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Abstract

Boolean functions have important applications in crypaminy and coding theory. Two famous
classes of binary codes derived from Boolean functionstea&eed-Muller codes and Kerdock
codes. Inthe past two decades, a lot of progress on the staghplications of Boolean functions

in coding theory has been made. Two generic constructiohmafy linear codes with Boolean

functions have been well investigated in the literaturee ©bjective of this paper is twofold.

The first is to provide a survey on recent results, and therash® propose open problems
on one of the two generic constructions of binary linear sodgh Boolean functions. These
open problems are expected to stimulate further researdtinamy linear codes from Boolean
functions.

Keywords: Almost bent functions, bent functions, difference seteédir codes, semibent
functions, o-polynomials.

1. Introduction

Let p be a prime and leg = p™ for some positive integen. An [n, k, d] codeC over GHp)
is ak-dimensional subspace of G&" with minimum (Hamming) distance. Let A; denote the
number of codewords with Hamming weighi a codeC of lengthn. Theweight enumeratoof
Cis defined by 3+ Ajz+ ApZ +--- + AnZ". The sequencgl, Ay, Ay, - -+, Ay) is called theweight
distributionof the codeC. A code( is said to be a-weight code if the number of nonzefgin
the sequenceAy, Ay, - -+, An) is equal ta.

Boolean functions are functions from GH') or GH2)™ to GH2). They are important
building blocks for certain types of stream ciphers, andalaa be employed to construct binary
codes. Two famous families of binary codes are the ReedeMutbdesEBO] and Kerdock
codesﬂ?]. In the literature two generic constardiof binary linear codes from Boolean
functions have been well investigated. A lot of progresshanstudy of one of the two construc-
tions has been made in the past decade. The objective ofgper s twofold. The first one is
to provide a survey on recent development on this constnucéind the other is to propose open
problems on this generic constructions of binary linearesodith Boolean functions. These
open problems are expected to stimulate further researdtinamy linear codes from Boolean
functions.
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2. Mathematical foundations

2.1. Difference sets

For convenience later, we define ti#ference functiorof a subseD of an abelian group
(A, +) as

diffp(x) = [DN (D +X)|, (1)

whereD +x={y+x:y e D}.

A subseD of sizek in an abelian groupA, +) with orderv is called a(v, k, A) difference set
in (A, +) if the difference function diff (x) = A for every nonzerx € A. A difference seD in
(A, +) is calledcyclicif the abelian groug\ is so.

Difference sets could be employed to construct linear coddsferent ways. The reader is
referred to[[2[7] 28] for detailed information. Some of theles presented in this survey paper
are also defined by difference sets.

2.2. Group characters iGFQ)

An additive characteof GF(q) is a nonzero functiory from GHq) to the set of nonzero
complex numbers such thatx+y) = x(x)x(y) for any pair(x,y) € GF(q)?. For eactb € GF(q),
the function

xo(c) =ep®® forall c € GF(q) (2)

defines an additive character of &y, where and whereaftep, = e?™/~1/Pis a primitive com-
plex pth root of unity and Tr is the absolute trace function. Wibea 0, xo(c) = 1 forallc e
GF(q), and is called thérivial additive characteof GF(q). The charactey; in (2) is called the
canonical additive charactesf GF(q). It is known that every additive character of @ffcan be
written asxp(x) = X1(bX) [51, Theorem 5.7].

2.3. Special types of polynomials ov&F(q)

It is well known that every function from G) to GHq) can be expressed as a polynomial
over GKq). A polynomial f € GF(q)[x] is called apermutation polynomiaif the associated
polynomial functionf : a+ f(a) from GHq) to GHq) is a permutation of Gfg).

Dickson polynomials of the first kind over Gg) are defined by

Dn(x,a) = Lgi& <“ii> (—ayx"2, @)

wherea € GF(q) andh is called theorder of the polynomial. Some of the linear codes that
will be presented in this paper are defined by Dickson pertiam@olynomials of order 5 over
GF(2™M).

A polynomial f € GF(q)[X| is said to bee-to-l if the equationf(x) = b over GKq) has
eithere solutionsx € GF(q) or no solution for everyp € GF(q), wheree > 1 is an integer, and
e dividesq. By definition, permutation polynomials are 1-to-1. In tkigrvey paper, we need
e-to-1 polynomials over GR™) for the construction of binary linear codes.



2.4. Boolean functions and their expressions

A function f from GH2™) or GH2)™ to GH2) is called aBoolean function A function
f from GH2™) to GH2) is calledlinear if f(x+y) = f(x)+ f(y) for all (x,y) € GF(2™?2. A
function f from GH2™) to GH?2) is calledaffineif f or f —1is linear.

TheWalsh transfornof f : GF(2™) — GF(2) is defined by

f (W) _ Z (_ 1) f(x)+Tr(wx) (4)
xeGF(2m)

wherew € GF(2™). TheWalsh spectrurof f is the following multiset
{{f(w):we GF2™}}.
Let f be a Boolean function from GE™) to GH2). Thesupportof f is defined to be
Dt = {xe GF(2"): f(x) = 1} C GF(2™). (5)

Clearly, f — D+ is a one-to-one correspondence between the set of Booleatidns from
GF(2™) to GH2) and the power set of GE™).

3. The first generic construction of linear codes from functons

Let f be any polynomial from Gfg) to GHq), whereq = p™. A code over GFp) is defined
by
C(f) = {c=(Tr(af(x) + bx))xcrq) : @ € GFa), b€ GHa)},
where Tr is the absolute trace function. Its lengtlg,ignd its dimension is at mostrRand is
equal to 2nin many cases. The dual ¢f( ) has dimension at leagt— 2m.
Let f be any polynomial from Gfg) to GHq) such thatf(0) = 0. A code over GFp) is
defined by

C*(f) = {c= (Tr(af(x) + bx))xecr(qg> : @€ GHa), be GF(q)}.

