) [19] and the Hamiltonicity
game (that is, F consists of all Hamiltonian subgraphs of Kn) [29]. On the other hand, it was proved
in [7] that the probabilistic intuition fails (though another probabilistic reasoning is in play here)
for the H-game (that is, F consists of all copies of some fixed predetermined graph H in Kn). The
probabilistic intuition is also useful when analyzing biased Avoider-Enforcer games (especially under
monotone rules). Some examples can be found in [21] and [22].

In this paper, we study Waiter-Client and Client-Waiter positional games. Such games are closely
related to Maker-Breaker and Avoider-Enforcer games; the main difference being the process of
selecting board elements. In every round of the biased (p : q) Waiter-Client game (X,F), the first
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player, called Waiter, offers the second player, called Client, p + q previously unclaimed elements
of X. Client then chooses p of these elements which he claims, and the remaining q elements are
claimed by Waiter. If, in the final round of the game, only 1 ≤ t < p+ q unclaimed elements remain,
then Client chooses max{0, t − q} elements which he claims and the remaining min{t, q} elements
are claimed by Waiter. The game ends as soon as all elements of X have been claimed. Waiter wins
this game if he manages to force Client to claim all elements of some A ∈ F ; otherwise Client is
the winner. Client-Waiter games are defined analogously, the main difference being that Client wins
if and only if he manages to claim all elements of some A ∈ F (otherwise Waiter is the winner).
Additionally, there are two technical differences between Client-Waiter and Waiter-Client games.
Firstly, in a Client-Waiter game, Waiter is allowed to offer less board elements per round than his
bias specifies. More precisely, in every round of a (p : q) Client-Waiter game, Waiter offers t elements,
where p ≤ t ≤ p+ q. Client chooses p of these, which he keeps, and the remaining t− p elements are
claimed by Waiter. Secondly, if there are r < p+ q free elements offered to Client in the final round
of the game, he first claims min{r, p} of these and any remaining elements are claimed by Waiter. As
with Maker-Breaker games, it is not hard to see that Waiter-Client games are monotone in Waiter’s
bias q. In particular, essentially any Waiter-Client game (X,F) has a threshold bias, that is, a unique
positive integer bF such that Client has a winning strategy for the (1 : q) Waiter-Client game (X,F)
if and only if q ≥ bF . From the way that Client-Waiter games have been defined, it is obvious that
they also have a threshold bias (as observed in [4], this does not remain true if we require Waiter to
offer exactly p+ q board elements per round). The threshold bias of the Client-Waiter game (X,F)
is the unique positive integer bF such that Waiter has a winning strategy for the (1 : q) game if and
only if q ≥ bF .

Waiter-Client and Client-Waiter games were first defined and studied by Beck under the names
Picker-Chooser and Chooser-Picker, respectively (see, e.g., [2]). However, since picking and choosing
are essentially the same, we feel that the names Waiter and Client, which first appeared in [5], help
the reader to distinguish more easily between the roles of the two players.

As with Maker-Breaker and Avoider-Enforcer games, the probabilistic intuition turns out to be useful
for Waiter-Client games as well. In particular, it is known to hold for the Kt-game (and in fact, for
many other fixed graph games) [5], for the diameter two game (that is, the winning sets are the
edge-sets of all subgraphs of Kn with diameter at most two) [14] and for the giant component game
(that is, the game on E(Kn) in which Waiter tries to force Client to build a connected component
on as many vertices as possible) [6].

This paper is devoted to the study of several natural (1 : q) Waiter-Client and Client-Waiter games,
played on E(Kn). For both the Waiter-Client and Client-Waiter versions, we will study the non-
planarity game (E(Kn),NP), where NP consists of all non-planar subgraphs of Kn, the Kt-minor
game (E(Kn),Mt), where Mt consists of all subgraphs of Kn that admit a Kt-minor, and the non-
k-colorability game (E(Kn),NCk), where NCk consists of all non-k-colorable subgraphs of Kn. The
analogous Maker-Breaker and Avoider-Enforcer games were studied in [21].

It was proved in [8] that, if q ≥ n/2, then when playing a (1 : q) Maker-Breaker game on E(Kn),
Breaker can force Maker to build a forest, that is, Breaker has a winning strategy for the (1 : q)
gameMt, for every t ≥ 3. On the other hand, it was proved in [21] that, for every fixed ε > 0, there
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exists a constant c = c(ε) > 0 such that, if q ≤ (1/2 − ε)n, then Maker has a winning strategy for
the (1 : q) Maker-Breaker game Mt for every t ≤ c

√
n/ log n. The strict Avoider-Enforcer minor

game was considered in [21] as well. It was proved there that, if q ≤ (1/2 − ε)n, then Enforcer has
a winning strategy for the (1 : q) game Mt for every t ≤ nγ, where γ is a function of ε. On the
other hand, improving a result from [21], it was recently proved in [13] that, if q ≥ 200n log n, then
Avoider has a winning strategy for the (1 : q) game Mt, for every t ≥ 4.

As with Maker-Breaker games, we are able to determine the asymptotic value of the threshold bias of
the Waiter-Client minor game (it is twice as large as the corresponding threshold of Maker-Breaker
games). Moreover, in contrast to the aforementioned results for Maker-Breaker games, the accuracy
of our results increases as the order of the minor Waiter aims to force in Client’s graph decreases.
Additionally, we can prove that, even when playing with a bias which is arbitrarily close to n, Waiter
can force Client to build a Kt-minor for t = Ω(

√
n). This order of magnitude is best possible as, at

the end of the game, Client’s graph will contain O(n) edges.

Theorem 1.1. Let n be a sufficiently large integer, let ε = ε(n) ≥ 4n−1/4 and let t = t(n) ≤ ε2
√
n/5

be an integer. If q ≤ (1− ε)n, then when playing a (1 : q) Waiter-Client game on E(Kn), Waiter has
a strategy to force Client to build a graph which admits a Kt-minor. On the other hand, if q ≥ n+ η,
where η = η(n) ≥ n2/3 log n, then when playing a (1 : q) Waiter-Client game on E(Kn), Client can
ensure that his graph will be K4-minor free throughout the game.

Theorem 1.1 exhibits a very strong probabilistic intuition; stronger than the aforementioned corre-
sponding results for Maker-Breaker and Avoider-Enforcer games in several respects. Indeed, it is
well known (see, e.g., [10, 27]) that if p ≤ (1 − ε)/n for an arbitrarily small but fixed ε > 0, then
asymptotically almost surely (or a.a.s. for brevity) every connected component of the random graph
G(n, p)1 contains at most one cycle and thus G(n, p) is K4-minor free. On the other hand, it was
proved in [17] that if p ≥ (1 + ε)/n for an arbitrarily small but fixed ε > 0, then a.a.s. the random
graph G(n, p) admits a Kt-minor for t = Θ(

√
n) (see also [11, 30] for earlier results).

