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A Construction of Binary Linear Codes from Boolean Functions✩
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Abstract

Boolean functions have important applications in cryptography and coding theory. Two famous
classes of binary codes derived from Boolean functions are the Reed-Muller codes and Kerdock
codes. In the past two decades, a lot of progress on the study of applications of Boolean functions
in coding theory has been made. Two generic constructions ofbinary linear codes with Boolean
functions have been well investigated in the literature. The objective of this paper is twofold.
The first is to provide a survey on recent results, and the other is to propose open problems
on one of the two generic constructions of binary linear codes with Boolean functions. These
open problems are expected to stimulate further research onbinary linear codes from Boolean
functions.

Keywords: Almost bent functions, bent functions, difference sets, linear codes, semibent
functions, o-polynomials.

1. Introduction

Let p be a prime and letq= pm for some positive integerm. An [n, k, d] codeC over GF(p)
is ak-dimensional subspace of GF(p)n with minimum (Hamming) distanced. Let Ai denote the
number of codewords with Hamming weighti in a codeC of lengthn. Theweight enumeratorof
C is defined by 1+A1z+A2z2+ · · ·+Anzn. The sequence(1,A1,A2, · · · ,An) is called theweight
distributionof the codeC . A codeC is said to be at-weight code if the number of nonzeroAi in
the sequence(A1,A2, · · · ,An) is equal tot.

Boolean functions are functions from GF(2m) or GF(2)m to GF(2). They are important
building blocks for certain types of stream ciphers, and canalso be employed to construct binary
codes. Two famous families of binary codes are the Reed-Muller codes [64, 60] and Kerdock
codes [10, 11, 47]. In the literature two generic constructions of binary linear codes from Boolean
functions have been well investigated. A lot of progress on the study of one of the two construc-
tions has been made in the past decade. The objective of this paper is twofold. The first one is
to provide a survey on recent development on this construction, and the other is to propose open
problems on this generic constructions of binary linear codes with Boolean functions. These
open problems are expected to stimulate further research onbinary linear codes from Boolean
functions.
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2. Mathematical foundations

2.1. Difference sets

For convenience later, we define thedifference functionof a subsetD of an abelian group
(A,+) as

diffD(x) = |D∩ (D+ x)|, (1)

whereD+ x= {y+ x : y∈ D}.
A subsetD of sizek in an abelian group(A,+) with orderv is called a(v, k, λ) difference set

in (A,+) if the difference function diffD(x) = λ for every nonzerox∈ A. A difference setD in
(A,+) is calledcyclic if the abelian groupA is so.

Difference sets could be employed to construct linear codesin different ways. The reader is
referred to [27, 28] for detailed information. Some of the codes presented in this survey paper
are also defined by difference sets.

2.2. Group characters inGF(q)

An additive characterof GF(q) is a nonzero functionχ from GF(q) to the set of nonzero
complex numbers such thatχ(x+y) = χ(x)χ(y) for any pair(x,y)∈GF(q)2. For eachb∈GF(q),
the function

χb(c) = εTr(bc)
p for all c∈ GF(q) (2)

defines an additive character of GF(q), where and whereafterεp = e2π
√
−1/p is a primitive com-

plex pth root of unity and Tr is the absolute trace function. Whenb= 0, χ0(c) = 1 for all c ∈
GF(q), and is called thetrivial additive characterof GF(q). The characterχ1 in (2) is called the
canonical additive characterof GF(q). It is known that every additive character of GF(q) can be
written asχb(x) = χ1(bx) [51, Theorem 5.7].

2.3. Special types of polynomials overGF(q)

It is well known that every function from GF(q) to GF(q) can be expressed as a polynomial
over GF(q). A polynomial f ∈ GF(q)[x] is called apermutation polynomialif the associated
polynomial functionf : a 7→ f (a) from GF(q) to GF(q) is a permutation of GF(q).

Dickson polynomials of the first kind over GF(q) are defined by

Dh(x,a) =
⌊ h

2⌋

∑
i=0

h
h− i

(

h− i
i

)

(−a)ixh−2i , (3)

wherea ∈ GF(q) andh is called theorder of the polynomial. Some of the linear codes that
will be presented in this paper are defined by Dickson permutation polynomials of order 5 over
GF(2m).

A polynomial f ∈ GF(q)[x] is said to bee-to-1 if the equationf (x) = b over GF(q) has
eithere solutionsx ∈ GF(q) or no solution for everyb∈ GF(q), wheree≥ 1 is an integer, and
e dividesq. By definition, permutation polynomials are 1-to-1. In thissurvey paper, we need
e-to-1 polynomials over GF(2m) for the construction of binary linear codes.
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2.4. Boolean functions and their expressions

A function f from GF(2m) or GF(2)m to GF(2) is called aBoolean function. A function
f from GF(2m) to GF(2) is calledlinear if f (x+ y) = f (x)+ f (y) for all (x,y) ∈ GF(2m)2. A
function f from GF(2m) to GF(2) is calledaffineif f or f −1 is linear.

TheWalsh transformof f : GF(2m)→ GF(2) is defined by

f̂ (w) = ∑
x∈GF(2m)

(−1) f (x)+Tr(wx) (4)

wherew∈ GF(2m). TheWalsh spectrumof f is the following multiset
{{

f̂ (w) : w∈ GF(2m)
}}

.

Let f be a Boolean function from GF(2m) to GF(2). Thesupportof f is defined to be

D f = {x∈ GF(2m) : f (x) = 1} ⊆ GF(2m). (5)

Clearly, f 7→ D f is a one-to-one correspondence between the set of Boolean functions from
GF(2m) to GF(2) and the power set of GF(2m).

3. The first generic construction of linear codes from functions

Let f be any polynomial from GF(q) to GF(q), whereq= pm. A code over GF(p) is defined
by

C ( f ) = {c= (Tr(a f(x)+bx))x∈GF(q) : a∈ GF(q), b∈ GF(q)},
where Tr is the absolute trace function. Its length isq, and its dimension is at most 2m and is
equal to 2m in many cases. The dual ofC ( f ) has dimension at leastq−2m.

Let f be any polynomial from GF(q) to GF(q) such thatf (0) = 0. A code over GF(p) is
defined by

C
∗( f ) = {c= (Tr(a f(x)+bx))x∈GF(q)∗ : a∈ GF(q), b∈ GF(q)}.