Its length isg — 1, and its dimension is at mostr2and is equal to @in many cases. The dual of
C*(f) has dimension at leagt— 1 —2m.

This is a generic construction of linear codes, which hasg lastory and its importance is
supported by Delsarte’s Theore@[24]. It gives a codingtheharacterisation of APN mono-
mials, almost bent functions, and semibent functions ¢9eexamples,|_[_1|3] ]]8] anmél]) when
g= 2. We will not deal with this construction in this paper.

4. The second generic construction of linear codes from furions

In this section, we present the second generic construcfibnear codes over Gfp) with
any subseD of GF(p™), and introduce basic results about the linear codes. IridddBt we
will consider specific families of binary linear codes frorndean functions obtained with this
generic construction.



4.1. The description of the construction of linear codes

Let D = {d,dy, ...,dn} € GF(q), where agaimg = p™. Recall that Tr denotes the trace
function from GKq) onto GH p) throughout this paper. We define a linear code of lemgiker
GF(p) by

(o = {(Tr(xdy), Tr(xdz),..., Tr(xdn)) : x € GF(q) }, (6)

and callD thedefining sebf this code(p. By definition, the dimension of the cod® is at most
m.

This construction is generic in the sense that many clagsemwn codes could be produced
by selecting the defining s& C GF(q) properly. This construction technique was employed in
1, @], 1, [_3?,] and other papers for obtaining lineardes with a few weights. If the sBt
is properly chosen, the cod® may have good or optimal parameters. Otherwise, the ¢pde

could have bad parameters.

4.2. The weights in the linear codes
Itis convenient to define for eache GF(q),

cx = (Tr(xdy), Tr(xdp), ..., Tr(xdn)). @)
The Hamming weight Wty) of ¢k is n— Nk(0), where
Nx(0) = {1 <i<n:Tr(xd) =0}
for eachx € GF(q).
Itis easily seen that for ary = {dy, d, ..., dn} C GF(q) we have
n n
pNX(O) _ Zl Z eZT[\/j.YTr(Xd)/p — Zl Z Xl(yxd) =n+ Xl(yXD)
i=1yeGF(p) i=1yeGF(p) yeGHp)*

wherey is the canonical additive character of @y, aD denotes the sefad : d € D}, and
X1(S) := SxesX1(x) for any subses of GF(q). Hence,

WH(Gx) = n— Ny(0) = (p—1)n— ZyepGF(p)*Xl(yX ). ()

4.3. Differences between the first and second generic amigins

The second generic construction of this section is diffefirem the first generic construction
of Sectior3 in the following aspects:

e While the length of the codes in the first generic construciioSectior B is eitheq or
g— 1, that of the codes in the second generic construction dmeithy integer between 1
andq, depending on the underlying defining 8et

e While the dimension of the codes in the first constructionest®n[3 is usually &, that
of the codes in the second construction is usualgnd is at mosin.



5. Binary codes from the preimagef —*(b) of Boolean functionsf

Let f be a function from GR™) to GH2), and letD be any subset of the preimage’(b)
for anyb € GF(2). In general, it is very hard to determine the parametersetdde(p. Recall
the supporD+ of f defined in[(b). Len; = |D¢|. In this section, we deal with the binary code
(b, with lengthns and dimension at mosh, and will focus on the weight distribution of the
code(p;, for several classes of Boolean functioins

The following theorem plays a major role in this section wdpsoof can be found irh__[iS].

Theorem 1. Let f be a function fronGH2™) to GF(2), and let Dx be the support of f. [2ny +
f(w) # Ofor allw € GF(2™)*, then(p;, is a binary linear code with lengthrand dimension m,
and its weight distribution is given by the following mugtis

{{zm%‘c(‘m ‘we GF(Zm)*}}U{{O}}. )

Theoreni ] establishes a connection between the set of Bolleationsf such that 8¢ +
f(w) # 0 for allw € GF(2™)* and a class of binary linear codes. The determination of tight
distribution of the binary linear codép, is equivalent to that of the Walsh spectrum of the
Boolean functiorf satisfying ¢ + f(w) # 0 for allw € GF(2™)*. When the Boolean function
f is selected properly, the codg, has only a few weights and may have good parameters. We
will demonstrate this in the remainder of this section.

We point out that Theorefd 1 can be generalized into the fatigwhose proof is the same
as that of Theorefm 1.

Theorem 2. Let f be a function fronGF(2™) to GF(2), and let Dy be the support of f. Lete

denote the multiplicity of the eleme@ftlf—(m and e the multiplicity of O in the following multiset
of (9). Then(p; is a binary linear code with lengthrand dimension m log, e, and the weight
distribution of the code is given by

2ng + f
L(W) with frequency%”

2ng+f(w
for all ff()

in the multiset of((9).

5.1. Linear codes from bent functions

A function from GR2™) to GH2) is calledbentif | f (w)| = 22 for everyw € GF(2™). Bent
functions exist only for evem [65].

It is well known that a functionf from GH2™) to GF2) is bent if and only ifD; is a
difference set ifGF(2™), +) with the following parameters

(Zm, 2m71 + 2(m72)/27 2m72i 2(m72)/2)- (10)
Let f be bent. Then by definitioh(0) = -2™2. It then follows that
ni = |D¢| = om-14 p(m-2)/2 (11)

As a corollary of Theoref1, we have the foIIowir@[ZS].
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Table 1: The weight distribution of the codes of Corollaty 3
Weightw  Multiplicity Ay

0 1
m2
ng 2m£4 2M_1-ns2 2
2 -2
n m-4 2M—1+n Z’Q}Z
ar + 2 2 e i

2

Corollary 3. Let f be a Boolean function fro®F2™) to GF(2) with f(0) = 0, where m> 4
and is even. Thedp, is an[ns, m, (ns — 2(M2)/2) /2] two-weight binary code with the weight
distribution in TabldL, whereis defined in[(Tl1), if and only if f is bent.