Theorem 1.1 shows that, for every 4 ≤ t = O(
√
n), the threshold bias of the Waiter-Client Kt-minor

game is (1 + o(1))n. Since the threshold bias is a unique integer, it is natural to wonder whether it
is precisely n. The following result shows that, at least for large t, this is not the case.

Theorem 1.2. Let n, t and α be positive integers where n is sufficiently large, t = t(n) ≥ C log logn
log log logn

for some sufficiently large constant C, 0 ≤ α < ct log t for some sufficiently small constant c > 0 and
α = o(n). Then Client has a winning strategy for the (1 : q) Waiter-Client game (E(Kn),Mt) for
every q ≥ n− α.

For the Client-Waiter minor game, we can again determine the asymptotic value of the threshold
bias — this time it coincides with the threshold bias of the corresponding Maker-Breaker game.

1Previously, when first introducing the notion of probabilistic intuition, we used the uniform random graph model
G(n,m) which clearly highlights that Client’s graph and the random graph it is compared to, have the same number
of edges. However, for convenience, we will work with the much more commonly used binomial random graph model
G(n, p) in the remainder of this paper. It is known that, for our purposes, both models are equivalent (see, e.g., [27]).
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Theorem 1.3. Let n be a sufficiently large integer and let ε = ε(n) > 0. If q ≥ n/2 − 1, then
when playing a (1 : q) Client-Waiter game on E(Kn), Waiter has a strategy to keep Client’s graph
K3-minor free throughout the game. On the other hand, if q ≤ (1/2−ε)n, then when playing a (1 : q)
Client-Waiter game on E(Kn), Client has a strategy to build a graph which admits a Kt-minor for
t = (εn)cε, where c > 0 is an absolute constant.

As simple corollaries of Theorems 1.1 and 1.3, we determine the asymptotic value of the threshold
bias of the Waiter-Client and Client-Waiter non-planarity games, respectively.

Corollary 1.4. Let n be a sufficiently large integer and let ε = ε(n) ≥ 5n−1/4. If q ≤ (1− ε)n, then
when playing a (1 : q) Waiter-Client game on E(Kn), Waiter has a strategy to force Client to build a
non-planar graph. On the other hand, if q ≥ n+ η, where η = η(n) ≥ n2/3 log n, then when playing a
(1 : q) Waiter-Client game on E(Kn), Client can ensure that his graph will remain planar throughout
the game.

Corollary 1.5. Let n be a sufficiently large integer. If q ≥ n/2 − 1, then when playing a (1 : q)
Client-Waiter game on E(Kn), Waiter has a strategy to keep Client’s graph planar throughout the
game. On the other hand, there exists a constant c > 0 such that if q ≤ n/2 − cn/ log n, then when
playing a (1 : q) Client-Waiter game on E(Kn), Client has a strategy to build a non-planar graph.

It was proved in [21] that there exist absolute constants c1 ≥ c2 > 0 such that the threshold bias
of the Maker-Breaker non-k-colorability game NCk is between c1n/(k log k) and c2n/(k log k); when
k tends to infinity, one can take c1 = 2 + o(1) and c2 = log 2/2 − o(1). Up to the values of the
constants c1 and c2, this matches the probabilistic intuition, as the threshold probability for the non-
k-colorability of the random graph G(n, p) is about p = (2k log k)/n [1]. It was also proved in [21] that
Enforcer has a winning strategy for the (1 : q) strict Avoider-Enforcer game (E(Kn),NCk), whenever
q ≤ cn/(k log k) for an appropriate absolute constant c > 0. On the other hand, improving a result
from [21], it was recently proved in [13] that, if q ≥ 200n log n, then Avoider has a strategy to keep his
graph 3-colorable. We will prove that the Waiter-Client and Client-Waiter non-k-colorability games
behave similarly to the corresponding Maker-Breaker games. In particular, they exhibit a similar
probabilistic intuition.

Theorem 1.6. Let k ≥ 2 be a fixed integer and let n be a sufficiently large integer. Then there
exists a function α = α(k) > 0 which tends to 0 as k tends to infinity such that the following
holds. If q ≥ (8e + α)n/(k log k), then when playing a (1 : q) Waiter-Client game on E(Kn),
Client can ensure that his graph will be k-colorable throughout the game. On the other hand, if
q ≤ (log 2/4− α)n/(k log k), then when playing a (1 : q) Waiter-Client game on E(Kn), Waiter can
force Client to build a non-k-colorable graph.

Theorem 1.7. Let k ≥ 2 be a fixed integer and let n be a sufficiently large integer. Then there exists
a function α = α(k) > 0 which tends to 0 as k tends to infinity such that the following holds. If q ≥
(4+α)n/(k log k), then when playing a (1 : q) Client-Waiter game on E(Kn), Waiter has a strategy to
ensure that Client builds a k-colorable graph. On the other hand, if q ≤ (log 2/2−α)n/(k log k), then
when playing a (1 : q) Client-Waiter game on E(Kn), Client has a strategy to build a non-k-colorable
graph.
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2 Preliminaries

For the sake of simplicity and clarity of presentation, we do not make a particular effort to optimize
the constants obtained in some of our proofs. We also omit floor and ceiling signs whenever these
are not crucial. Most of our results are asymptotic in nature and whenever necessary we assume
that the number of vertices n is sufficiently large. Throughout this paper, log stands for the natural
logarithm, unless explicitly stated otherwise. Our graph-theoretic notation is standard and follows
that of [34]. In particular, we use the following.

For a graph G, let V (G) and E(G) denote its sets of vertices and edges respectively, and let v(G) =
|V (G)| and e(G) = |E(G)|. For a set A ⊆ V (G), let EG(A) denote the set of edges of G with both
endpoints in A and let eG(A) = |EG(A)|. For disjoint sets A,B ⊆ V (G), let EG(A,B) denote the
set of edges of G with one endpoint in A and one endpoint in B, and let eG(A,B) = |EG(A,B)|.
For a set S ⊆ V (G), let G[S] denote the subgraph of G which is induced on the set S. The degree
of a vertex u ∈ V (G) in G, denoted by dG(u), is the number of edges e ∈ E(G) such that u ∈ e.
The maximum degree of a graph G is ∆(G) = max{dG(u) : u ∈ V (G)} and the minimum degree of
a graph G is δ(G) = min{dG(u) : u ∈ V (G)}. Often, when there is no risk of confusion, we omit the
subscript G from the notation above.