Its length isq−1, and its dimension is at most 2mand is equal to 2m in many cases. The dual of
C ∗( f ) has dimension at leastq−1−2m.

This is a generic construction of linear codes, which has a long history and its importance is
supported by Delsarte’s Theorem [24]. It gives a coding-theory characterisation of APN mono-
mials, almost bent functions, and semibent functions (see,for examples, [13], [8] and [44]) when
q= 2. We will not deal with this construction in this paper.

4. The second generic construction of linear codes from functions

In this section, we present the second generic constructionof linear codes over GF(p) with
any subsetD of GF(pm), and introduce basic results about the linear codes. In Section 5, we
will consider specific families of binary linear codes from Boolean functions obtained with this
generic construction.
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4.1. The description of the construction of linear codes

Let D = {d1, d2, . . . , dn} ⊆ GF(q), where againq = pm. Recall that Tr denotes the trace
function from GF(q) onto GF(p) throughout this paper. We define a linear code of lengthn over
GF(p) by

CD = {(Tr(xd1),Tr(xd2), . . . ,Tr(xdn)) : x∈ GF(q)}, (6)

and callD thedefining setof this codeCD. By definition, the dimension of the codeCD is at most
m.

This construction is generic in the sense that many classes of known codes could be produced
by selecting the defining setD ⊆ GF(q) properly. This construction technique was employed in
[28], [29], [30], [33] and other papers for obtaining linearcodes with a few weights. If the setD
is properly chosen, the codeCD may have good or optimal parameters. Otherwise, the codeCD

could have bad parameters.

4.2. The weights in the linear codesCD

It is convenient to define for eachx∈ GF(q),

cx = (Tr(xd1), Tr(xd2), . . . , Tr(xdn)). (7)

The Hamming weight wt(cx) of cx is n−Nx(0), where

Nx(0) = |{1≤ i ≤ n : Tr(xdi) = 0}|

for eachx∈ GF(q).
It is easily seen that for anyD = {d1, d2, . . . , dn} ⊆ GF(q) we have

pNx(0) =
n

∑
i=1

∑
y∈GF(p)

e2π
√
−1yTr(xdi)/p =

n

∑
i=1

∑
y∈GF(p)

χ1(yxdi) = n+ ∑
y∈GF(p)∗

χ1(yxD)

whereχ1 is the canonical additive character of GF(q), aD denotes the set{ad : d ∈ D}, and
χ1(S) := ∑x∈Sχ1(x) for any subsetSof GF(q). Hence,

wt(cx) = n−Nx(0) =
(p−1)n−∑y∈GF(p)∗ χ1(yxD)

p
. (8)

4.3. Differences between the first and second generic constructions

The second generic construction of this section is different from the first generic construction
of Section 3 in the following aspects:

• While the length of the codes in the first generic construction in Section 3 is eitherq or
q−1, that of the codes in the second generic construction couldbe any integer between 1
andq, depending on the underlying defining setD.

• While the dimension of the codes in the first construction in Section 3 is usually 2m, that
of the codes in the second construction is usuallymand is at mostm.
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5. Binary codes from the preimagef−1(b) of Boolean functions f

Let f be a function from GF(2m) to GF(2), and letD be any subset of the preimagef−1(b)
for anyb∈ GF(2). In general, it is very hard to determine the parameters of the codeCD. Recall
the supportD f of f defined in (5). Letnf = |D f |. In this section, we deal with the binary code
CD f with lengthnf and dimension at mostm, and will focus on the weight distribution of the
codeCD f for several classes of Boolean functionsf .

The following theorem plays a major role in this section whose proof can be found in [28].

Theorem 1. Let f be a function fromGF(2m) to GF(2), and let Df be the support of f . If2nf +
f̂ (w) 6= 0 for all w ∈ GF(2m)∗, thenCD f is a binary linear code with length nf and dimension m,
and its weight distribution is given by the following multiset:

{{

2nf + f̂ (w)

4
: w∈ GF(2m)∗

}}

∪{{0}} . (9)

Theorem 1 establishes a connection between the set of Boolean functionsf such that 2nf +
f̂ (w) 6= 0 for all w∈GF(2m)∗ and a class of binary linear codes. The determination of the weight
distribution of the binary linear codeCD f is equivalent to that of the Walsh spectrum of the

Boolean functionf satisfying 2nf + f̂ (w) 6= 0 for all w∈ GF(2m)∗. When the Boolean function
f is selected properly, the codeCD f has only a few weights and may have good parameters. We
will demonstrate this in the remainder of this section.

We point out that Theorem 1 can be generalized into the following whose proof is the same
as that of Theorem 1.

Theorem 2. Let f be a function fromGF(2m) to GF(2), and let Df be the support of f . Let ew

denote the multiplicity of the element
2nf + f̂ (w)

4 and e the multiplicity of 0 in the following multiset
of (9). ThenCD f is a binary linear code with length nf and dimension m− log2e, and the weight
distribution of the code is given by

2nf + f̂ (w)

4
with frequency

ew

e

for all
2nf + f̂ (w)

4 in the multiset of (9).

5.1. Linear codes from bent functions

A function from GF(2m) to GF(2) is calledbentif | f̂ (w)|= 2m/2 for everyw∈GF(2m). Bent
functions exist only for evenm [65].

It is well known that a functionf from GF(2m) to GF(2) is bent if and only ifD f is a
difference set in(GF(2m),+) with the following parameters

(2m, 2m−1±2(m−2)/2, 2m−2±2(m−2)/2). (10)

Let f be bent. Then by definition̂f (0) =±2m/2. It then follows that

nf = |D f |= 2m−1±2(m−2)/2 (11)

As a corollary of Theorem 1, we have the following [28].
5



Table 1: The weight distribution of the codes of Corollary 3

Weightw Multiplicity Aw

0 1
nf
2 −2

m−4
2

2m−1−nf 2−
m−2

2

2
nf
2 +2

m−4
2

2m−1+nf 2−
m−2

2

2

Corollary 3. Let f be a Boolean function fromGF(2m) to GF(2) with f(0) = 0, where m≥ 4
and is even. ThenCD f is an [nf , m, (nf −2(m−2)/2)/2] two-weight binary code with the weight
distribution in Table 1, where nf is defined in (11), if and only if f is bent.

