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Abstract

A graph G is an NG-graph if χ(G) + χ(G) = |V (G)| + 1. We characterize
NG-graphs solely from degree sequences leading to a linear-time recognition al-
gorithm. We also explore the connections between NG-graphs and split graphs.
There are three types of NG-graphs and split graphs can also be divided nat-
urally into two categories, balanced and unbalanced. We characterize each of
these five classes by degree sequence. We construct bijections between classes of
NG-graphs and balanced and unbalanced split graphs which, together with the
known formula for the number of split graphs on n vertices, allows us to com-
pute the sizes of each of these classes. Finally, we provide a bijection between
unbalanced split graphs on n vertices and split graphs on n−1 or fewer vertices
providing evidence for our conjecture that the rapid growth in the number of
split graphs comes from the balanced split graphs.

Keywords: Nordhaus-Gaddum theorem, NG-graphs, split graphs, pseudo-
split graphs, degree sequence characterization, bijection, counting
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1 Introduction

For a graph G, the number of vertices in a largest clique in G is denoted by ω(G)
and the number of vertices in a largest stable set (independent set) in G is denoted
by α(G). We denote the complement of G by G and the graph induced in G by
X ∈ V (G) by G[X ]. We write nbh(x) to denote the set of vertices adjacent to vertex
x. For a set of graphs, C, we denote by Cn the set of graphs in C with n vertices.

A well-known theorem by Nordhaus and Gaddum [14] states that the following is
true for any graph G:

2
√

|V (G)| ≤ χ(G) + χ(Ḡ) ≤ |V (G)|+ 1.

We call G a Nordhaus-Gaddum graph or NG-graph if G satisfies the maximum value
of this inequality; i.e., χ(G) + χ(Ḡ) = |V (G)| + 1. Finck [9] and Starr and Turner
[16] provide two different characterizations of NG-graphs. More recently, Collins and
Trenk [7] define the ABC-partition of a graph and characterize NG-graphs in terms
of this partition.

Definition 1. For a graph G, the ABC-partition of V (G) (or of G) is
AG = {v ∈ V (G) : deg(v) = χ(G)− 1}
BG = {v ∈ V (G) : deg(v) > χ(G)− 1}
CG = {v ∈ V (G) : deg(v) < χ(G)− 1}.
When it is unambiguous, we write A = AG, B = BG, C = CG.

Theorem 2. (Collins and Trenk [7]) A graph G is an NG-graph if and only if its
ABC-partition satisfies

(i) A 6= ∅ and G[A] is a clique, a stable set, or a 5-cycle
(ii) G[B] is a clique
(iii) G[C] is a stable set
(iv) uv ∈ E(G) for all u ∈ A, v ∈ B

(v) uw 6∈ E(G) for all u ∈ A, w ∈ C.

By (i) of Theorem 2, there are three possible forms of an NG-graph. (See Figure 1.)

Definition 3. We say that G is an NG-1 graph if G[A] is a clique, an NG-2 graph
if G[A] is a stable set, and an NG-3 graph if G[A] is a 5-cycle. We also let NG-1 be
the set of NG-1 graphs and likewise define the sets NG-2 and NG-3.

The characterization in Theorem 2 not only provides a clear description of NG-
graphs but it also lends itself to an O(|V (G)|3)-time recognition algorithm for NG-
graphs [7]. More importantly for this article, it shows that NG-graphs are related to
split graphs and pseudo-split graphs.
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Figure 1: The forms of an NG-graph

A split graph is a graph G whose vertex set can be partitioned as V (G) = K ∪ S,
where K induces a clique and S induces a stable set in G. A detailed introduction to
this class appears in [11]. Split graphs are a well-known class of perfect graphs, and
thus χ(G) = ω(G) for split graphs. Split graphs also have elegant characterization
theorems. Földes and Hammer [10] give a forbidden subgraph characterization of
split graphs as those graphs with no induced 2K2, C4 or C5. Split graphs also have a
degree sequence characterization due to Hammer and Simeone [12] which we present in
Theorem 14. This latter characterization implies that split graphs can be recognized
in linear time.