A graph is called a linear forest if each of its connected components is a path. The girth of a graph
G is the number of edges in a shortest cycle of G (if G is a forest, then its girth is infinity). A set
A ⊆ V (G) is said to be independent in G if EG(A) = ∅. The independence number of a graph G,
denoted by α(G), is the maximum size of an independent set in G. The clique number of a graph G,
denoted by ω(G), is the size of a largest set A ⊆ V (G) such that uv ∈ E(G) for every two vertices
u, v ∈ A. The chromatic number of a graph G, denoted by χ(G), is the smallest integer k for which
V (G) can be partitioned into k independent sets. For a positive integer t and a graph G, we say that
G admits a Kt-minor if, for every 1 ≤ i ≤ t, there exists a set Bi ⊆ V (G) such that the following
three properties hold:

(i) G[Bi] is connected for every 1 ≤ i ≤ t.

(ii) Bi ∩Bj = ∅ for every 1 ≤ i < j ≤ t.

(iii) EG(Bi, Bj) 6= ∅ for every 1 ≤ i < j ≤ t.

Note that a graph is K3-minor free if and only if it is a forest.

Let X be a finite set and let F be a family of subsets of X. The transversal family of F is F∗ :=
{A ⊆ X : A ∩B 6= ∅ for every B ∈ F}.
Assume that some Waiter-Client or Client-Waiter game, played on the edge-set of some graph H =
(V,E), is in progress (in some of our arguments, we will consider games played on graphs other than
Kn). At any given moment during this game, let EW denote the set of all edges that were claimed
by Waiter up to that moment, let EC denote the set of all edges that were claimed by Client up
to that moment, let GW = (V,EW ) and let GC = (V,EC). Moreover, let GF = (V,EF ), where
EF = E \ (EW ∪ EC); the edges of EF are called free.

6



Next, we state four game-theoretic results which will be used repeatedly in this paper. The first
such result is due to Beck [3]. He observed that a straightforward adaptation of his proof of a
sufficient condition for Breaker’s win, which is based on the well-known potential method of Erdős
and Selfridge [16], yields the following.

Theorem 2.1 (implicit in [3]). Let q be a positive integer, let X be a finite set, let F be a family
of (not necessarily distinct) subsets of X and let Φ(F) =

∑
A∈F(q + 1)−|A|. Then, when playing the

(1 : q) Waiter-Client game (X,F), Client has a strategy to avoid fully claiming more than Φ(F) sets
in F .

We include a short proof which is based on a random strategy.

Proof of Theorem 2.1. Fix an arbitrary strategy SW of Waiter. Client plays randomly, i.e., in each
round he claims one of the elements he is offered uniformly at random and independently of all other
choices. Let YC denote the set of board elements Client has claimed throughout the game. Fix
an arbitrary set A ∈ F . If, in some round, Waiter offers Client at least two elements of A, then
surely Client will not fully claim A. Hence, if A ⊆ YC , then Waiter must have offered Client the
elements of A in |A| different rounds, one element per round. Moreover, in each such round he must
have offered precisely q + 1 elements, since, if Waiter offers less (recall that this might happen in
the last round), then he claims all of them. Even though the elements Waiter offers in some round
may depend on the previous choices made by Client, in every round in which Waiter offered Client
an element of A, Client claimed this (unique) element with probability 1/(q + 1). Since Client’s
choices are independent, it follows that Pr(A ⊆ YC) ≤ (q + 1)−|A|. Since A was arbitrary we have
E(|{A ∈ F : A ⊆ YC}|) ≤ Φ(F). It follows that, if Waiter plays according to SW and Client plays
randomly, then with positive probability Client can avoid fully claiming more than Φ(F) sets in F .
Since SW was arbitrary, this is true for any fixed strategy of Waiter. Hence, there is no strategy
for Waiter to force Client to fully claim more than Φ(F) sets in F . Since this is a finite, perfect
information game with no chance moves, we conclude that there exists a strategy for Client to avoid
fully claiming more than Φ(F) sets in F . 2

When proving Theorem 1.3 we will want to use a criterion similar to the one stated in Theorem 2.1.
However, since in Client-Waiter games Waiter is allowed to offer less board elements per round than
his bias specifies, we cannot expect Client to avoid fully claiming certain sets. The following result
of O. Dean [15] overcomes this problem.

Theorem 2.2 ([15]). Let q be a positive integer, let X be a finite set, let F be a family of (not
necessarily distinct) subsets of X and let Φ(F) =

∑
A∈F(q + 1)−|A|. Then, when playing the (1 : q)

Client-Waiter game (X,F), Client has a strategy to claim the elements of a set XC ⊆ X of size
|XC | ≥ b|X|/(q + 1)c which fully contains at most 2Φ(F) sets in F .

For the sake of completeness we include Dean’s proof.

Proof of Theorem 2.2. For every positive integer i, let Wi denote the set of board elements Waiter
offers Client in round i and let αi = |Wi|/(q + 1). Client plays randomly, i.e., for every i, in the
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ith round he claims an element of Wi uniformly at random and independently of all other choices.
Moreover, for every i, in the ith round he places his chosen element in XC with probability αi.

Fix an arbitrary x ∈ X and let i denote the unique integer for which x ∈ Wi. Then Pr(x ∈ XC) =
1/|Wi| · αi = 1/(q + 1). Now, fix an arbitrary set A ∈ F . If, in some round, Waiter offers Client
at least two elements of A, then surely Client will not fully claim A. Hence, as in our proof of
Theorem 2.1, Pr(A ⊆ XC) ≤ (q + 1)−|A| and thus E(|{A ∈ F : A ⊆ XC}|) ≤ Φ(F). It then follows
by Markov’s inequality that

Pr(|{A ∈ F : A ⊆ XC}| > 2Φ(F)) < 1/2. (1)

Let m denote the total number of rounds played in the game. Note that |XC | =
∑m

i=1 Zi, where
Z1, . . . , Zm are independent Bernoulli random variables with Pr(Zi = 1) = αi for every 1 ≤ i ≤ m.
In particular,

E(|XC |) =
m∑
i=1

E(Zi) =
m∑
i=1

αi = |X|/(q + 1).

Hence
Pr(|XC | ≥ b|X|/(q + 1)c) ≥ Pr(Bin(|X|, 1/(q + 1)) ≥ b|X|/(q + 1)c) ≥ 1/2, (2)

where the first inequality holds by Theorem 5 from [26].

Combining (1) and (2) we conclude that there exists a strategy for Client to ensure that both
|XC | ≥ b|X|/(q + 1)c and |{A ∈ F : A ⊆ XC}| ≤ 2Φ(F) will hold at the end of the game. 2

The third result was proved in [25]. It is a strengthening of another result of Beck [3].