There are many constructions of bent functions and thus Hadamard difference sets. We refer
the reader to [4], [58], [59], the book chapter [12] and the references therein for details. Any bent
function can be plugged into Corollary 3 to obtain a two-weight binary linear code.

The construction of binary codes with bent functions above can be generalized as follows.

Theorem 4. Let D be a(2m,n, λ) difference sets in(GF(2m),+). ThenCD is a two-weight binary
code with parameters[n, m] and weight enumerator

1+
(2m−1)

√
n−λ−n

2
√

n−λ
z

n−
√

n−λ
2 +

(2m−1)
√

n−λ+n

2
√

n−λ
z

n+
√

n−λ
2 .

5.2. Linear codes from semibent functions
Let mbe odd. Then there is no bent Boolean function on GF(2m). A function f from GF(2m)

to GF(2) is calledsemibentif f̂ (w) ∈ {0,±2(m+1)/2} for everyw∈ GF(2m).
Let f be a semibent function from GF(2m) to GF(2). It then follows from the definition of

semibent functions that

nf = |D f |=







2m−1−2(m−1)/2 if f̂ (0) = 2(m+1)/2,

2m−1+2(m−1)/2 if f̂ (0) =−2(m+1)/2,
2m−1 if f̂ (0) = 0.

(12)

Table 2: The weight distribution of the codes of Corollary 5

Weightw Multiplicity Aw

0 1
nf −2(m−1)/2

2 nf (2m−nf )2−m−nf 2−(m+1)/2

nf
2 2m−1−nf (2m−nf )2−(m−1)

nf +2(m−1)/2

2 nf (2m−nf )2−m+nf 2−(m+1)/2

As a corollary of Theorem 1, we have the following [28].

Corollary 5. Let f be a Boolean function fromGF(2m) to GF(2) with f(0) = 0, where m is odd.
ThenCD f is an [nf , m, (nf −2(m−1)/2)/2] three-weight binary code with the weight distribution
in Table 2, where nf is defined in (12), if and only if f is semibent.

6



There are a lot of constructions of semibent functions from GF(2m) to GF(2). We refer
the reader to [16, 21, 37, 54, 55, 57] for detailed constructions. All semibent functions can be
plugged into Corollary 5 to obtain three-weight binary linear codes.

5.3. Linear codes from almost bent functions

For any functiong from GF(2m) to GF(2m), we define

λg(a,b) = ∑
x∈GF(2m)

(−1)Tr(ag(x)+bx), a, b∈ GF(2m).

A function g from GF(2m) to GF(2m) is calledalmost bent (AB)if λg(a,b) = 0, or ±2(m+1)/2

for every pair(a,b) with a 6= 0. By definition, almost bent functions over GF(2m) exist only for
oddm. Specific almost bent functions are available in [5, 12].

By definition, λg(1,0) ∈ {0,±2(m+1)/2} for any almost bent functiong on GF(2m). It is
straightforward to deduce the following lemma.

Lemma 6. For any almost bent function g fromGF(2m) to GF(2m), define f= Tr(g). Then we
have

nf = |DTr(g)| =







2m−1+2(m−1)/2 if λg(1,0) =−2(m+1)/2,

2m−1−2(m−1)/2 if λg(1,0) = 2(m+1)/2,
2m−1 if λg(1,0) = 0.

(13)

As a corollary of Theorem 1, we have the following [28].

Corollary 7. Let g be an almost bent function fromGF(2m) to GF(2m) with Tr(g(0)) = 0, where
m is odd. Define f= Tr(g). ThenCD f is an [nf , m, (nf −2(m−1)/2)/2] three-weight binary code
with the weight distribution in Table 2, where nf is given in (13).

The following is a list of almost bent functionsg(x) = xd on GF(2m) for oddm:

1. d = 2h+1, where gcd(m,h) = 1 is odd [41].
2. d = 22h−2h+1, whereh≥ 2 and gcd(m,h) = 1 is odd [46].
3. d = 2(m−1)/2+3 [46].
4. d = 2(m−1)/2+2(m−1)/4−1, wherem≡ 1 (mod 4) [44, 45].
5. d = 2(m−1)/2+2(3m−1)/4−1, wherem≡ 3 (mod 4) [44, 45].

This list of almost bent monomialsg(x) are permutation polynomials on GF(2m). Hence, the
length of the codeCD f is equal to 2m−1, and the weight distribution of the code is given in Table
11.

5.4. Linear codes from quadratic Boolean functions

Let

f (x) = Tr2m/2

(⌊m/2⌋
∑
i=0

fix
2i+1

)

(14)

be a quadratic Boolean function from GF(2m) to GF(2), where fi ∈ GF(2m). The rank of f ,
denoted byr f , is defined to be the codimension of the GF(2)-vector space

Vf = {x∈ GF(2m) : f (x+ z)− f (x)− f (z) = 0 ∀ z∈ GF(2m)}.
7



Table 3: The Walsh spectrum of quadratic Boolean functions

f̂ (w) the number ofw’s
0 2m−2r f

2m−r f /2 2r f −1+2(r f −2)/2

−2m−r f /2 2r f −1−2(r f −2)/2

The Walsh spectrum off is known [9] and given in Table 3.
Let D f be the support off . By definition, we have

nf = |D f |= 2m−1− f̂ (0)
2

=







2m−1 if f̂ (0) = 0,
2m−1−2m−1−r f /2 if f̂ (0) = 2m−r f /2,

2m−1+2m−1−r f /2 if f̂ (0) =−2m−r f /2.

(15)

The following theorem then follows from Theorem 1 and Table 3.

Theorem 8. Let f be a quadratic Boolean function of the form in (14) such that rf > 2. Then
CD f is a binary code with length nf given in (15), dimension m, and the weight distribution in
Table 4, where

(ε1,ε1,ε3) =







(1,0,0) if f̂ (0) = 0,
(0,1,0) if f̂ (0) = 2m−1−r f /2,

(0,0,1) if f̂ (0) =−2m−1−r f /2.

(16)

Table 4: The weight distribution of the codeCD f in Theorem 8

Weightw Aw

0 1
nf
2 2m−2r f − ε1

nf +2m−1−r f /2

2 2r f −1+2(r f−2)/2− ε2

nf −2m−1−r f /2

2 2r f −1−2(r f−2)/2− ε3

Note that the codeCD f in Theorem 8 defined by any quadratic Boolean functionf is different
from any subcode of the second-order Reed-muller code, due to the difference in their lengths.
The weight distributions of the two codes are also different.