There are many constructions of bent functions and thus tHad&difference sets. We refer
the readertd]4] 8]@9], the book chapﬂe__L|[12] and tifemences therein for details. Any bent
function can be plugged into Corolldty 3 to obtain a two-viriginary linear code.

The construction of binary codes with bent functions abarelze generalized as follows.

Theorem 4. Let D be a(2™, n, A) difference sets ifGF(2™),+). Then(p is a two-weight binary
code with parameter®, m| and weight enumerator

(2"—1)vn—A— na-px (2"—1)vVn—A+ n_ne/p
2v/n—\ 2v/n—\ '

5.2. Linear codes from semibent functions

Letmbe odd. Then there is no bent Boolean function ofZ3¥%. A function f from GH2™)
to GF2) is calledsemibentf f(w) € {0, +2(™1/2} for everyw € GF(2™).

Let f be a semibent function from GE™) to GH?2). It then follows from the definition of
semibent functions that

om-1_om-1/2 jf £(0) = 2(m+D)/2,
ng = |Df| = {

1+

om-1 o(m-1)/2 s f(o) — 72(m+l)/27 (12)

om-1 if f(0)=0.

Table 2: The weight distribution of the codes of Corollaly 5

Weightw Multiplicity Ay
0 1
ng—2(m-1/2

N (me nf)Z*m — an*(m”)/Z
2M—1—n¢(2M—ng)2- (M)

Nt (2m — nf)Z*m—i— nf2*(m+1)/2

7

2
n¢42m-1/2
2

As a corollary of Theoref1, we have the foIIowir@[ZS].

Corollary 5. Let f be a Boolean function fro@F2™) to GF(2) with f(0) = 0, where mis odd.
Then(o, is an[ng, m, (n¢ — 20M1/2) /2] three-weight binary code with the weight distribution
in Tablel2, where pis defined in[(IR), if and only if f is semibent.
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There are a lot of constructions of semibent functions froR{2%) to GK2). We refer
the reader to [16, 21, B7,154,/185) 57] for detailed constonsti All semibent functions can be
plugged into Corollar{/I5 to obtain three-weight binary Aneodes.

5.3. Linear codes from almost bent functions
For any functiorg from GH2™M) to GH2™), we define

M(ab) = §  (-1)TEI g be GR2M).
xcGF(2m)

A function g from GR2™) to GK2™) is calledalmost bent (ABJf Ag(a,b) = 0, or +2(M+1)/2
for every pair(a,b) with a # 0. By definition, almost bent functions over @*) exist only for
oddm. Specific almost bent functions are available i [5, 12].

By definition, Ag(1,0) € {0, £2(™"1)/2} for any almost bent functiog on GH2™). It is
straightforward to deduce the following lemma.

Lemma 6. For any almost bent function g fro@F(2™) to GF(2™), define f= Tr(g). Then we
have

2m-1 4 2(M-1/2 jf £\g(1,0) = —2(m+D/2)
Nt =|Dygl = { 2™1—2MmD/2 jf \y(1,0) = 2MD/2 (13)
om-1 if Ag(1,0) = 0.

As a corollary of Theorefal1, we have the foIIowir@[ZS].

Corollary 7. Let g be an almost bent function fra&H2™) to GF(2™) with Tr(g(0)) = 0, where
m is odd. Define £ Tr(g). Then(p, is an|n¢, m, (ns — 2(M-1/2) /2] three-weight binary code
with the weight distribution in Tablg 2, where i given in [I3B).

The following is a list of almost bent functiorggx) = x¥ on GR2™) for oddm:

d = 2"+ 1, where gcém h) = 1 is odd [41].
d=22"_2"1 1 whereh > 2 and gcdm, h) = 1 is odd [46].
d=2M-1/24 346].
d=2m1/24 2(M-1)/4_1 wherem=1 (mod 4) [44,[45].
5. d=2Mm1/24 2Bm-1/4_ 1 wherem= 3 (mod 4 [44,/45].
This list of almost bent monomialgx) are permutation polynomials on GIE"). Hence, the
length of the cod&bp, is equal to 21, and the weight distribution of the code is given in Table

1.

PN

5.4. Linear codes from quadratic Boolean functions
Let

m2)
f(X) = Trom < 20 fix“l) (14)

be a quadratic Boolean function from @) to GH?2), wheref; € GF2™). The rank off,
denoted by ¢, is defined to be the codimension of the (@Fvector space

Vi = {xe GF(2"): f(x+2) — f(x) — f(z27 =0V ze GF(2™)}.
7



Table 3: The Walsh spectrum of quadratic Boolean functions
f(w) the number ofv's
0 2m_ 2T
om-r¢/2 2rf71+2(rf72)/2
72mfrf/2 2rf7172(rf72)/2

The Walsh spectrum df is known E)] and given in Tablé 3.
Let D¢ be the support of. By definition, we have

£(0 om-1 if f(0)=0,
ni =Dy =2m 1 T _ ] oma omoirizif fo) = omrir2, (15)
2 om-1 | pM1-11/2 i f(Q) — —2MT1/2,

The following theorem then follows from Theoréin 1 and Téble 3

Theorem 8. Let f be a quadratic Boolean function of the form[inl(14) suwdt t; > 2. Then
(b, is a binary code with lengthgiven in [I5), dimension m, and the weight distribution in
Table[4, where

(1,0,0) if f(0)=0,
(e1,€1,€3) =4 (0,1,0) if f(0) =2m1-1/2 (16)
(0,0,1) if f(0) = —2m1-T1/2,

Table 4: The weight distribution of the cod®, in Theoreni 8

Weightw Ay
0 1
o 2M_ 2Nt gy
r]erzm—l—rf/Z

=14 2(r=2)/2_¢,
ori—1l_o(ri=2)/2 _¢

72m—1—rf/2
2

n¢
3

Note that the cod€p, in TheoreniB defined by any quadratic Boolean funcfiasdifferent
from any subcode of the second-order Reed-muller code,dtrestdifference in their lengths.
The weight distributions of the two codes are also different

5.5. Some binary code$, with three weights

Theorem 9. Let m> 4 be even. Then the cod®, has parameter@2™ % m, 2m-2 _ 2(M-2)/2]
and the weight distribution of Tab[@ 6, where=e2, for f(x) = Tr(x?) for the following d:

1. d = 2"+ 1, wheregcd'm,h) is odd andl < h < m/2 [41].