Theorem 2.3 ([25]). Let q be a positive integer, let X be a finite set and let F be a family of subsets
of X. If ∑

A∈F

(
q

q + 1

)|A|
< 1,

then Client has a winning strategy for the (1 : q) Client-Waiter game (X,F∗).

The fourth result is a rephrased version of Corollary 1.5 from [4].

Theorem 2.4 ([4]). Let q be a positive integer, let X be a finite set and let F be a family of subsets
of X. If ∑

A∈F

2−|A|/(2q−1) < 1/2 ,

then Waiter has a winning strategy for the (1 : q) Waiter-Client game (X,F∗).

The rest of this paper is organized as follows: in Section 3 we prove Theorems 1.1, 1.2 and 1.3 as
well as Corollaries 1.4 and 1.5. In Section 4 we prove Theorems 1.6 and 1.7. Finally, in Section 5 we
present some open problems and conjectures.
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3 Minor and non-planarity games

In this section we first prove Theorems 1.1, 1.2 and 1.3 and then deduce Corollaries 1.4 and 1.5 as
straightforward consequences.

Proof of Theorem 1.1 Let n be sufficiently large and let q ≤ (1− ε)n. We describe a strategy for
Waiter to force a Kt-minor in Client’s graph; it is divided into the following three stages (see also
Figure 1):

Stage I: Let A ⊆ V (Kn) be an arbitrary set of size εn/2 and let B = V (Kn) \ A. Offering only
edges of EKn(B) (in a manner that we describe in detail later), Waiter forces Client to build a path
P on at least εn/2 vertices.

Stage II: Offering only edges of EKn(A, V (P )) (in a manner that we describe in detail later), Waiter
forces Client to build a matching M of size at least ε2n/5.

Stage III: Let P be split into t consecutive vertex disjoint paths P1, . . . , Pt, each containing at
least b

√
nc endpoints of the matching M . For every 1 ≤ i ≤ t, let Di = {u ∈ A : ∃v ∈

V (Pi) such that uv ∈M}. For as long as there exist indices 1 ≤ i < j ≤ t such that EGC
(Di, Dj) = ∅,

Waiter chooses such indices arbitrarily and offers Client q + 1 arbitrary edges of EKn(Di, Dj). Once
EGC

(Di, Dj) 6= ∅ for all 1 ≤ i < j ≤ t, Waiter plays arbitrarily until the end of the game.

Assuming that Waiter can follow the proposed strategy, by contracting every edge with both end-
points in V (Pi)∪Di for every 1 ≤ i ≤ t, we obtain a Kt. Hence, Client’s graph admits a Kt-minor as
claimed. It thus remains to prove that Waiter can indeed play according to the proposed strategy;
we do so for each stage separately.

Since |B|−q ≥ εn/2, the fact that Waiter can follow Stage I of the proposed strategy is an immediate
corollary of the following claim.

Claim 3.1. Playing a (1 : q) Waiter-Client game on E(Km), Waiter can force Client to build a path
on at least m− q vertices.

Proof. We describe a strategy for Waiter. For every positive integer i, let Pi denote Client’s path
immediately before the ith round; in particular, let P1 = x1, where x1 ∈ V (Km) is an arbitrary vertex.
Assume that Pi = (x1, . . . , xi) holds for some i ≥ 1. If possible, in the ith round, Waiter offers Client
the edges of {xiyj : 1 ≤ j ≤ q + 1}, where y1, . . . , yq+1 are arbitrary vertices of V (Km) \ V (Pi). By
claiming any one of these edges, Client creates a path Pi+1 = (x1, . . . , xi, xi+1). Once this is no longer
possible, we must have m− i = |V (Km) \ V (Pi)| < q + 1, entailing i ≥ m− q.

Next, we prove that Waiter can follow Stage II of the proposed strategy. Note that, by the description
of Stage I, all edges of EKn(A, V (P )) are free at the beginning of Stage II. For as long as possible,
in each round of this stage, Waiter offers Client q + 1 arbitrary edges, which are disjoint from any

9



Figure 1: An illustration of the graph Waiter is trying to force Client into building.

edge Client has previously claimed in Stage II. It is thus evident that the graph Client builds in
this stage is a matching; it remains to prove that it contains at least ε2n/5 edges. Suppose for a
contradiction that, when following this strategy, Waiter can only force a matching of size r < ε2n/5
in Client’s graph. Since Waiter cannot further enlarge Client’s matching, it follows that he does not
have enough edges to offer in accordance with Stage II of the proposed strategy. In particular,

(εn/2− r)2 − qr < q + 1 . (3)

However, by the assumed lower bound on ε we have

(εn/2− r)2 − qr > (εn/2− ε2n/5)2 − ε2n2(1− ε)/5 ≥ ε2n2/20 ≥ (1− ε)n+ 1 ≥ q + 1 ,

contrary to (3).

Finally, we prove that Waiter can play according to Stage III of the proposed strategy. It follows by
Stage II and by the assumed upper bound on t that |M | ≥ ε2n/5 ≥ t

√
n. Therefore, P can indeed be

split into t consecutive vertex disjoint paths P1, . . . , Pt, each containing at least b
√
nc endpoints of

M . By definition, |Di| ≥ b
√
nc holds for every 1 ≤ i ≤ t. Therefore, |Di||Dj| ≥ (1− ε)n+ 1 ≥ q + 1

holds for all 1 ≤ i < j ≤ t. Since, by the description of Stages I and II, all edges of EKn(Di, Dj) are
free at the beginning of Stage III, it follows that Waiter can ensure that Client will claim an edge of
EKn(Di, Dj) for all 1 ≤ i < j ≤ t.

10



Next, assume that q ≥ n+ η. Let F1 denote the family of edge-sets of cycles of Kn of length at least
3
√
n/2. Then

Φ(F1) =
∑
A∈F1

(q + 1)−|A| =
n∑

k= 3√n/2

(
n

k

)
(k − 1)!

2
(q + 1)−k <

∞∑
k= 3√n/2

1

k

(
n

q

)k

<

(
n

q

) 3√n/2−1 ∞∑
k=1

1

k

(
n

q

)k
=

(
n

q

) 3√n/2−1

log

(
q

q − n

)

≤
(

n

n+ n2/3 log n

) 3√n/2−1

log

(
n+ n2/3 log n

n2/3 log n

)
≤ exp

{
−( 3
√
n/2− 1)n2/3 log n

n+ n2/3 log n

}
· log n

= o(1) , (4)

where the third equality follows from the Taylor expansion − log(1− x) =
∑∞

k=1 x
k/k.