5.5. Some binary codesCD f with three weights

Theorem 9. Let m≥ 4 be even. Then the codeCD f has parameters[2m−1, m, 2m−2−2(m−2)/2]

and the weight distribution of Table 6, where e= 2, for f(x) = Tr(xd) for the following d:

1. d = 2h+1, wheregcd(m,h) is odd and1≤ h≤ m/2 [41].
2. d = 22h−2h+1, wheregcd(m,h) is odd and1≤ h≤ m/2 [46].
3. d = 2m/2+2(m+2)/4+1, where m≡ 2 (mod 4) [23].

8



Table 5: Boolean functions with three-valued Walsh spectrum

f̂ (w) the number ofw’s
0 2m−2m−e

2(m+e)/2 2m−e−1+2(m−e−2)/2

−2(m+e)/2 2m−e−1−2(m−e−2)/2

4. d = 2(m+2)/2+3, where m≡ 2 (mod 4) [23].

Proof. It can be verified that gcd(d,2m−1) = 1 for all thed listed above. Hencenf = |D f | =
2m−1. The Walsh spectrum of the functionsf above is given in Table 5 according to the references
given in this theorem. The desired conclusions on the parameters and the weight distribution of
the codeCD f then follow from Theorem 1.

Table 6: The weight distribution of some three-weight codes

Weightw Multiplicity Aw

0 1
2m−2 2m−2m−e−1

2m−2+2(m+e−4)/2 2m−e−1+2(m−e−2)/2

2m−2−2(m+e−4)/2 2m−e−1−2(m−e−2)/2

5.6. Binary codesCD f with four weights

Table 7: Boolean functions with four-valued Walsh spectrum: Case I

f̂ (w) the number ofw’s
−2m/2 (2m−2m/2)/3

0 2m−1−2(m−2)/2

2m/2 2m/2

2(m+2)/2 (2m−1−2(m−2)/2)/3

The codeCD f has four weights and its weight distribution is known whenf (x) = Tr(xd) and
d is given in the following list.

• Whend = 2(m+2)/2−1 andm≡ 0 (mod 4), the codeCD f has length 2m−1 and dimension
m, and the weight distribution ofCD f is deduced from Theorem 1 and Table 7, whereh= 1
[61].

• Whend = 2(m+2)/2 − 1 andm≡ 2 (mod 4), the codeCD f has length 2m−1 − 2m/2 and
dimensionm, and the weight distribution ofCD f is deduced from Theorem 1 and Table 9
[61]. Note that in this case, gcd(d,2m−1) = 3.

9



Table 8: Boolean functions with four-valued Walsh spectrum: Case 2

f̂ (w) the number ofw’s
−2m/2 2m−1−2(3m−4)/4

0 23m/4−2m/4

2m/2 2m−1−2(3m−4)/4

23m/4 2m/4

Table 9: Boolean functions with four-valued Walsh spectrum: Case 3

f̂ (w) the number ofw’s
−2m/2 (2m−2m/2−2)/3

0 2m−1−2(m−2)/2+2
2m/2 2m/2−2

2(m+2)/2 (2m−1−2(m−2)/2+2)/3

• Whend= (2m/2+1)(2m/4−1)+2 andm≡ 0 (mod 4), the codeCD f has length 2m−1 and
dimensionm, and the weight distribution ofCD f is deduced from Theorem 1 and Table 8
[61].

• Whend = 2(m+2)h/2−1
2h−1

andm≡ 0 (mod 4), where 1≤ h< m and gcd(h,m) = 1, the code

CD f has length 2m−1 and dimensionm, and the weight distribution ofCD f is deduced from
Theorem 1 and Table 7, whereh= 1 [35].

• Whend = 2(m+2)h/2−1
2h−1

andm≡ 2 (mod 4), where 1≤ h< m and gcd(h,m) = 1, the code

CD f has length 2m−1−2m/2 and dimensionm, and the weight distribution ofCD f is deduced
from Theorem 1 and Table 9 [61]. Note that in this case, gcd(d,2m−1) = 3.

• Whend = 2m+2h+1−2m/2+1−1
2h−1

, where 2h dividesm/2 andm≡ 0 (mod 4), the codeCD f has

length 2m−1 and dimensionm, and the weight distribution ofCD f is deduced from Theorem
1 and Table 7 [43].

• Whend = (2m/2−1)s+1 with s= 2h(2h±1)−1 (mod 2m/2+1), wheree2(h)< e2(m/2)
ande2(h) denotes the highest power of 2 dividingh, the parameters and the weight distri-
bution of the codeCD f can be deduced from Theorem 1 and the results in [36].

• Let d be any integer such that 1≤ d ≤ 2m−2 andd(2ℓ+1)≡ 2h (mod 2m−1) for some
positive integersℓ andh. Then the parameters and the weight distribution of the codeCD f

can be deduced from Theorem 1 and the results in [42].

All these cases ofd above are derived from the cross-correlation of a binary maximum-length
sequence with itsd-decimation version.

5.7. Other binary codesCD f with at most five weights

The codeCD f has at most five weights for the followingf :

10



Table 10: The weight distribution of the codes of Theorem 10

weightw Multiplicity Aw

0 1
q−√

q
4 +

q+
√

q
4rm (rm−2r +2) (q−1)(rm−r+1)

rm
q+

√
q

4 +
q+

√
q

4rm (rm−2r +2) (q−1)(r−1)
rm

• When f (x) = Tr(x2m/2+3), wherem≥ 6 and is even,CD f is a five-weight code with length
2m−1 and dimensionm, and its weight distribution can be derived from [34].

• When f (x) = Tr(ax(2
m−1)/3) with Tr2

m

4 (a) 6= 0, wherem is even,CD f is a two-weight code
with length(2m+2−4)/6 and dimensionm, and its weight distribution can be derived from
[48].

• When f (x) = Tr(λx2m/2+1) + Tr(x)Tr(µx2m/2−1), wherem is even,µ ∈ GF(2m/2)∗, and
λ ∈ GF(2m) with λ+λ2m

= 1, CD f is a five-weight code [3].

• When f (x) = (1+Tr(x))Tr(λx2m/2+1)+Tr(x)Tr(µx2m/2−1), wherem is even,µ∈GF(2
m
2 )∗,

andλ ∈ GF(2m) with λ+λ2m
= 1, CD f is a five-weight code [3].