Blázsik et al. [3] consider the class of graphs that do not contain C4 and 2K2 as
induced subgraphs, later referred to as pseudo-split graphs [13]. They show that like
split graphs, pseudo-split graphs can be defined in terms of vertex sets partitions. In
particular, a graph G is a pseudo-split graph if and only if V (G) can be partitioned
into three parts so that (i) first part is either empty or induces a 5-cycle, the second
part a clique, the third part a stable set and (ii) whenever the first part is a 5-cycle,
every vertex in the first part is adjacent to every vertex in the second part but there
are no edges between the first part and the third part. Interestingly, Blázsik et al.
also note that pseudo-split graphs are almost extremal in terms of the Nordhaus-
Gaddum inequality because for any such graph G, χ(G) + χ(Ḡ) ≥ |V (G)|. In the
process of proving this result, they show that if G contains an induced 5-cycle then
χ(G) + χ(Ḡ) ≥ |V (G)|+ 1 and thus G is an NG-graph.

The next result follows from Theorem 2 and the characterization of pseudo-split
graphs discussed above. In particular, a graph is an NG-3 graph if and only if it is a
pseudo-split graph containing an induced 5-cycle.

Remark 4. A graph is a pseudo-split graph if and only if it is a split graph or an
NG-3 graph.
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Proposition 5. Let G be an NG-graph. Then G is a split graph if and only if G ∈
(NG-1 ∪ NG-2).

Proof. By definition, NG-3 graphs contain an induced C5, hence are not split graphs.
Now suppose G ∈ (NG-1 ∪ NG-2) and let its ABC-partition be V (G) = A∪B ∪C.
If G ∈ NG-1, let K = A∪B and S = C and otherwise, G ∈ NG-2, and we let K = B

and S = A ∪ C. In either case, using Theorem 2, we get a partition of V (G) into a
clique K and a stable set S, so G is a split graph.

Not all split graphs are NG-graphs. Indeed, the relationship between these classes,
as well as the results in Remark 4 and Proposition 5, are shown in Figure 2. We will
define the classes of balanced and unbalanced split graphs in the next section.

Building on the work of Blázsik et al. [3], Maffray and Preissmann [13] present
a degree sequence characterization for NG-3 graphs. They combine this with the
similar characterization for split graphs to get a linear-time recognition algorithm for
pseudo-split graphs. We will discuss similar algorithms for NG-graphs in Section 3.

Finally, we note that Theorem 2 is very much related to the notion of graph
decomposition that was studied systematically by Tyshchevich [17]. A graph is said
to be decomposable if its vertex set can be partitioned into three parts A,B and C

so that A 6= ∅ and B ∪ C 6= ∅ and conditions (ii) to (v) of Theorem 2 are satisfied.
Thus, every NG-graph is decomposable except when it is a single vertex or a 5-cycle.
Chvátal and Hammer [5], Blázik et al. [3] and Barrus [1, 2] also characterized various
graph classes in terms of their decompositions.

Our main objective is to explore the connections between NG-graphs and split
graphs. In Section 2, we study split graphs through the lens of NG-graphs. In
particular, we determine which split graphs are NG-graphs and show how their ABC-
partitions relate to their clique-stable set partitions. In Section 3, we do the opposite
and consider NG-graphs through the lens of split graphs. We provide degree char-
acterizations for NG-1 and NG-2 graphs that are quite similar to the one for split
graphs. We also present a degree characterization of NG-3 graphs that is equivalent
to the one in [13]. These results show that, like split graphs and pseudo-split graphs,
NG-graphs have a linear-time recognition algorithm. In Section 4 we present various
kinds of bijections including those between subclasses of NG-graphs and subclasses of
split graphs. Finally, in Section 5, we take advantage of these bijections and present
formulas for the number of graphs on n vertices in each of the graph classes we stud-
ied. Our work comparing NG-graphs to split graphs leads to a theorem only about
split graphs: that for n ≥ 1, the number of unbalanced split graphs on n vertices is
equal to the number of split graphs on n− 1 or fewer vertices.
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Figure 2: A partition of the class of pseudo-split graphs into NG-graphs and split
graphs.