2. d=2%_2"4 1 wheregcdm, h) is odd andL < h < m/2 [46].

3. d=2"242M2)/41 1 where m= 2 (mod 4 [23].

8



Table 5: Boolean functions with three-valued Walsh spectru
f(w) the number ofv's
0 2m_pm-e
2(m+e)/2 om—e-1_ 2(m-e-2)/2
_o(m+e)/2  om—e-1_ p(m-e-2)/2

4. d=2M2/24 3 where m= 2 (mod 4) [23].

Proof. It can be verified that gdd,2™ — 1) = 1 for all thed listed above. Hences = |D¢| =
2™-1 The Walsh spectrum of the functiohsbove is given in Tablg 5 according to the references
given in this theorem. The desired conclusions on the paemand the weight distribution of
the code(, then follow from Theorerfil1. O

Table 6: The weight distribution of some three-weight codes

Weightw Multiplicity Ay
0 1
2m—2 om_ om-e_ 1

om-2 + o(mte-4)/2  om-e-1 + 2(m-e-2)/2
om-2_ o(mte-4)/2  om-e-1_ o(m-e-2)/2

5.6. Binary codegp, with four weights

Table 7: Boolean functions with four-valued Walsh spectr@ase |

f(w) the number ofv's
_om 2 (2m7 om 2)/3

0 om-1_ 2(m72)/2
2m/2 2m/2

2(m+2)/2 (Zm—l _ 2(m—2)/2>/3

The code(h, has four weights and its weight distribution is known wiér) = Tr(x4) and
d is given in the following list.

e Whend = 2(™2)/2_1 andm= 0 (mod 4), the code(p, has length ?~* and dimension
m, and the weight distribution afp, is deduced from Theorelih 1 and Tafle 7, wherel

[61].

e Whend = 2(™2)/2_1 andm= 2 (mod 4), the code(p, has length 21 —2M2 and
dimensionm, and the weight distribution afp, is deduced from Theorefh 1 and Table 9
[61]. Note that in this case, ged, 2™ —1) = 3.

9



Table 8: Boolean functions with four-valued Walsh spectr@ase 2
f(w) the number ofv's
72m/2 2mfl . 2(3m74)/4

0 23m/4 _ 2m/4
2m/2 2mfl o 2(3m74)/4
23m/4 om/4

Table 9: Boolean functions with four-valued Walsh spectr@ase 3

f(w) the number ofv's
—2m2 (2m—2m2 _2)/3

0 om-1_pm-2)/24
2m/2 2m/27 2

2(m+2)/2 (mel _o(m-2)/2 + 2)/3

e Whend = (224 1)(2™4—1)+2andm=0 (mod 4), the codep, has length 2~ and
dimensionm, and the weight distribution afp, is deduced from Theorefh 1 and Table 8

[61].
2(m+2)h/2_q

e Whend = =) andm=0 (mod 4), where 1< h < mand gcdh,m) = 1, the code

(b, has length ?-1 and dimensiom, and the weight distribution afp, is deduced from
TheorentL and Tabld 7, whehe= 1 [35].

e Whend = % andm= 2 (mod 4), where 1< h < mand gcdh, m) = 1, the code

(b, has length p-1_2MW2 and dimensiom, and the weight distribution afp, is deduced
from TheorenflL and Tablg B [61]. Note that in this case(d"— 1) =3.

e Whend = ”*—th% where 2 dividesm/2 andm=0 (mod 4), the code(p, has

length 21 and dimensiom, and the weight distribution afp, is deduced from Theorem

[ and Tabl€l7[43].

e Whend = (22— 1)s+1 withs=2"2"+1)~1 (mod 272+ 1), wheree(h) < ex(m/2)
andey(h) denotes the highest power of 2 dividihgthe parameters and the weight distri-
bution of the code&p, can be deduced from Theoréin 1 and the resulls in [36].

e Letd be any integer such thatd d < 2™ — 2 andd(2/ + 1) = 2" (mod 2" — 1) for some
positive integerg andh. Then the parameters and the weight distribution of the ¢@gle
can be deduced from Theoré&in 1 and the resulis in [42].

All these cases af above are derived from the cross-correlation of a binaryimas-length
sequence with itd-decimation version.

5.7. Other binary codegp, with at most five weights
The code(p, has at most five weights for the followirfg
10



Table 10: The weight distribution of the codes of Theofemn 10

weightw Multiplicity Ay
0 1

Q*4\/ﬁ + q:r\"@ (rM—2r +2) (Q*l)(rr::*rﬂ)
q+4\/c’1 + q:{r\éa (rm —2r+2) (Q*lr)n(qrfl)

e Whenf(x) = Tr(xzm/2+3), wherem > 6 and is even(p;, is a five-weight code with length
2™-1 and dimensiom, and its weight distribution can be derived fr[34].

e Whenf(x) = Tr(ax2"-1/3) with Tr;"(a) # 0, wheremis even,(p, is a two-weight code
with length(2™2 — 4) /6 and dimensiom, and its weight distribution can be derived from

[4€].

o When f(x) = Tr(" L) + Tr(x) Tr(we">~1), wherem is even,u € GF(2™2)*, and
A € GF(2™) with A+A2" = 1, (p, is a five-weight codé [3].

o Whenf (x) = (1+Tr(x)) TrE™ 1) + Tr(x) Tr(wé" *~1), wheremis evenp e GF(2% ),
and\ € GF(2™) with A +A2" = 1, (p, is a five-weight code [3].