Some Boolean functionsf documented in [63] gives also binary linear codeCD f with five
weights.

5.8. A class of two-weight codes from the preimage of a type ofBoolean functions

Let mbe a positive integer and letr be a prime such that 2 is a primitive root modulorm. Let
q= 2φ(rm), whereφ is the Euler function. Define

D =
{

x∈ GF(q)∗ : Tr
(

x
q−1
rm

)

= 0
}

. (17)

The following theorem was proved in [69].

Theorem 10. Let rm ≥ 9 and let D be defined in (17). Then the setCD of (6) is a binary code
with length(q−1)(rm− r +1)/rm, dimension(r −1)rm−1 and the weight distribution in Table
10.

5.9. Binary codes from Boolean functions whose supports arerelative difference sets

Let (A,+) be an abelian group of ordermℓ and(N,+) a subgroup ofA of orderℓ. A n-subset
D of A is called an(m, ℓ,n,λ) relative difference set, if the multiset{{d1−d2 : d1, d2 ∈ D, d1 6=
d2}} does not contain all elements inN, but every element inA\N exactlyλ times.

It well known in combinatorics that|χ(D)|2 ∈ {n,n−λℓ} for any nontrivial group character
χ. Hence, any relative difference setD in (GF(2m),+) defines a binary codeCD with at most the
following four weights:

n±√
n

2
,

n±
√

n−λℓ
2

.

Obviously,D is the support of a Boolean function on GF(2m).

11



6. Binary codes from the images of certain functions onGF(2m)

Let f (x) be a function from GF(2m) to GF(2m). We define

D( f ) = { f (x) : x∈ GF(2m)} andD( f )∗ = { f (x) : x∈ GF(2m)} \ {0}.

In this section, we consider the codeCD( f ). In general, it is difficult to determine the length
nf := |D( f )| of this code, not to mention its weight distribution. However, in certain special
cases, the parameters and the weight distribution ofCD( f ) can be settled.

If 0 6∈ D( f ), then the two codesCD( f ) andCD( f )∗ are the same. Otherwise, the length of
the codeCD( f )∗ is one less than that of the codeCD( f ), but the two codes have the same weight
distribution. Thus, we will not give information about the codesCD( f )∗ in this section.

LetD be any subset of GF(2m). Thecharacteristic function, denoted byfD(x), of D is defined
by

fD(x) =

{

1 if x∈ D,
0 otherwise.

Hence, the Boolean functionfD has supportD. Thus, the codeCD( f ) is in fact defined by the sup-
port of the characteristic function (Boolean function) of the setD( f ). Therefore, the construction
method of this section is actually equivalent to that of Section 5.

6.1. The codesCD( f ) from o-polynomials onGF(2m)

A permutation polynomialf on GF(2m) is called ano-polynomialif f (0) = 0, and for each
s∈ GF(2m),

fs(x) = ( f (x+ s)+ f (s))x2m−2 (18)

is also a permutation polynomial. O-polynomial can be used to construct hyperovals in finite
geometry.

In the original definition of o-polynomials, it is required that f (1) = 1. However, this is not
essential, as one can always normalisef (x) by using f (1)−1 f (x) due to thatf (1) 6= 0.

In this section, we consider binary codesCD( f ), where f is defined by an o-polynomial in
some way.

6.1.1. O-polynomials and their binary codesCD( fu)

For any permutation polynomialf (x) over GF(2m), we definef (x) = x f(x2m−2), and usef−1

to denote the compositional inverse off , i.e., f−1( f (x)) = x for all x∈ GF(2m).
The following two theorems introduce basic properties of o-polynomials whose proofs can

be found in references about hyperovals. .

Theorem 11. Let f be an o-polynomial onGF(2m). Then the following statements hold:

1. f−1 is also an o-polynomial;

2. f (x2 j
)2m− j

is also an o-polynomial for any1≤ j ≤ m−1;
3. f is also an o-polynomial; and
4. f (x+1)+ f (1) is also an o-polynomial.

12



Theorem 12. Let xk be an o-polynomial onGF(2m). Then every polynomial in
{

x
1
k , x1−k, x

1
1−k , x

k
k−1 , x

k−1
k

}

is also an o-polynomial, where1/k denotes the multiplicative inverse of k modulo2m−1.

The following property of o-polynomials plays an importantrole in our construction of binary
linear codes with o-polynomials.

Theorem 13([15]). A polynomial f fromGF(2m) to GF(2m) with f(0) = 0 is an o-polynomial
if and only if fu := f (x)+ux is2-to-1 for every u∈ GF(2m)∗.

Let f be any o-polynomial over GF(2m). Define

fu(x) = f (x)+ux

whereu∈ GF(2m)∗. It follows from Theorem 13 thatfu is 2-to-1 for everyu∈ GF(2m)∗. In the
rest of Section 6.1, we consider the codesCD( fu) defined by o-polynomials. By Theorem 13, the
o-polynomial property off guarantees that the length of the codeCD( fu) is equal to 2m−1 for any
u∈ GF(2m)∗. The dimension ofCD( fu) usually equalsm, but may be less thanm. The minimum
weight and the weight distribution ofCD( fu) cannot be determined by the o-polynomial property
alone, and differ from case to case.

6.1.2. Binary codes from the translation o-polynomials
The translation o-polynomials are described in the following theorem [66].

Theorem 14. Trans(x) = x2h
is an o-polynomial onGF(2m), wheregcd(h,m) = 1.

The following is a list of known properties of translation o-polynomials.

1. Trans−1(x) = x2m−h
and

2. Trans(x) = x f(x2m−2) = x2m−2m−h
.

The proof of the following theorem is straightforward.

Theorem 15. Let f(x) = x2h
, wheregcd(h,m) = 1. Then for any u∈ GF(2m)∗, the codeCD( fu)

has parameters[2m−1, m−1, 2m−2] and is a one-weight code.

The codesCD( fu) in Theorem 15 have the same parameters as a subcode of the firstorder
binary Reed-Muller code.

6.1.3. Binary codes from the Segre and Glynn o-polynomials
The following theorem describes a class of o-polynomials, which are an extension of the

original Segre o-polynomials.

Theorem 16 ([32]). Let m be odd. ThenSegrea(x) = x6 + ax4 + a2x2 is an o-polynomial on
GF(2m) for every a∈ GF(2m).