2 Split Graphs and NG-graphs

In this section we consider the set S of split graphs and discuss connections to NG-
graphs. A KS-partition of a split graph G is a partition of the vertex set as V (G) =
K ∪ S where K is a clique and S is a stable set. Just as it is helpful to characterize
NG-graphs into the classes NG-1, NG-2 and NG-3 based on their ABC-partition,
it is also useful to categorize split graphs based on their KS-partitions.

Definition 6. A split graph G is balanced if it has a KS-partition satisfying |K| =
ω(G) and |S| = α(G) and unbalanced otherwise. We denote the set of balanced split
graphs by B and the set of unbalanced split graphs by U . A KS-partition is S-max
if |S| = α(G) and K-max if |K| = ω(G).

Unlike ABC-partitions, KS-partitions of a split graph are not always unique. The
terms balanced and unbalanced in Definition 6 refer to a split graph G while the terms
K-max and S-max refer to a particular KS-partition of G. The next theorem follows
from the work of Hammer and Simeone [12] and appears in [11]. We include a proof
for completeness.

Theorem 7. (Hammer and Simeone [12]) For any KS-partition of a split graph G,
exactly one of the following holds:

(i) |K| = ω(G) and |S| = α(G). (balanced)
(ii) |K| = ω(G)− 1 and |S| = α(G). (unbalanced, S-max)
(iii) |K| = ω(G) and |S| = α(G)− 1. (unbalanced, K-max)
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Moreover, in (ii) there exists s ∈ S so that K ∪ {s} is complete and in (iii) there
exists k ∈ K so that S ∪ {k} is a stable set.

Proof. Partition the vertex set of G as V (G) = K ∪ S where K is a clique and S is
a stable set. If both K and S are maximum size then |K| = ω(G) and |S| = α(G),
resulting in case (i). If K is not maximum size, then ω(G) = |K| + 1 because only
one vertex of S can be part of a clique. In this case, there must exist s ∈ S adjacent
to each vertex in K. Then no vertex of K can be added to S to make a larger stable
set, and at most one vertex of K can be in any stable set, so S is maximum size.
Thus |S| = α(G), resulting in case (ii), and moreover, K ∪{s} is complete. Similarly,
if S is not maximum size, the result is case (iii).

In Proposition 5, we showed which NG-graphs are split graphs. In the next theo-
rem we show which split graphs are NG-graphs.

Theorem 8. The following are equivalent for a split graph G.
(1) G is an NG-graph.
(2) G ∈ (NG-1 ∪ NG-2).
(3) G is unbalanced.

Proof. (1) =⇒ (2). Follows directly from Proposition 5.

(2) =⇒ (3). For a contradiction, assume G is a balanced split graph and fix a a
KS-partition with |K| = ω(G) and |S| = α(G). Since split graphs are perfect,
χ(G) = ω(G) and χ(G) = α(G). Thus χ(G) + χ(G) = ω(G) + α(G) = |K| + |S| =
|V (G)| 6= |V (G)|+ 1 and G is not an NG-graph.

(3) =⇒ (1). Let G be an unbalanced split graph and fix a KS-partition of G. First
consider the case in which the KS-partition is K-max, thus |K| = ω(G) and by
Theorem 7, |S| = α(G) − 1. Again, since split graphs are perfect, so χ(G) = ω(G)
and χ(G) = α(G). Then, χ(G) + χ(G) = ω(G) + α(G) = |K|+ |S|+ 1 = |V (G)|+ 1
and G is an NG-graph. The proof for a S-max KS-partition is similar.