Some Boolean function§ documented in|E3] gives also binary linear codg, with five
weights.

5.8. A class of two-weight codes from the preimage of a ty@®ofean functions

Let mbe a positive integer and lebe a prime such that 2 is a primitive root modulo Let
q=2%" wheregis the Euler function. Define

D= {xe GFq)": Tr (xg#) :o}. (17)

The following theorem was proved iﬂGQ].

Theorem 10. Let r™ > 9 and let D be defined if.(17). Then the g&tof (@) is a binary code
with length(q— 1)(r™—r +1)/r™, dimension(r — 1)r™-! and the weight distribution in Table
[1a.

5.9. Binary codes from Boolean functions whose supportssdative difference sets

Let (A, +) be an abelian group of ordew and(N, +) a subgroup oA of order¢. A n-subset
D of Aiis called anlm, ¢, n,A) relative difference setf the multiset{{d; —dy: d1,d2 € D, d1 #
d2}} does not contain all elementshif) but every element iA\ N exactlyA times.

It well known in combinatorics thak(D)|2 € {n,n— A¢} for any nontrivial group character
X. Hence, any relative difference €2in (GF(2™), +) defines a binary codé with at most the
following four weights:

n+,n ntvn—»A¢
2 7 2 '
Obviously,D is the support of a Boolean function on @*).

11



6. Binary codes from the images of certain functions oG F(2™)
Let f(x) be a function from GR2™) to GH2™). We define
D(f)={f(x):xe GF(2™)} andD(f)* = {f(x) : x€ GF(2™)}\ {0}.

In this section, we consider the codg ). In general, it is difficult to determine the length
n; := |D(f)| of this code, not to mention its weight distribution. Howewve certain special
cases, the parameters and the weight distributiathpf, can be settled.

If 0 ¢ D(f), then the two codegpr) and (p(1)- are the same. Otherwise, the length of
the codeCp 1)+ is one less than that of the codgt), but the two codes have the same weight
distribution. Thus, we will not give information about thedes(pt)- in this section.

LetD be any subset of GB™). Thecharacteristic functiondenoted byfp (x), of D is defined

by
1 ifxeD,
fo(x) = { 0 otherwise.

Hence, the Boolean functioiy has supporD. Thus, the cod€py) is in fact defined by the sup-
port of the characteristic function (Boolean function)leé seD( f). Therefore, the construction
method of this section is actually equivalent to that of Bed.

6.1. The codespt from o-polynomials oG F(2™)

A permutation polynomiaf on GR2™) is called armo-polynomialif f(0) =0, and for each
se GF(2™M),

fs(x) = (f(x+5) + f(5))@ 2 (18)

is also a permutation polynomial. O-polynomial can be usedanstruct hyperovals in finite
geometry.

In the original definition of o-polynomials, it is requireldat f (1) = 1. However, this is not
essential, as one can always normafige by usingf(1)~1f(x) due to thatf (1) # 0.

In this section, we consider binary codés,r), wheref is defined by an o-polynomial in
some way.

6.1.1. O-polynomials and their binary codés; )

For any permutation polynomidlx) over GR2™), we definef (x) = xf(x2"~2), and usef
to denote the compositional inversefgfi.e., f ~1(f(x)) = x for all x € GF(2™).

The following two theorems introduce basic properties giodynomials whose proofs can
be found in references about hyperovals. .

Theorem 11. Let f be an o-polynomial o&F(2™M). Then the following statements hold:
1. f~1is also an o-polynomial;
2. 1(x)2" ) is also an o-polynomial for any < j < m—1;
3. fis also an o-polynomial; and
4. f(x+1)+ f(1) is also an o-polynomial.
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Theorem 12. Let ¥ be an o-polynomial o&F(2™). Then every polynomial in
1 1 k k=1
{XR, XK xTR xFT, x‘k_}

is also an o-polynomial, wher®/k denotes the multiplicative inverse of k mod2ilo- 1.

The following property of o-polynomials plays an importasie in our construction of binary
linear codes with o-polynomials.

Theorem 13([@]). A polynomial f fromGF(2™) to GF(2™) with f(0) = 0is an o-polynomial
if and only if {, := f(x) +ux is2-to-1 for every ue GF2™)*.

Let f be any o-polynomial over GB™). Define
fu(x) = f(x) + ux

whereu € GF(2™)*. It follows from Theoreni I3 that, is 2-to-1 for everyu € GF(2™)*. In the
rest of Sectiof 6]1, we consider the codgss,) defined by o-polynomials. By Theordm|13, the

o-polynomial property of guarantees that the length of the ca@lgy, is equal to 21 for any
ue GK(2™M)*. The dimension ofp (1, usually equalsn, but may be less tham. The minimum
weight and the weight distribution @iy r,) cannot be determined by the o-polynomial property
alone, and differ from case to case.

6.1.2. Binary codes from the translation o-polynomials
The translation o-polynomials are described in the foltaywheorem([66].
Theorem 14. Trangx) = 2" is an o-polynomial otGF(2™), wheregcd h,m) = 1.
The following is a list of known properties of translatiorpotynomials.

1. Trans(x) = x2" " and
2. Trangx) = xf(x@"2) = 2

mizm—h

The proof of the following theorem is straightforward.

Theorem 15. Let f(x) = a wheregcdh,m) = 1. Then for any i GK2™)*, the code(p 1,
has parameterf2™ 1, m— 1, 2™2] and is a one-weight code.

The codes(p(1,) in TheorenIb have the same parameters as a subcode of trerdiest
binary Reed-Muller code.

6.1.3. Binary codes from the Segre and Glynn o-polynomials
The following theorem describes a class of o-polynomialsictv are an extension of the
original Segre o-polynomials.

Theorem 16([32]). Let m be odd. TheBegrg(x) = X8 + ax* + a®2 is an o-polynomial on
GF(2™) for every ac GF(2™).

Proof. The conclusion follows from

Segrg(x) = (x+va)° +va".