Proof. The conclusion follows from

Segrea(x) = (x+
√

a)6+
√

a
3
.

13



We have the following remarks on this family of o-polynomials.

1. Segre0(x) = x6 is the original Segre o-polynomial [67, 68]. So this is an extended family.
2. Segrea(x) = xD5(x,a) = a2D5(x2m−2,a2m−2)x7, whereD5(x,a) = x5+ax3+a2x, which is

the Dickson polynomial of the first kind of order 5.
3. Segrea = D5(x2m−2,a) = a2x2m−2+ax2m−4+ x2m−6.

4. Segre−1
a (x) = (x+

√
a3
)

5×2m−1−2
3 +

√
a.

Theorem 17([32]). Let m be odd. Then

Segre
−1
1 (x) =

(

D 3×22m−2
5

(x,1)

)2m−2

. (19)

Glynn discovered two families of o-polynomials [40]. The first is described as follows.

Theorem 18. Let m be odd. ThenGlynni(x) = x3×2(m+1)/2+4 is an o-polynomial.

Conjecture 19. Let m≥ 3 be odd, and let f(x) = x3×2(m+1)/2+4 be the Glynn o-polynomial.
When m∈ {5,7}, CD( fu) is a [2m−1, m] code with the weight distribution of Table 11. When
m≥ 9, CD( fu) is a [2m−1, m] code with five weights.

An extension of the second family of o-polynomials discovered by Glynn is documented in
the following theorem.

Theorem 20([32]). Let m be odd. Then

Glynniia(x) =

{

x2(m+1)/2+2(3m+1)/4
+ax2(m+1)/2

+(ax)2(3m+1)/4
if m≡ 1 (mod 4),

x2(m+1)/2+2(m+1)/4
+ax2(m+1)/2

+(ax)2(m+1)/4
if m≡ 3 (mod 4).

is an o-polynomial for all a∈ GF(q).

Proof. Let m≡ 1 (mod 4). Then

Glynniia(x) = (x+a(m−1)/4)2(m+1)/2+2(3m+1)/4
+a2(m+1)/2+2(3m+1)/4

.

The desired conclusion for the casem≡ 1 (mod 4) can be similarly proved.

Note that Glynnii0(x) is the original Glynn o-polynomial. So this is an extended family. For
some applications, the extended family may be useful.

For certain quadratic Boolean functionsf , the codeCD( fu) has good parameters and its weight
distribution is known. The following result is an extended version of a result proved in [28].

Theorem 21. Letρ = 2i +2 j and define

fu(x) = xρ +ux, u∈ GF(2m)∗.

If fu(x) is 2-to-1 onGF(2m) andgcd(2κ +1, 2m−1) = 1, whereκ = j − i, then the binary code
CD( fu) has parameters[2m−1, m, 2m−2−2(m−3)/2] and the weight distribution of Table 11 for any
u∈ GF(2m)∗.

The followingρ satisfies the conditions of Theorem 21:
14



Table 11: The weight distribution of the codes of Theorem 21

Weightw Multiplicity Aw

0 1
2m−2−2(m−3)/2 2m−2+2(m−3)/2

2m−2 2m−1−1
2m−2+2(m−3)/2 2m−2−2(m−3)/2

• ρ = 6 (Segre case).

• ρ = 2σ +2π with σ = (m+1)/2 and 4π ≡ 1 modm (Glynn I case).

Theorem 22. Let f(x) = xD5(x,a), where a∈ GF(2m), and let m be odd. Then the codeCD( fu)

has parameters[2m−1, m] and the weight distribution of Table 11 for any u∈ GF(2m)∗.

Proof. It is easily verified thatf (x) = (x+
√

a)6 +
√

a3. The desired conclusions then follow
from Theorem 21 in the Segre case, i.e.,ρ = 6.

Theorem 23. Let F(x) = x(5×2m−1−2)/3, and let m be odd. Then codeCD( fu) has parameters
[2m−1, m] and the weight distribution of Table 11 for any u∈ GF(2m).

Proof. Note that the multiplicative inverse of 6 modulo 2m−1 is equal to(5×2m−1−2)/3. The
desired conclusion then follows from Theorem 21.

6.1.4. Binary codes from the Cherowitzo o-polynomials
The following describes another conjectured class of o-polynomials.

Conjecture 24([32]). Let m be odd and e= (m+1)/2. Then

Cherowitzoa(x) = x2e
+ax2e+2+a2e+2x3×2e+4

is an o-polynomial onGF(2m) for every a∈ GF(2m).

We have the following remarks on this family.

1. Cherowitzo1(x) is the original Cherowitzo o-polynomial [17, 18]. So this isan extended
family.

2. No proof of the o-polynomial property is known in the literature.
3. Cherowitzo(x) = x2m−2e

+ax2m−2e−2+a2e+2x2m−3×2e−4.

4. Carlet and Mesnager showed that Cherowitzo−1
1 (x) = x(x2e+1+ x3+ x)2e−1−1.

We can prove the following.

Theorem 25([32]).

Cherowitzo−1
a (x) = x(ax2e+1+a2e

x3+ x)2e−1−1.

Theorem 26([32]).

Cherowitzo= (ax2m−2e−2+a2e
x2m−4+ x2m−2)2e−1−1.

15



Conjecture 27. Let m be odd, and let

f (x) = b2(m+1)/2+2x2(m+1)/2
+b2(m+1)/2+1x2(m+1)/2+2+ x3×2(m+1)/2+4,

where b∈ GF(2m). If m∈ {5,7}, CD( fu) is a [2m−1, m] code with at most five weights for every
u∈ GF(2m)∗. If m≥ 9, CD( fu) is a five-weight code with length2m−1 and dimension m for every
u∈ GF(2m)∗.

6.1.5. Binary codes from the Payne o-polynomials
The following documents a conjectured family of o-trinomials.

Conjecture 28([32]). Let m be odd. ThenPaynea(x) = x
5
6 +ax

3
6 +a2x

1
6 is an o-polynomial on

GF(2m) for every a∈ GF(2m).

We have the following remarks on this family.

1. Payne1(x) is the original Payne o-polynomial [62]. So this is an extended family.

2. Paynea(x) = xD5(x
1
6 ,a).

3. Paynea(x) = a2m−3Paynea2m−2(x).
4. Note that

1
6
=

5×2m−1−2
3

.