Let F2 denote the family of edge-sets of all pairs of cycles (C1, C2) of Kn, such that |C1| = `1,
|C2| = `2, `2 ≤ `1 ≤ 3

√
n/2, and C1 ∩ C2 is a path on s ≥ 1 vertices. Then

Φ(F2) =
∑
A∈F2

(q + 1)−|A| ≤
3√n/2∑
`1=3

`1∑
`2=3

`2∑
s=1

(
n

`1

)
(`1 − 1)!

2
· `1 · (n)`2−s · (n+ η)−(`1+`2−s+1)

≤
3√n/2∑
`1=3

`1∑
`2=3

`2∑
s=1

1/n ≤ ( 3
√
n/2)3 · n−1 = 1/8 . (5)

Let F = F1 ∪ F2. Combining (4) and (5) we conclude that Φ(F) < 1. It thus follows by Theo-
rem 2.1 that Client has a strategy to build a graph GC such that, if C1 and C2 are cycles of GC , then
V (C1) ∩ V (C2) = ∅. It is easy to see that a graph with no pair of intersecting cycles is K4-minor
free. 2

Proof of Theorem 1.2 Let n, t and α be as in the statement of the theorem. If a graph admits a
Kt-minor, it must contain at least

t∑
k=3

(
t

k

)
(k − 1)!

2
≥ (t− 1)!

2
≥ (c1t)

t ≥ ec2t log t

cycles, where c1 and c2 are positive constants. It is therefore sufficient to show that Client has a
strategy to avoid building ec2t log t cycles.

Let F = {E(C) : C is a cycle of Kn}. Then

Φ(F) =
∑
A∈F

(q + 1)−|A| =
n∑
k=3

(
n

k

)
(k − 1)!

2
(q + 1)−k ≤

n∑
k=3

1

k

(
n

n− α

)k
≤

n∑
k=1

eαk/(n−α)

k
≤ e(1+o(1))α

n∑
k=1

1

k
≤ e(1+o(1))α(log n+ 1) < ec2t log t ,
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where the third inequality holds since α = o(n) and the last inequality holds by the assumed bounds
on t and α.

It thus follows by Theorem 2.1 that Client has a strategy to avoid fully claiming ec2t log t cycles. This
concludes the proof of the theorem. 2

In the proof of Theorem 1.3, we will make use of the following two results.

Proposition 3.2 ([21], Lemma 4.8). Let G be a graph with average degree 2 + α, for some α > 0,
and girth g ≥ (1 + 2/α)(4 log2 t+ 2 log2 log2 t+ c′), where c′ is an absolute constant (i.e., independent
of t and α). Then G admits a Kt-minor.

Theorem 3.3 ([6], Theorem 1.3). For every integer n ≥ 4, Waiter can force Client to build a
connected graph when playing a (1 : q) Waiter-Client game on E(Kn) if and only if q ≤ bn/2c − 1.

Proof of Theorem 1.3 Assume first that q ≥ n/2 − 1. We consider two cases according to the
parity of n. If n is even, then by monotonicity, and since n/2 is an integer, we may assume that
q = n/2 − 1. Note that

(
n
2

)
/(q + 1) = n − 1; in particular, Waiter offers exactly q + 1 edges in

each round of the game. By Theorem 3.3, Waiter has a strategy to force Client to build a connected
graph. Since, moreover, e(GC) = n− 1 at the end of the game, it must be a spanning tree which is
K3-minor free.

Assume then that n is odd. By monotonicity, and since q is an integer, we may assume that q =
(n+1)/2−1. By Theorem 3.3, Waiter has a strategy to force Client to build a connected graph when
playing on E(Kn+1); let S be such a strategy. We present a strategy S ′ for Waiter to force Client
to build a K3-minor free graph when playing on E(Kn). Waiter pretends the board is E(Kn+1), i.e.,
in his mind he adds an imaginary vertex and n imaginary edges, and follows S. If in some round he
is instructed by S to offer only imaginary edges, then he pretends that he did, and then he chooses
one of these edges arbitrarily and pretends that Client claimed it. If in some round he is instructed
by S to offer at least one imaginary edge and at least one real edge (i.e., an edge which is actually
on the board E(Kn)), then he offers only the real edges (recall that in a Client-Waiter game, Waiter
is allowed to offer less board elements than his bias specifies) but pretends he offered all edges S
instructed him to claim. In every other round he plays precisely as S instructs him to. Since, in
his mind, Waiter followed S exactly and since S is a winning strategy for the game on E(Kn+1), in
Waiter’s mind, at the end of the game, Client’s graph is a spanning tree of Kn+1. Hence, at the end
of the game, GC is a forest and thus K3-minor free.

Now, suppose that q ≤ (1/2 − ε)n; by monotonicity we can in fact assume that q = b(1/2 − ε)nc.
Let α be a constant satisfying ⌊ (

n
2

)
b(1/2− ε)nc+ 1

⌋
≥ (1 + α)n.

Note that α ≥ ε
1−ε . Let k = blog3(αn/4)c and let Fk denote the family of edge-sets of all cycles of
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Kn whose length is strictly smaller than k. Then

Φ(Fk) =
∑
A∈Fk

(q + 1)−|A| =
k−1∑
s=3

(
n

s

)
(s− 1)!

2
(q + 1)−s <

k−1∑
s=3

(
n

b(1/2− ε)nc

)s

<

k−1∑
s=3

3s < 3k ≤ αn/4 .

Using Theorem 2.2 we infer that Client has a strategy to build a graph GC which contains a subgraph
HC with at least (1 + α)n edges and fewer than αn/2 cycles of length at most k − 1. Deleting one
edge from each such cycle, results in a graph H with average degree at least 2 + α and with girth at
least k. Let t be the largest integer for which (1 + 2/α)(4 log2 t + 2 log2 log2 t + c′) ≤ k; it is easy to
see that there exists a constant c > 0 such that t ≥ (εn)cε. It follows from Proposition 3.2 that H
admits a Kt-minor. Clearly, GC admits the same minor. 2

Proof of Corollary 1.4 Assume first that q ≤ (1− ε)n. If ε ≥ 5n−1/4, then ε2
√
n/5 ≥ 5 and thus it

follows by Theorem 1.1 that Waiter can force Client’s graph to admit a K5-minor; Client’s graph is
then non-planar. Assume then that q ≥ n+η, where η = η(n) ≥ n2/3 log n. It follows by Theorem 1.1
that Client has a strategy to keep his graph K4-minor free. It is easy to see that every subdivision
of both K5 and K3,3 admits a K4-minor and thus Client’s graph is planar by Kuratowski’s Theorem
(see, e.g., [34]). 2

Proof of Corollary 1.5 Assume first that q ≥ dn/2e − 1. It follows by Theorem 1.3 that Waiter
has a strategy to force Client to build a K3-minor free graph; such a graph is, in particular, planar.
Assume then that q ≤ n/2 − cn/ log n. Then q ≤ (1/2 − ε)n, where ε = c/ log n. For a sufficiently
large constant c, it follows by Theorem 1.3 that Client has a strategy to build a graph which admits
a K5-minor and is thus non-planar. 2

4 Colorability games

In this section we prove Theorems 1.6 and 1.7. In both proofs we will make use of the following
well-known result:

Theorem 4.1 ([28]). Let G be a graph with maximum degree ∆ and girth at least 5. Then

χ(G) ≤ (1 + ν(∆))∆/ log ∆ ,

where ν(∆) is a function which tends to zero as ∆ tends to infinity.