13



We have the following remarks on this family of o-polynonsial

1. Segrg(x) = x8 is the original Segre o-polynomial [67./68]. So this is areexted family.

2. Segrg(x) = xDs(x,a) = a2Ds(x2"2,a2"~2)x”, whereDs(x, a) = X° + ax® 4 a?x, which is
the Dickson polynomial of the first kind of order 5.

3. Segrg = Ds(x¥"2,a) = a®@" 2+ a4+ x2" 6.

4. Segrgl(x) = (x+ &) "5 4 V&
Theorem 17([32]). Let m be odd. Then

2m_2
=1
Segrg " (x) = (D3><225m2 (X, 1)) . (19)
Glynn discovered two families of o—polynomia]E_t40]. Thesfiis described as follows.

Theorem 18. Let m be odd. The@lynni(x) = x3x2M V244 s an o- polynomial.

Conjecture 19. Let m> 3 be odd, and let (x) = x3*2™"*+4 pe the Glynn o-polynomial.
When me {5,7}, Cp1,) is @ [2™*, m] code with the weight distribution of Tat[e]11. When

m>9, (pr,) isa [2™1 m| code with five weights.

An extension of the second family of o-polynomials disc@eeby Glynn is documented in
the following theorem.

Theorem 20([32]). Let m be odd. Then
2(MH1)/2  o(3m+1) /4 (m+1)/2 o(Bm+1)/4 . _
GIynniia(X) = Xz(m+1)/2 2(m+1)/4 aX2m+1 * (aX) (m+1)/4 !f m=1 (mOd 4)7
X + +ad + (ax)? ifm=3 (mod 4.
is an o-polynomial for all & GF(q).

Proof. Letm=1 (mod 4). Then

" 1)/2 3m+-1)/4 1)/2 3m+1)/4
Glynnii,(x) = (x-4 a(M-1/42M V24284 pmidy2, pami s,

The desired conclusion for the case= 1 (mod 4) can be similarly proved. O

Note that Glynnij(x) is the original Glynn o-polynomial. So this is an extendedifg. For
some applications, the extended family may be useful.

For certain quadratic Boolean functiohghe code(p1,) has good parameters and its weight
distribution is known. The following result is an extenden‘sron of a result proved ||'le28]

Theorem 21. Letp = 2' + 21 and define
fu(x) =xP +ux, ue GF(2M)*.

If fu(x) is 2-to-1 onGF(2™) andgcd2¢ + 1, 2™ — 1) = 1, wherek = j — i, then the binary code
Co(1,) has parameter2™ 1, m, 2m-2 — 2(m-3)/2] and the weight distribution of TablelL1 for any
ue GF(2M)*.

The followingp satisfies the conditions of Theorém 21:
14



Table 11: The weight distribution of the codes of Theokeih 21
Weightw Multiplicity Ay

0 1
om-2_ o(m-3)/2  om-2 + 2(m-3)/2
2m72 2mfl -1

om-2 + 2(m73)/2 om-2_ 2(m73)/2

e p =6 (Segre case).
e p=29+2"with o = (m+1)/2 and 41= 1 modm (Glynn | case).

Theorem 22. Let f(x) = xDs(x,a), where ac GF(2™), and let m be odd. Then the codg,
has parameterf2™ 1, m and the weight distribution of Tablell1 for anyeuGF(2™)*.

Proof. It is easily verified thatf (x) = (x+ /@)% + \/53. The desired conclusions then follow
from Theoreni 2l in the Segre case, ipe= 6. O

Theorem 23. Let F(x) = x5*2"~2/3 and let m be odd. Then cod®y 1) has parameters
[2™-1 m] and the weight distribution of Tab[e1l 1 for any=uGF(2™).
Proof. Note that the multiplicative inverse of 6 modul® 2 1 is equal tq5 x 2™1 —2)/3. The
desired conclusion then follows from Theorenh 21. O
6.1.4. Binary codes from the Cherowitzo o-polynomials

The following describes another conjectured class of gaparhials.

Conjecture 24([@]). Let m be odd and & (m+1)/2. Then
Cherowitzg(x) = 2 + ax? 2 + a2 2324
is an o-polynomial oiGF(2™) for every ac GF(2™).
We have the following remarks on this family.

1. Cherowitzg(x) is the original Cherowitzo o—polynomiﬂllz_,_|18]. So thisais extended
family.

2. No proof of the o-polynomial property is known in the laéure.

3. Cherowitzgx) = x2" 2 4 @™~ 22 4 g2 +2,2"-3x2%-4,

4. Carlet and Mesnager showed that Cherowitzg) = x(x2+1 4 x3 4 x)2 " ~1,

We can prove the following.
Theorem 25([32]).
Cherowitzg(x) = x(@& 1 + a3 +x)& L.
Theorem 26([32]).

_ m_oe_ e om m_ e 1
Cherowitzo= (a2 2+ 2% 44 x2"2)Z -1,

15



Conjecture 27. Let m be odd, and let

H1)/2 H1)/2 m+1)/2 H1)/2 m+1)/2
f(X) _ bz(m )/ +2X2(m )/ +b2( )/ +1X2(m )/ +2+X3><2( )/ Jr47

where be GF(2™). If me {5,7}, (p(y,) is a [2™-1 m] code with at most five weights for every
ue GF2M)*. Ifm>9, (ps,) is a five-weight code with leng@™! and dimension m for every
ue GF2M)*.

6.1.5. Binary codes from the Payne o-polynomials
The following documents a conjectured family of o-trinofaia

Conjecture 28([@]). Let m be odd. TheRayng(x) = Xé + axe + ax¢ is an 0-polynomial on
GF(2™M) for every ac GF(2™M).

We have the following remarks on this family.