We have then

Paynea(x) = x
2m−1+2

3 +ax2m−1
+a2x

5×2m−1−2
3 .

Theorem 29([32]). Let m be odd. Then

Payne−1
1 (x) =

(

D 3×22m−2
5

(x,1)

)6

(20)

andPayne
−1
1 (x) are an o-polynomial.

Proof. Note that the multiplicative inverse of 5 modulo is3×22m−2
5 . The conclusion then follows

from the definition of the Payne polynomial and the fact that

D5(x,1)
−1 = D 3×22m−2

5
(x,1).

Conjecture 30([32]). Let m be odd, and let

f (x) = x
5
6 +bx

3
6 +b2x

1
6 = D5

(

x
5×2m−1−2

3 , b

)

,

where b∈ GF(2m). If m≥ 7, CD( fu) is a three-weight or five-weight code with length2m−1 and
dimension m for all u∈ GF(2m)∗.

16



6.1.6. Binary codes from the Subiaco o-polynomials
The Subiaco o-polynomials are given in the following theorem [19].

Theorem 31. Define

Subiacoa(x) = ((a2(x4+ x)+a2(1+a+a2)(x3+ x2))(x4+a2x2+1)2m−2+ x2m−1
,

whereTr(1/a) = 1 and d 6∈ GF(4) if m ≡ 2 mod 4. ThenSubiacoa(x) is an o-polynomial on
GF(2m).

As a corollary of Theorem 31, we have the following.

Corollary 32. Let m be odd. Then

Subiaco1(x) = (x+ x2+ x3+ x4)(x4+ x2+1)2m−2+ x2m−1
(21)

is an o-polynomial overGF(2m).

Experimental data shows that the binary codesCD( fu) from the Subiaco o-polynomials have
many weights and have smaller minimum weights compared withbinary codes from other o-
polynomials described in the previous subsections. Hence,the binary codeCD( fu) from an o-
polynomial could be very good and bad, depending on the specific o-polynomialf .

6.2. Binary codesCD( f ) from functions onGF(2m) of the form f(x) = F(x)+F(x+1)+1

A functionF(x) over GF(2m) is calledalmost perfect nonlinear (APN)if

max
a∈GF(2m)∗

max
b∈GF(2m)

|{x∈ GF(2m) : F(x+a)−F(x) = b}|= 2.

Let F be any function on GF(2m). Define

f (x) = F(x)+F(x+1)+1.

For certain APN functionsF(x) over GF(2m), it is known thatf is 2-to-1.

Conjecture 33. Let F(x) = x2(m−1)/2+3 and m be odd. It is known that F is both APN and AB. If
m∈ {5,7}, CD( f ) is a three-weight code with length2m−1 and dimension m. If m≥ 9, CD( f ) is a
five-weight code with length2m−1 and dimension m.

Conjecture 34. Let F(x) = x22h−2h+1, and letgcd(h,m) = 1. It is known that F is both APN and
AB.

When h= 1, CD( f ) is a [2m−1,m−1,2m−2] one-weight code.
When h≥ 2 and m is odd,CD( f ) is a three-weight or five-weight code with length2m−1 and

dimension m.
In particular, when h= 3 and m is odd,CD( f ) is a three-weight code with length2m−1 and

dimension m for every odd m≥ 5 and m 6≡ 0 (mod 3). In this case, d= 57 and the weight
distribution of the codeCD( f ) is given in Table 11.

It is known thatf (x) = x22h−2h+1+(x+1)22h−2h+1 is 2s-to-1, wheres= gcd(h,m) [25].
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Theorem 35. Let F(x) = x2h+1, and letgcd(h,m) = 1. ThenCD( f ) is a one-weight code with
parameters[2m−1, m−1, 2m−2].

Proof. The proof is straightforward and omitted, asf (x) is linear.

We have the following comments on other APN monomials.

a) LetF(x) = x2m−2. ThenCD( f ) is a binary code with length 2m−1 and dimensionm, and has at
mostm weights. The weights are determined by the Kloosterman sums.

b) For the Niho functionF(x) = x2(m−1)/2+2(m−1)/4−1, wherem≡ 1 (mod 4), the codeCD( f ) has
length 2m−1 and dimensionm, but many weights.

c) For the Niho functionF(x) = x2(m−1)/2+2(3m−1)/4−1, wherem≡ 3 (mod 4), the codeCD( f ) has
length 2m−1 and dimensionm, but many weights.

It would be extremely difficult to determine the weight distribution of the codeCD( f ) for these
three classes of APN monomials.

6.3. Binary linear codes from some trinomials

A lot of constructions of cyclic difference sets in(GF(2m)∗,×) with the Singer parameters
(2m− 1, 2m−1, 2m−2) or (2m− 1, 2m−1 − 1, 2m−2 − 1) are proposed in the literature [26, 27].
These difference sets can certainly be plugged into the second generic construction of this paper
and obtain binary linear codes with good parameters. But determining the parameters of the
binary linear codes may be difficult in general.

There are also a number of conjectured cyclic difference sets in (GF(2m)∗,×). They give
naturally binary linear codes with this construction. The following is a list of conjectured cyclic
difference sets in(GF(2m)∗,×) with Singer parameters (see Chapter 4 of [27]).

Conjecture 36. [27, Chapter 4]For any f ∈ GF(2m)[x], we define

D( f )∗ = { f (x) : x∈ GF(2m)} \ {0}.

Let m≥ 5 be odd. Then D( f )∗ is a difference set in(GF(2m)∗,×) with Singer parameters
(2m−1, 2m−1, 2m−2) for the following trinomials f∈ GF(2m)[x]:

a) f (x) = x2m−17+ x(2
m+19)/3+ x.

b) f (x) = x2m−2m−4−1+ x2m−(2m−2+4)/3+ x.

c) f (x) = x2m−3+ x2(m+3)/2+2(m+1)/2+4+ x.

d) f (x) = x2m−2(m−1)/2−1+ x2m−1−2(m−1)/2
+ x.

e) f (x) = x2m−2−(2m−1−22)/3+ x2m−22−(2m−23)/3+ x.

f) f (x) = x2m−2(m+1)/2+2(m−1)/2
+ x2m−2(m+1)/2−1+ x.

g) f (x) = x2m−3(2(m+1)/2−1)+ x2(m+1)/2+2(m−1)/2−2+ x.

h) f (x) = x2m−2m−2−1+ x2m−1−2+ x.

i) f (x) = x2m−2(m+3)/2−3+ x2(m+1)/2+2+ x.

j) f (x) = x2m−3(2(m−1)/2+1)+ x2m−1−1+ x.
k) f (x) = x2m−5+ x6+ x.
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For the linear codesCD( f )∗ of the conjectured difference setsD( f )∗ in Conjecture 36, we
have the following conjectured parameters.