Proof of Theorem 1.6 Let q ≥ (8e+α)n/(k log k) be an integer and let ν be the function appearing
in the statement of Theorem 4.1. Fix an arbitrarily small constant ε > 0 and let k0 be the smallest
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integer such that log log k0 ≥ log 3 − log(1 − ε) and ν((1 − ε)k log k/3) ≤ ε holds for every k ≥ k0.
Assume first that k ≥ max{k0, 1000}. Client’s strategy is based on Theorem 2.1. In order to present
it we first consider several sums.

Let F1 = {E(C1) ∪E(C2) : C1 and C2 are cycles of Kn, |C1|, |C2| ∈ {3, 4} and V (C1) ∩ V (C2) 6= ∅}.
Then

Φ(F1) =
∑
A∈F1

(q + 1)−|A| ≤ n4

(
k log k

(8e+ α)n

)5

+ 3n5

(
k log k

(8e+ α)n

)6

+ 2n6

(
k log k

(8e+ α)n

)7

+ n7

(
k log k

(8e+ α)n

)8

= o(1) . (6)

Let F2 = {F : ∃S ⊆ V (Kn) such that S 6= ∅, F ⊆ EKn(S) and |F | = |S|k log k/16}. Then

Φ(F2) =
∑
A∈F2

(q + 1)−|A| ≤
n∑
t=1

(
n

t

)( (
t
2

)
tk log k/16

)
(q + 1)−tk log k/16

≤
n∑
t=1

[
en

t

(
8et

k log k
· k log k

(8e+ α)n

)k log k/16]t
≤

n∑
t=1

[
e

(
8e

8e+ α

)k log k/16]t
< 1/3 , (7)

where the third inequality holds since k is assumed to be sufficiently large and the last inequality
holds for an appropriately chosen α = α(k); it is not hard to see that α can be chosen such that it
tends to zero as k tends to infinity.

Let F3 = {F ∪ F ′ : ∃S ⊆ V (Kn) such that S 6= ∅, F ⊆ EKn(S), F ′ ⊆ EKn(S, V (Kn) \ S), |F | =
|S|k/6 and |F ′| = |S|k log k/8}. Then

Φ(F3) =
∑
A∈F3

(q + 1)−|A| ≤
n∑
t=1

(
n

t

)( (t
2

)
tk/6

)(
t(n− t)
tk log k/8

)
(q + 1)−(tk/6+tk log k/8)

≤
n∑
t=1

[
en

t

(
3et

k
· k log k

(8e+ α)n

)k/6(
8e(n− t)
k log k

· k log k

(8e+ α)n

)k log k/8]t

≤
n∑
t=1

[
e

(
3e

8e+ α

)k/6(
8e

8e+ α

)k log k/8
(log k)k/6

]t
< 1/3 , (8)

where the third inequality holds since k is assumed to be sufficiently large and the last inequality
holds for an appropriately chosen α = α(k); it is not hard to see that α can be chosen such that it
tends to zero as k tends to infinity.

Let F = F1 ∪ F2 ∪ F3. Combining (6), (7) and (8), it follows from Theorem 2.1 that Client has a
strategy to build a graph GC which satisfies the following three properties:

(a) If C1 and C2 are cycles of length at most 4 in GC , then V (C1) ∩ V (C2) = ∅.
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(b) eGC
(S) ≤ |S|k log k/16 for every S ⊆ V (Kn).

(c) For every S ⊆ V (Kn), if eGC
(S) ≥ |S|k/6, then eGC

(S, V (Kn) \ S) < |S|k log k/8.

It remains to prove that a graph which satisfies Properties (a), (b) and (c), has chromatic number at
most k. Let X = {u ∈ V (Kn) : dGC

(u) ≤ (1− ε)k log k/3} and let Y = V (Kn) \X. Let X1 ∪X2 be
a partition of X such that both GC [X1] and GC [X2] have girth at least 5; such a partition exists by
Property (a). Clearly ∆(GC [Xi]) ≤ ∆(GC [X]) ≤ (1−ε)k log k/3 holds for i ∈ {1, 2} by the definition
of X. Since k ≥ k0, using Theorem 4.1 we infer that

χ(GC [Xi]) ≤ (1 + ν((1− ε)k log k/3)) · (1− ε)k log k/3

log((1− ε)k log k/3)
≤ (1 + ε) · (1− ε)k log k/3

log((1− ε)k log k/3)
≤ k/3 ,

holds for i ∈ {1, 2}. Hence, χ(GC [X]) ≤ χ(GC [X1]) + χ(GC [X2]) ≤ 2k/3.

Suppose for a contradiction that χ(GC) ≥ k + 1. Since χ(GC) ≤ χ(GC [X]) + χ(GC [Y ]) ≤ 2k/3 +
χ(GC [Y ]), it follows that χ(GC [Y ]) ≥ k/3 + 1. Therefore, there exists a set Z ⊆ Y such that
δ(GC [Z]) ≥ k/3, entailing eGC

(Z) ≥ |Z|k/6. It follows by Property (b) that eGC
(Z) ≤ |Z|k log k/16.

By the definition of Y , and since ε is arbitrarily small, we then have eGC
(Z, V (Kn)\Z) ≥ |Z|k log k/8.

However, this contradicts Property (c). We conclude that χ(GC) ≤ k as claimed.

Assume then that 2 ≤ k < max{k0, 1000}. Let F = {F : ∃S ⊆ V (Kn) such that S 6= ∅, F ⊆
EKn(S) and |F | = |S|k/2}. Then

Φ(F) =
∑
A∈F

(q + 1)−|A| ≤
n∑
t=1

(
n

t

)( (t
2

)
tk/2

)
(q + 1)−tk/2

≤
n∑
t=1

[
en

t

(
et

k
· k log k

(8e+ α)n

)k/2]t
≤

n∑
t=1

[
e

(
e log k

8e+ α

)k/2]t
< 1 ,

where the third inequality holds by our assumption that k ≥ 2 and the last inequality holds by our
assumption that k < max{k0, 1000} and by choosing α = α(k) to be sufficiently large.