The next remark follows from Proposition 5 and Theorem 8. The Venn diagram in
Figure 2 shows the relationships we have proven about NG-graphs and split graphs.

Remark 9. U = (NG-1 ∪ NG-2), and consequently, pseudo-split graphs are either
NG-graphs or balanced split graphs.
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Our knowledge of NG-graphs allows us to refine the Hammer/Simeone conditions
in Theorem 7. In particular, we can characterize all KS-partitions of a split graph
and for split graphs with more than one KS-partition (unbalanced) it is precisely the
vertices in AG that can be moved between K and S.

Theorem 10. Suppose G is an unbalanced split graph and let V (G) = A ∪B ∪C be
its ABC-partition. The KS-partitions of G can be characterized as follows.

• If G ∈ NG-1, the partitions are

K = A ∪B, S = C (unique K-max),

K = (A ∪ B)− {a}, S = C ∪ {a} for any a ∈ A (S-max).

• If G ∈ NG-2, the partitions are

K = B, S = A ∪ C (unique S-max)

K = B ∪ {a}, S = (A ∪ C)− {a} for any a ∈ A (K-max).

Proof. Since G is an unbalanced split graph, we know that G is also an NG-graph
by Theorem 8. Indeed, by Proposition 5, it is an NG-1 graph or an NG-2 graph. We
will give the argument in the case in which G is an NG-1 graph, that is, G[A] is a
clique. The case in which G is an NG-2 graph is similar.

Let K = A ∪ B and S = C. We claim that |K| = ω(G), that is, this is a K-max
partition of G. At most one vertex of stable set C can be in any clique of G but no
vertex of C can be added to K because vertices of C are not adjacent to vertices in
A and A 6= ∅. Thus |K| = ω(G) as desired and by Theorem 7, |S| = α(G)− 1.

We next show that this is the only K-max partition of G. As before, at most
one vertex of C can be in a clique, so if there were a different K-max partition, we
would have to move one vertex c ∈ C from S to the clique K and remove one vertex
from K = A∪B to S. Since vertices in C are not adjacent to vertices in A, we must
remove all vertices in A from K in order to retain a clique, thus |A| = 1. But in
this case, the vertex c and the vertex a ∈ A have the same neighbor set (namely, all
vertices in B) and thus the same degree, violating Definition 1.

Next we characterize the S-max partitions. Take any a ∈ A and let K ′ = (A ∪
B) − {a} and S ′ = C ∪ {a}. Thus V (G) = K ′ ∪ S ′. We know K ′ is a clique and S ′

is a stable set by Theorem 2. Furthermore, |S ′| = |S| + 1 = α(G) so the partition
V (G) = K ′ ∪ S ′ is S-max for each a ∈ A. Finally, we show these are the only S-max
partitions of G. Since A ∪ B is a clique in G, at most one vertex of A ∪ B can be in
any stable set. If a vertex b ∈ B were added to S to form a larger stable set, then
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b would have the same degree (namely |A| + |B| − 1) as each vertex in A, violating
Definition 1.

The next corollary follows directly from Theorem 10 and allows us to conclude
that there are exactly (|A| + 1) KS-partitions of an unbalanced labeled split graph.
In contrast, there is a unique KS-partition of a balanced split graph as shown in
Proposition 12.

Corollary 11. Suppose G is an unbalanced split graph and let V (G) = A ∪ B ∪ C

be its ABC-partition. Then if we consider G to be a labelled graph, it has either a
unique K-max partition and exactly |A| distinct S-max partitions or a unique S-max
partition and exactly |A| distinct K-max partitions.

Proposition 12. Each balanced split graph has a unique KS-partition.