1. Payng(x) is the original Payne o—polynomiﬂGZ]. So this is an exthtamily.
2. Payng(x) :xD5(x%,a).
3. Payng(x) = a2 —3Payngum_»(x).
4. Note that

1_5x2mi-2

6 3 '

We have then
2am1p 5x2M1 2

Payng(x) =x ¥ +ad +ax 3

Theorem 29([@]). Let m be odd. Then
6
Payn‘?fl(x) = (D3><22m2 (X7 1)) (20)
5

and Paynél(x) are an o-polynomial.

Proof. Note that the multiplicative inverse of 5 moduloﬁézzsm—*z. The conclusion then follows
from the definition of the Payne polynomial and the fact that

D5(X7 1)71 = D3x2?5m—2 (Xa 1)

Conjecture 30([@]). Let m be odd, and let
om—1_
f(x) = X8 + bxb + b8 = Dg (x5 = b) ,

where be GF(2™). If m> 7, (p(y,) is a three-weight or five-weight code with len@ft and
dimension m for all &€ GF(2™)*.

16



6.1.6. Binary codes from the Subiaco o-polynomials
The Subiaco o-polynomials are given in the following theo{ed].

Theorem 31. Define

om-1

Subiaca(x) = ((a%(x*+X) + @%(1+a+a?) ¢ +x2)) (X + @B + )7 24",

whereTr(1/a) = 1 and d¢ GF(4) if m=2 mod 4 ThenSubiacg(x) is an o-polynomial on
GF(2™M).

As a corollary of Theorem 31, we have the following.

Corollary 32. Let m be odd. Then

Zm—l

Subiac@(x) = (X+32 + 3 +x*) (x* + 3%+ 1)%" 2 4 x (21)

is an o-polynomial oveGF(2™).

Experimental data shows that the binary codgg;,) from the Subiaco o-polynomials have
many weights and have smaller minimum weights compared biitary codes from other o-
polynomials described in the previous subsections. Hetheebinary code(p(y,) from an o-
polynomial could be very good and bad, depending on the Bpeepolynomialf.

6.2. Binary codegpt) from functions orGF(2™) of the form {x) = F(x) + F(x+1)+1
A functionF (x) over GK2™) is calledalmost perfect nonlinear (APN)

max max |{xe GF(2M:F(x+a)—F(x)=b}|=2.
aeGF(Zm)*beGF(Zm)H (27) - F(x+2) —F(x) = b}|

LetF be any function on GR™). Define
fx) =F(X)+F(x+1)+1

For certain APN functionE (x) over GK2™M), it is known thatf is 2-to-1.

Conjecture 33. Let F(x) = x2™ V%3 and m be odd. It is known that F is both APN and AB. If

me {5,7}, (p(r) is a three-weight code with leng®#* and dimension m. If iz 9, (p(r)isa
five-weight code with leng™* and dimension m.

Conjecture 34. Let F(x) = X2 ~2"+1, and letgcdh,m) = 1. Itis known that F is both APN and
AB.

When h= 1, (1) is a [2™1 m— 1,2™?] one-weight code.

When h> 2 and m is odd () is a three-weight or five-weight code with lengffrt and
dimension m.

In particular, when h= 3 and m is odd(p 1) is a three-weight code with leng@™ ! and
dimension m for every odd m 5 and m# 0 (mod 3. In this case, d= 57 and the weight
distribution of the cod&p 1 is given in Tabl€T1.

Itis known thatf (x) = x2"—2"+1 4+ (x+ 1)2"-2"+1 js 25-to-1, wheres = gcd(h, m) [25].
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Theorem 35. Let F(x) = X2 1, and letgcd(h,m) = 1. Then(p 1) is a one-weight code with
parameter§2™ ! m—1,2M7,

Proof. The proof is straightforward and omitted, 8) is linear. O

We have the following comments on other APN monomials.

a) LetF(x) = x2"2, Then(p) is a binary code with length™ ! and dimensiom, and has at
mostmweights. The weights are determined by the Kloosterman sums

b) For the Niho functiorF (x) = x2™ /*+2™ -1 \wherem= 1 (mod 4, the code(p(1) has
length 21 and dimensiom, but many weights.

¢) For the Niho functior (x) = x2™ /?+2°" /*~1 \wherem= 3 (mod 4, the code’p() has
length 2"-1 and dimensiom, but many weights.

It would be extremely difficult to determine the weight diistition of the code’p ) for these
three classes of APN monomials.

6.3. Binary linear codes from some trinomials

A lot of constructions of cyclic difference sets (BF(2M)*, x) with the Singer parameters
(2m—1,2m1 2m-2) or (2M_1 2™1_1 2™2_ 1) are proposed in the literature [46, 27].
These difference sets can certainly be plugged into thenskbgeneric construction of this paper
and obtain binary linear codes with good parameters. Budrdehing the parameters of the
binary linear codes may be difficult in general.

There are also a number of conjectured cyclic difference isefGF(2™)*, x). They give
naturally binary linear codes with this construction. Thdwing is a list of conjectured cyclic
difference sets ifiGF(2™)*, x ) with Singer parameters (see Chapter 4.0f [27)).

Conjecture 36. [27, Chapter 4For any f e GF(2™)[x], we define
D(f)* ={f(x): xe GF(2M)}\ {0}.

Let m> 5 be odd. Then Df)* is a difference set iIfGF(2™M)*, x) with Singer parameters
(2M—1,2m-1 2M=2) for the following trinomials fe GF(2™)[x]:

a) f(x) =x2" 174 x(@™19/3 4y

b) f(x) = )22 ALy oM (22 4)/3

C) f(X) _ X2m73 + Xz(m+3)/2+2(m+l)/2+4 +X.

d) f(X) _ sziz(mfl)/Zil + szfliz(mfl)/Z X

e) f (X) _ szizi(zm—1722)/3 + X2m7227(2m723)/3 +x
f) f(X) _ szfz(m+1)/2+2(m—l)/2 om_o(m+1)/2_q +X.
g) f(X) _ X2m73(2<m+1)/271) + X2(m+1)/2+2(m—1)/272 X
h) f(x)=x2"2" 21" -2 4y

|) f (X) _ sziz(m+3)/273 + X2(m+1)/2+2 X

) F(x) =S R |

k) f(x)=x2""54+x8+x.
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For the linear codegp1)- of the conjectured difference seix f)* in Conjecturd 36, we
have the following conjectured parameters.