It thus follows from Theorem 2.1 that Client has a strategy to build a graph GC such that every
subgraph of GC admits a vertex of degree at most k − 1. Clearly such a graph is k-colorable.

Next, assume that q ≤ cn/(k log k), where c ≤ log 2/4 − α. Let F denote the family of edge-sets of
all cliques of Kn on dn/ke vertices. Then∑

A∈F

2−|A|/(2q−1) ≤
(

n

dn/ke

)
2−(dn/ke

2 )/(2q) ≤
[
ek · 2−

(dn/ke−1)k log k
4cn

]dn/ke
≤

[
2log2 e+

log k
log 2

+ k log k
4cn

− log k
4c

]dn/ke
= o(1) , (9)

where the last equality holds by our choice of c and for sufficiently large n.
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It thus follows from Theorem 2.4 that Waiter has a strategy to ensure that α(GC) < dn/ke will hold
at the end of the game. Since any graph G has an independent set of size dv(G)/χ(G)e, we conclude
that χ(GC) > k as claimed. 2

Proof of Theorem 1.7 Let q ≥ (4+α)n/(k log k) be an integer and let ν be the function appearing
in the statement of Theorem 4.1. Fix an arbitrarily small constant ε > 0 and let k0 be the smallest
integer such that log log k0 ≥ log 2 − log(1 − ε) and ν((1 − ε)k log k/2) ≤ ε holds for every k ≥ k0.
Assume first that k ≥ k0. We present a strategy for Waiter; it is divided into the following two
stages:

Stage I: Waiter forces Client to build a graph H1 of maximum degree at most (1− ε)k log k/2 and
girth at least 5 such that dGF

(u) ≤ (k log k)3 holds for every u ∈ V (Kn) at the end of this stage.

Stage II: Waiter forces Client to build a linear forest H2 := GC \H1.

We will prove that Waiter can indeed follow the proposed strategy. First, we introduce some notation
and terminology. An edge e ∈ E(GF ) is called dangerous if adding it to GC creates a cycle of length
3 or 4. Note that once an edge becomes dangerous, it remains dangerous for as long as it is free. At
any point during the game, we will denote the set of dangerous edges by D.

We can now describe Stage I of Waiter’s strategy in more detail. In the first round, Waiter offers
Client q + 1 arbitrary edges. For every integer i ≥ 1, let xiyi denote the edge claimed by Client in
the ith round, let Xi = {e ∈ E(GF ) : xi ∈ e} \D and let Yi = {e ∈ E(GF ) : yi ∈ e} \D. For every
integer i ≥ 1, in the (i+ 1)st round Waiter offers Client min{|Xi|, d(q + 1)/2e} arbitrary edges of Xi

and min{|Yi|, b(q + 1)/2c} arbitrary edges of Yi. If Xi = Yi = ∅, then Waiter chooses an arbitrary
edge uv ∈ GC for which {e ∈ E(GF ) \D : {u, v} ∩ e 6= ∅} 6= ∅ and plays as if Client claimed uv in
the ith round (recall that Waiter is allowed to offer fewer than q + 1 edges per round, but he must
offer at least one). Finally, if {e ∈ E(GF ) \D : {u, v} ∩ e 6= ∅} = ∅ for every uv ∈ GC , then Waiter
offers Client min{q + 1, |E(GF ) \ D|} arbitrary edges of E(GF ) \ D; if the latter minimum is zero,
then Stage I is over and Waiter proceeds to Stage II.

Since Stage I of the proposed strategy never instructs Waiter to offer Client any dangerous edges, it
is evident that Client’s graph will have girth at least 5 at the end of Stage I. Let u be an arbitrary
vertex of Kn. Every time Client claims an edge uv for some v ∈ V (Kn), Waiter responds by offering
at least b(q + 1)/2c edges which are incident with u. Since Client can claim at most one of these
edges, Waiter claims at least b(q + 1)/2c − 1 of them. Note that the last time Waiter offers an edge
which is incident with u is a possible exception. Indeed, in the worst case, he might offer only one
such edge which might then be claimed by Client. We conclude that, except possibly once, for every
edge of {uw : w ∈ V (Kn)} which Client claims in Stage I, Waiter claims at least b(q + 1)/2c − 1.

Therefore, dH1(u) ≤
⌈

n−1
b(q+1)/2c

⌉
+1 ≤ (1−ε)k log k/2, where the last inequality holds if α is chosen to

be sufficiently large compared to ε. Since u was arbitrary, we conclude that ∆(H1) ≤ (1− ε)k log k/2
holds at the end of Stage I.
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At the end of Stage I, fix some vertex u ∈ V (Kn) and let v ∈ V (Kn) be such that uv ∈ D. It
follows that there exists a vertex z ∈ V (Kn) such that uz, zv ∈ E(H1) or vertices x, y ∈ V (Kn)
such that ux, xy, yv ∈ E(H1). That is, there is a path of length two or three between u and v in
H1. Since the number of paths of length ` in H1, starting at u, is at most ∆(H1)

`, we conclude that
|{e ∈ D : u ∈ e}| ≤ (k log k/2)2 + (k log k/2)3 ≤ (k log k)3 holds for every u ∈ V (Kn) as claimed.

Next, we prove that Waiter can play according to Stage II of the proposed strategy. For every
integer i ≥ 1, let xiyi denote the edge Client claims in the ith round of Stage II. In the first round
of this stage, Waiter identifies an inclusion maximal set A1 ⊆ V (Kn) such that the number of free
edges with at least one endpoint in A1 is at most q + 1 and offers Client all of these edges. Note
that this edge set is non-empty since q � (k log k)3 ≥ ∆(GF ). Assume that t rounds were already
played in Stage II for some t ≥ 1. In the (t+ 1)st round of this stage, Waiter identifies an inclusion
maximal set At+1 ⊆ V (Kn) such that {xt, yt} ⊆ At+1 and the number of free edges with at least one
endpoint in At+1 is at most q + 1 and offers Client all of these edges; again, this set is non-empty
since q � (k log k)3 ≥ ∆(GF ). Note that this strategy ensures that, for every i ≥ 1, dGF

(xi) = 0
or dGF

(yi) = 0 holds immediately after the ith round of Stage II. Since, moreover, if there are still
free edges incident with {xi, yi}, Waiter offers all of them in round i + 1, it follows that the graph
H2 ⊆ GC Client builds in Stage II is indeed a linear forest.