Proof. Let G be a balanced split graph and fix a KS-partition of G with |K| = ω(G)
and |S| = α(G). For a contradiction, suppose K ′S ′ is a different KS-partition of G.
Since K and S are already of maximum size and at most one vertex of S can be in a
clique and at most one vertex of K can be in a stable set, we know K ′ = K∪{y}−{x}
and S ′ = S ∪ {x} − {y} for some x ∈ K and y ∈ S. Now K and K ′ are cliques but
K ∪ {y} has ω(G) + 1 vertices and is not a clique, so xy 6∈ E(G). But then x

is not adjacent to any vertex in S, so S ∪ {x} is a stable set of size α(G) + 1, a
contradiction.

We use the term “unlabeled graphs” in the remainder of the paper to refer to
isomorphism classes of graphs as in [18].

Corollary 13. Each unlabeled unbalanced split graph has exactly two KS-partitions,
one is K-max and the other is S-max.

Proof. Let G be an unbalanced split graph. Fix a KS-partition of G. If it is S-max,
then we can move a vertex from S to K, as in the proof of Theorem 7, to obtain a
different KS-partition of G which is K-max. Similarly, if it is K-max, we can move
a vertex from K to S to obtain a different KS-partition of G which is S-max.

Now suppose there are two non-isomorphic K-max partitions of G, K1S1, K2S2.
Thus |K1| = |K2| = ω(G), but K1 6= K2. Since at most one vertex of S1 = V (G)−K1

can be in a clique, there exists x ∈ S1 and y ∈ K1 such that K2 = K1 + {x} − {y}.
Thus, N(x) = K1 − {x, y} = N(y). Then there is an automorphism of G obtained
by switching vertices x and y and leaving the remaining vertices unchanged. This
contradicts our assumption that K1S1 and K2S2 are not isomorphic. The proof for
two non-isomorphic S-max partitions is similar.

8



3 Degree sequence characterizations

We begin with the Hammer and Simeone result showing that split graphs can be
recognized solely from their degree sequences. The proof serves as a foundation for
the proofs of Theorems 17 and 22.

Theorem 14. (Hammer and Simeone, [12]) Let G = (V,E) be a graph with degree
sequence d1 ≥ d2 ≥ · · · ≥ dn and let m = max{i : di ≥ i−1}. Then G is a split graph
if and only if

m
∑

i=1

di = m(m− 1) +
n

∑

i=m+1

di. (1)

Furthermore, if equality holds in (1), then ω(G) = m.

Proof. Let V (G) = {v1, v2, . . . , vn} where deg(vi) = di for each i. Since d1 ≥ 0, the
value m is well-defined. If G = Kn then m = n, G is a split graph, equality (1) holds
and ω(G) = m as desired. Thus we may assume G is not complete, thus dn < n− 1
and m ≤ n− 1.

First we assume that G satisfies the equality (1) in Theorem 14. We let K =
{v1, v2, . . . vm} and S = {vm+1, vm+2, . . . vn} and will show that K is a clique and
S is a stable set in G. Partition E(G) = E1 ∪ E2 ∪ E3 where E1 = E(G[K]),

E2 = {xy : x ∈ K, y ∈ S}, and E3 = E(G[S]). Then

m
∑

i=1

di = 2|E1| + |E2| and

n
∑

i=m+1

di = 2|E3|+|E2|. Using equality (1) we get 2|E1|+|E2| = m(m−1)+2|E3|+|E2|

or equivalently, |E1| =
m(m−1)

2
+ |E3|. Thus |E1| ≥

m(m−1)
2

. But E1 is the edge set of

the graph G[K] with m vertices, thus |E1| ≤
m(m−1)

2
and we conclude |E1| =

m(m−1)
2

and |E3| = 0. Thus K is a clique and S a stable set as desired.
Conversely, let G be a split graph and by Theorem 7 we can fix a K-max partition

of G. As before, let E1 be the edge set of G[K], E2 be the set of edges with one
endpoint in K and the other in S, and E3 be the edge set of G[S]. Since K is a
clique, deg(v) ≥ |K| − 1 for each v ∈ K and since S is a stable set and K is a
maximum size clique, deg(v) ≤ |K| − 1 for each v ∈ S. Thus m = k and without loss

of generality, K = {v1, v2, . . . , v|K|} and S = {v|K|+1, v|K|+2, . . . , vn}. Now
m
∑

i=1

di =

2|E1|+ |E2| = m(m− 1) + |E2| and
n

∑

i=m+1

di = 2|E3|+ |E2| = |E2| since K is a clique

9



and S a stable set. Thus equality holds in (1).