Conjecture 37. Let m>5and let O f)* be defined as in Conjecturel36. Then for every f given
in Conjecturd3B, the binary linear codgys)- has parameter2™*, m, 2m-2 — 2(M-3)/2) and
weight enumerator

14 (2m 2 p(m=3)/2) 22232 | om-1 ) 2M2 4 om-2 | p(m=3)/2) 2" 2422

The dual code ofp )+ has parameter2™ 1, 2™ —m 3]

Conjecturé_37 describes binary three-weight codes fordise thamis odd. The next one
is about binary three-weight codes for the case ithet even.

Conjecture 38. Let f(x) = x+x2 " /22" 1 @™ 222141 ¢ GE(2m)[x), where me 2 mod 4
and m> 6. Define
D(f) = {f(x) : xe GF(2")}.

Then the binary cod€p, 1) has parameterf2™1, m, 2m-2 — 2(M-2)/2] and weight enumerator
14 (M3 4 2(m-4)/2) 2T 22 (g gm2 ) 2T (M8 _ plm-4)/2) 2T 24222,

It was conjectured in[[27, Chapter 4] that(®)* is a difference set ifGF(2™)*, x ) with the

parameterg2™—1,2m™1_1 2m2_ 1)

Table 12: The weight distribution of the codes of ConjeciEie

Weightw Multiplicity Ay
0 1
2m72 - 2(m72)/2 2(m72)/2
om-2 _ 2(m74)/2 om-1__ 2m/2
om-2 2m/2 + 2(m72)/2 -1
om-2 + 2(m74)/2 om-1_ 2m/2

Binary four-weight codes may also be produced with diffeeesets in(GF(2™)*, x) as
follows.

Conjecture 39. Let f(x) = x+x2+x2"-2"*+1 ¢ GF(2M)[x], where m> 4 and m is even. Define
D(f) ={f(x): xe GF(2™M)}.

Then the binary linear codep ) has parameters2™ !, m, 2m-2 — 2(™-2/2] and the weight
distribution of TabléIR. It was conjectured in [27, Chaptdithat D(f)* is a difference set in
(GF(2M)*, x) with parameterg2™ —1,2M-1_ 1 2m=2_ 1),

The following is an another list of conjectured cyclic diface sets iIfGF(2™)*, x) with
Singer parameters (see Chapter 4 of [27]).
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Conjecture 40. [Iﬂ Chapter 4For any f € GF(2™)[x], we define
D(f) = {f(x(x+1)):xe GF2M)}.
Let m> 4. Then Of)* is a difference set ifGF(2M)*, x) with Singer parameter$2™ —

1,2™1_1 2™2_ 1) for the following polynomials £ GF(2™)[x]:

1. f(x) = x+x@™ P21 @"2™V241 where miis odd.

2. £(X) = x+x@"D/3 4 x@"-1/3 where m is odd.

2)/2 2 .
3. f(x) = x+x2™ 152241 where miis even.

For the linear codegpt)- of the conjectured difference selX f)* in Conjecturd 4D, we
have the following conjectured parameters.

Conjecture 41. Let m> 4 and let O(f) be defined as in Conjecturel40. Then for every f given
in Conjecturd 4D, the binary linear codg)- has parameterf2™ ! -1, m—1,2"?] andis a
one-weight code.

To determine the weight distribution of the codg, 1) or CSU) of the conjectured difference

sets listed in this section, one does not have to prove tferelifce set property of the d&tf)
orD(f)*.

7. An expansion of the binary codes

Table 13: The weight distribution of the codes of Theokedn 42
Weightw Multiplicity Ay

0 1
om-2__ 2(m73)/2 om-1 + 2(m71)/2
om-2 om_2
om-2 + 2(m=3)/2  om-1_ o(m-1)/2

om-1 1

Let 1 denote the all-one vector, that id,1,...,1), of any length. The complement of any
vectorc € GF(2)" is defined to be&+ 1. For any binary code’, we define

C=CU{c+1l:cec}.

Then( is a binary linear code, which has the same lengttr.aBor most of the binary codes
presented in this paper, the dimensiorat one more than that af. In many cases, the weight
distribution of C can be deduced from that of As an example, we have the following.

Theorem 42. Let m be odd and le€ be any binary linear code with parametg®™1 m| and
the weight distribution of Table11. Thehis binary linear code with parametef@™ 1, m+ 1]
and the weight distribution of Tab[e113.

Example 43. When m= 5, the codeC of Theoreni 42 has parametdfi6, 6, 6] and is optimal.
When m= 7, the codeC of Theoren 42 has parametéfst, 8,28 and is almost optimal.
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8. Concluding remarks

In this paper, we surveyed binary linear codes from Boolemttions and functions on
GF(2™) obtained from the second generic construction. Our focus avasuch binary linear
codes with at most five weights. Many one-weight codes, twight codes, three-weight codes,
four-weight codes are presented in this paper. Some of theromimal and some are almost
optimal. The codes are also quite interesting in the sereettiey may have applications in
secret sharind]D.Dl] and authentication codées %& fgdrameters of some of the binary

1.

codes are different from those I1 [7]] [6], [22], [2d]. [3 [50], [70], and [72].

A number of conjectures were presented in this paper as apbtems. All the conjectures
on difference sets, o-polynomials and the correspondingrigicodes were confirmed for suffi-
ciently many integersmnby Magma. The reader is warmly invited to attack these opehlpms.

Finally, we make it clear that this is by no means a survey lbialary linear codes from
Boolean functions, but a survey of binary linear codes fromolBan functions from the second
generic construction described in Secfidn 4.
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