Conjecture 37. Let m≥ 5 and let D( f )∗ be defined as in Conjecture 36. Then for every f given
in Conjecture 36, the binary linear codeCD( f )∗ has parameters[2m−1, m, 2m−2−2(m−3)/2] and
weight enumerator

1+(2m−2−2(m−3)/2)z2m−2−2(m−3)/2
+(2m−1−1)z2m−2

+(2m−2+2(m−3)/2)z2m−2+2(m−3)/2
.

The dual code ofCD( f )∗ has parameters[2m−1, 2m−1−m, 3].

Conjecture 37 describes binary three-weight codes for the case thatm is odd. The next one
is about binary three-weight codes for the case thatm is even.

Conjecture 38. Let f(x) = x+x2(m−2)/2+2m−1
+x2(m−2)/2+2m−1+1∈GF(2m)[x], where m≡ 2 mod 4

and m≥ 6. Define
D( f ) = { f (x) : x∈ GF(2m)}.

Then the binary codeCD( f ) has parameters[2m−1, m, 2m−2−2(m−2)/2] and weight enumerator

1+(2m−3+2(m−4)/2)z2m−2−2(m−2)/2
+(3×2m−2−1)z2m−2

+(2m−3−2(m−4)/2)z2m−2+2(m−2)/2
.

It was conjectured in [27, Chapter 4] that D( f )∗ is a difference set in(GF(2m)∗,×) with the
parameters(2m−1, 2m−1−1, 2m−2−1).

Table 12: The weight distribution of the codes of Conjecture39

Weightw Multiplicity Aw

0 1
2m−2−2(m−2)/2 2(m−2)/2

2m−2−2(m−4)/2 2m−1−2m/2

2m−2 2m/2+2(m−2)/2−1
2m−2+2(m−4)/2 2m−1−2m/2

Binary four-weight codes may also be produced with difference sets in(GF(2m)∗,×) as
follows.

Conjecture 39. Let f(x) = x+x2+x2m−2m/2+1 ∈ GF(2m)[x], where m≥ 4 and m is even. Define

D( f ) = { f (x) : x∈ GF(2m)}.

Then the binary linear codeCD( f ) has parameters[2m−1, m, 2m−2 − 2(m−2)/2] and the weight
distribution of Table 12. It was conjectured in [27, Chapter4] that D( f )∗ is a difference set in
(GF(2m)∗,×) with parameters(2m−1, 2m−1−1, 2m−2−1).

The following is an another list of conjectured cyclic difference sets in(GF(2m)∗,×) with
Singer parameters (see Chapter 4 of [27]).
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Conjecture 40. [27, Chapter 4]For any f ∈ GF(2m)[x], we define

D( f ) = { f (x(x+1)) : x∈ GF(2m)}.

Let m≥ 4. Then D( f )∗ is a difference set in(GF(2m)∗,×) with Singer parameters(2m−
1, 2m−1−1, 2m−2−1) for the following polynomials f∈ GF(2m)[x]:

1. f (x) = x+ x2(m+1)/2−1+ x2m−2(m+1)/2+1, where m is odd.

2. f (x) = x+ x(2
m+1)/3+ x(2

m+1−1)/3, where m is odd.

3. f (x) = x+ x2(m+2)/2−1+ x2m−2m/2+1, where m is even.

For the linear codesCD( f )∗ of the conjectured difference setsD( f )∗ in Conjecture 40, we
have the following conjectured parameters.

Conjecture 41. Let m≥ 4 and let D( f ) be defined as in Conjecture 40. Then for every f given
in Conjecture 40, the binary linear codeCD( f )∗ has parameters[2m−1−1, m−1, 2m−2] and is a
one-weight code.

To determine the weight distribution of the codeCD( f ) or C ∗
D( f ) of the conjectured difference

sets listed in this section, one does not have to prove the difference set property of the setD( f )
or D( f )∗.

7. An expansion of the binary codes

Table 13: The weight distribution of the codes of Theorem 42

Weightw Multiplicity Aw

0 1
2m−2−2(m−3)/2 2m−1+2(m−1)/2

2m−2 2m−2
2m−2+2(m−3)/2 2m−1−2(m−1)/2

2m−1 1

Let 1 denote the all-one vector, that is,(1,1, . . . ,1), of any length. The complement of any
vectorc∈ GF(2)n is defined to bec+1. For any binary codeC , we define

C = C ∪{c+1 : c∈ C}.

ThenC is a binary linear code, which has the same length asC . For most of the binary codesC
presented in this paper, the dimension ofC is one more than that ofC . In many cases, the weight
distribution ofC can be deduced from that ofC . As an example, we have the following.

Theorem 42. Let m be odd and letC be any binary linear code with parameters[2m−1,m] and
the weight distribution of Table 11. ThenC is binary linear code with parameters[2m−1,m+1]
and the weight distribution of Table 13.

Example 43. When m= 5, the codeC of Theorem 42 has parameters[16,6,6] and is optimal.
When m= 7, the codeC of Theorem 42 has parameters[64,8,28] and is almost optimal.
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8. Concluding remarks

In this paper, we surveyed binary linear codes from Boolean functions and functions on
GF(2m) obtained from the second generic construction. Our focus was on such binary linear
codes with at most five weights. Many one-weight codes, two-weight codes, three-weight codes,
four-weight codes are presented in this paper. Some of them are optimal and some are almost
optimal. The codes are also quite interesting in the sense that they may have applications in
secret sharing [1, 14, 71] and authentication codes [31]. The parameters of some of the binary
codes are different from those in [7], [6], [22], [20], [38],[49], [50], [70], and [72].

A number of conjectures were presented in this paper as open problems. All the conjectures
on difference sets, o-polynomials and the corresponding binary codes were confirmed for suffi-
ciently many integersmby Magma. The reader is warmly invited to attack these open problems.

Finally, we make it clear that this is by no means a survey of all binary linear codes from
Boolean functions, but a survey of binary linear codes from Boolean functions from the second
generic construction described in Section 4.
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