Remark 15. In the proof of Theorem 14, the partition K = {v1, v2, . . . , vm}, S =
{vm+1, vm+2, . . . , vn} is a K-max partition of G.

We will see in Examples 18 and 19 that index m is either the first or last index i
for which di = m− 1. The next theorem shows that this is true for all split graphs.

Theorem 16. Let G = (V,E) be a graph with degree sequence d1 ≥ d2 ≥ · · · ≥ dn
and m = max{i : di ≥ i− 1}. If dm−1 = dm = dm+1 then G is not a split graph.

Proof. For a contradiction, assume G is a split graph. If dm > m − 1 then by
definition of m we have dm+1 ≤ m − 1 and we contradict dm = dm+1. Otherwise,
dm = m − 1. Let V (G) = {v1, v2, . . . , vn} where deg(vi) = di for each i. As in the
proof of Theorem 14, vertices v1, v2, . . . , vm form a maximum clique K and vertices
vm+1, vm+2, . . . , vn form a stable set S. Since S is a stable set, nbh(vm+1) ⊆ K and
|nbh(vm+1)| = dm+1 = m− 1 so vm+1 must be adjacent to m− 1 vertices of K. Thus
vm+1 is adjacent to at least one of vm, vm−1. But vertices vm and vm−1 each have
degree m− 1 and each already has m− 1 neighbors in K, a contradiction.

In Theorems 17 and 22, we characterize the graphs in NG-1, NG-2, and NG-3 by
their degree sequences.

Theorem 17. Let G = (V,E) be a graph with degree sequence d1 ≥ d2 ≥ · · · ≥ dn
and m = max{i : di ≥ i− 1}. Then G ∈(NG-1)n if and only if it satisfies

(1)
∑m

i=1 di = m(m− 1) +
∑n

i=m+1 di, and

(2) dm = m− 1 and m is the largest index for which di = m− 1.

Similarly, G ∈(NG-2)n if and only if it satisfies (1) and

(2′) dm = m− 1 and m is the smallest index i for which di = m− 1.

Proof. Let V (G) = {v1, v2, . . . , vn} where deg(vi) = di and let A ∪ B ∪ C be the
ABC-partition of G First, we show that in both directions of the proof, G must be
a split graph. If G ∈ (NG-1 ∪ NG-2), then G is a split graph by Proposition 5.
Conversely, if G satisfies (1), it is a split graph by Theorem 14. Split graphs are
perfect, so χ(G) = ω(G).

Let K = {v1, v2, . . . , vm} and S = {vm+1, vm+2, . . . , vn}. By Theorem 14 and
Remark 15, we know K is a clique, S is a stable set and KS is a K-max partition of
G. Thus ω(G) = |K| = m and χ(G) = m.

10



For the forward direction, assume G ∈ (NG-1 ∪ NG-2). Then G is an unbalanced
split graph by Theorem 8 and thus satisfies (1) of Theorem 14. It remains to show
that G ∈ NG-1 implies (2) and G ∈ NG-2 implies (2′).

First assume G ∈ NG-1. Then by Theorem 10, the partition K = A∪B, S = C is
the unique K-max partition of G. Since A 6= ∅ for NG-graphs and vm has the smallest
degree among vertices in K, we know that vm ∈ A and thus dm = χ(G)− 1 = m− 1.
Moreover, vm+1 ∈ C, thus by Definition 1, dm+1 < χ(G)− 1 = m− 1, proving (2).