It remains to prove that, by following the proposed strategy, Waiter forces Client’s graph to be k-
colorable. It follows from Theorem 4.1 that χ(H1) ≤ (1 + ν((1 − ε)k log k/2)) · (1−ε)k log k/2

log((1−ε)k log k/2) ≤
(1 + ε) · (1−ε)k log k/2

log((1−ε)k log k/2) ≤ k/2, where the second and third inequalities follow by our choice of k0.

Moreover, it is evident that χ(H2) ≤ 2. We conclude that χ(GC) = χ(H1 ∪H2) ≤ χ(H1)χ(H2) ≤ k.

Assume then that 2 ≤ k < k0. In a similar way to Stage I above, for sufficiently large α = α(k),
Waiter can limit the maximum degree in Client’s graph at the end of the game to k − 1. It readily
follows that χ(GC) ≤ k.

Next, assume that q ≤ cn/(k log k), where c ≤ log 2/2 − α. Let F denote the family of edge-sets of
all cliques of Kn on dn/ke vertices. Then

∑
A∈F

(
q

q + 1

)|A|
≤
∑
A∈F

2−|A|/q = o(1),

where the last equality holds by a calculation similar to (9).

Thus, by Theorem 2.3, Client has a strategy to claim an edge in every clique of size dn/ke in Kn. In
particular, this means that α(GC) = ω(GW ) < dn/ke at the end of the game. Since any graph G has
an independent set of size dv(G)/χ(G)e, we conclude that χ(GC) > k as claimed. 2
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5 Concluding remarks and open problems

Sharper bounds for colorability games. We proved that there are absolute constants c1 ≥ c2 > 0
such that, for every k ≥ 2 and sufficiently large n, the threshold bias of the Waiter-Client non-k-
colorability game (E(Kn),NCk) is between (c1n)/(k log k) and (c2n)/(k log k) (see Theorem 1.6). The
analogous result for Client-Waiter games was proved as well (see Theorem 1.7). This matches quite
well the probabilistic intuition [1] and the corresponding known results for Maker-Breaker games [21].
For sufficiently large k, the constants c1 and c2 are not too far apart but, in contrast to our very
precise results for the non-planarity and Kt-minor games, we have not determined the asymptotic
value of the threshold bias of the non-k-colorability game for any k ≥ 2. When trying to prove such a
result, a good place to start might be the non-bipartite game (E(Kn),NC2). For the Maker-Breaker
version of this game, the threshold bias is known to be between dn/2e (see [8]) and (1−1/

√
2−o(1))n

(see [9]).

For the Waiter-Client game (E(Kn),NC2), we believe that the threshold bias is (1 + o(1))n. Indeed,
for q ≤ (1 − o(1))n, it is not hard to devise an explicit strategy for Waiter to force an odd cycle in
Client’s graph (for example, as in the proof of Claim 3.1, Waiter can force Client to build a path P of
length (2+o(1))

√
q such that there are at least q+1 free edges with both endpoints in P , each closing

an odd cycle in Client’s graph; in a single round he then offers any q+1 of these edges). On the other
hand, it was conjectured in [6] that Client has a strategy to avoid any cycle if q ≥ (1+o(1))n. If true,
this will prove that the threshold bias of the Waiter-Client game (E(Kn),NC2) is indeed (1 + o(1))n.
A direct application of Theorem 2.1 shows that Client can avoid odd cycles if q ≥ (1 + α)n, where
α = (1− tanh(2))/ tanh(2) ≈ 0.0374.

For the Client-Waiter game (E(Kn),NC2), we believe that the threshold bias is (1/2+o(1))n. Indeed,
it immediately follows from Theorem 1.3, that Waiter can force Client to build a bipartite graph if
q ≥ dn/2e − 1. However, the best we can currently prove in the opposite direction is that Client can
build an odd cycle if q ≤ (1/(4 log 2)− o(1))n. This is done by applying Theorem 2.3 to the family
{E(Q1) ∪ E(Q2) : Q1 and Q2 are cliques, V (Q1) ∩ V (Q2) = ∅ and V (Q1) ∪ V (Q2) = V (Kn)}.
Minor games in the critical window. For a graph G, let ccl(G) denote the order of the largest
complete minor in G. Our results for the Waiter-Client Kt-minor game exhibit a very strong proba-
bilistic intuition. In both the sub-critical regime (that is, when Waiter’s bias q is at least (1+ε)n and,
correspondingly, the edge probability in the random graph is at most (1−ε)/n) and the super-critical
regime (that is, when Waiter’s bias q is at most (1− ε)n and, correspondingly, the edge probability
in the random graph is at least (1 + ε)/n), we proved that a.a.s. ccl(GC) = Θ(ccl(G(n, 1/(q + 1)))).
The graph invariant ccl(G(n, p)) has also been investigated in the critical window, that is, when p
is very close to 1. Building on results of  Luczak [32, 33], it was proved by Fountoulakis, Kühn and
Osthus [18] that if p = 1/n + λn−4/3, where 1 � λ � n1/3, then a.a.s. ccl(G(n, p)) = Θ(λ3/2). It
would be interesting to know whether analogous results hold in the game setting as well. Note that
Theorem 1.1 does provide a non-trivial lower bound on ccl(GC) when n−1/4 � ε � 1. Indeed, if
n−1/4 � ε � 1 is chosen such that b

(
n
2

)
/((1 − ε)n + 1)c = (1/n + λn−4/3)

(
n
2

)
, then 1 � λ � n1/3

and ccl(GC) ≥ cλ2n−1/6 for some constant c > 0. However λ2n−1/6 � λ3/2 whenever λ � n1/3 and,
moreover, λ2n−1/6 � 1 if λ� n1/12.
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On the other hand, even if q = (1/2 − ε)n, where ε > 0 is arbitrarily small but fixed, the largest
complete minor we proved Client can guarantee in his graph in the Client-Waiter Kt-minor game is
of order nγ, where γ = γ(ε) > 0 is a small constant. It would be interesting to know whether Client
can ensure a larger minor, ideally of order Θ(

√
n), as in the Waiter-Client version of the game.
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[4] M. Bednarska-Bzdȩga, On weight function methods in Chooser-Picker games, Theoretical Com-
puter Science 475 (2013), 21–33.
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[12] V. Chvátal and P. Erdős, Biased positional games, Annals of Discrete Mathematics 2 (1978),
221–228.

[13] D. Clemens, J. Ehrenmüller, Y. Person and T. Tran, Keeping Avoider’s graph almost acyclic,
The Electronic Journal of Combinatorics 22(1) (2015), P1.60.

[14] A. Csernenszky, The Picker-Chooser diameter game, Theoretical Computer Science 411 (2010),
3757–3762.

[15] O. Dean, personal communication.
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