Now assume G ∈ NG-2. Then by Theorem 10, any K-max partition of G has
the form K = B ∪ {a}, S = (A ∪ C) − {a} for some a ∈ A. By Definition 1,
deg(a) = χ(G) − 1 = m − 1 and deg(b) > m − 1 for all b ∈ B. Hence a is the
unique vertex of smallest degree in K. Thus, vm = a, and deg(vm) = m − 1 and
deg(vm−1) > m− 1, proving (2′).

Conversely, assume (1) holds. Since χ(G) = m, A is the set of vertices of degree
m − 1 in G. By Theorem 16, m is either the largest index for which di = m − 1 or
the smallest (or both).

In the first instance, where (2) holds, each of the vertices in S has degree at most
m − 2 and m − 2 < χ(G) − 1. Hence C = S and A ∪ B = K. Each vertex in A is
adjacent to the other m − 1 vertices in K, thus is not adjacent to any vertex in C,
which proves that G ∈ NG-1.

In the second instance, where (2′) holds, each of the vertices v1, v2, . . . , vm−1 has
degree at least m and m > χ(G)−1. Thus B = {v1, v2, . . . , vm−1} and B is contained
in the clique K. Since K is a clique and deg(vm) = m − 1, vertex vm is adjacent to
each of the vertices in B and thus to no vertices in S. Each v ∈ S with deg(v) = m−1
is likewise adjacent to each vertex in B. Hence A∪C = S ∪ {vm} and is a stable set.
Thus, G ∈ NG-2.

The next two examples illustrate Theorem 17.

Example 18. Let G1 be the NG-1 graph whose ABC-partition is A = {v4, v5, v6},
B = {v1, v2, v3} and C = {v7, v8, v9, v10}, and where the edge set between B and C
is E2 = {v1v7, v1v8, v1v9, v2v7, v2v8, v3v10}. The table below shows the vertex degrees
di = deg(vi). Then m = 6 and as in Theorem 17, 6 is the largest index i for which
di = m− 1.

i 1 2 3 4 5 6 7 8 9 10
di 8 7 6 5 5 5 2 2 1 1
i− 1 0 1 2 3 4 5 6 7 8 9

11



Example 19. Let G2 be the NG-2 graph formed by removing the 3 edges from G1

between vertices in A. Again, the table below shows the vertex degrees. Now m = 4
and indeed, i = 4 is the smallest index i for which di = m− 1.

i 1 2 3 4 5 6 7 8 9 10

di 8 7 6 3 3 3 2 2 1 1
i− 1 0 1 2 3 4 5 6 7 8 9

The next corollary follows directly from Theorems 14, 16 and 17.

Corollary 20. G ∈ (NG-1 ∪ NG-2) iff G satisfies (1) of Theorem 17 and dm = m−1.

The following characterization of the class of balanced split graphs follows imme-
diately from Theorem 14 and Corollary 20. Observe that Corollary 21 does not make
any reference to NG-graphs.

Corollary 21. Let G = (V,E) be a graph with degree sequence d1 ≥ d2 ≥ · · · ≥ dn
and m = max{i : di ≥ i − 1}. Then G is a balanced split graph if and only if it
satisfies

(i)
∑m

i=1 di = m(m− 1) +
∑n

i=m+1 di

(ii) dm > m− 1.

In the next theorem, we characterize the class NG-3 by degree sequences. In this
instance, i is the middle index of five in which di = m − 1. An equivalent result
appears in [13].

Theorem 22. Let G = (V,E) be a graph with degree sequence d1 ≥ d2 ≥ · · · ≥ dn
and let m = max{i : di ≥ i − 1}. Then G ∈(NG-3)n if and only if the following
conditions hold:

(i)
∑m+2

i=1 di = (m+ 2)(m+ 1)− 10 +
∑n

i=m+3 di

(ii) di = m− 1 if and only if m− 2 ≤ i ≤ m+ 2

12



Proof. Let V (G) = {v1, v2, . . . , vn} where deg(vi) = di. First we suppose that G
satisfies the two conditions and show G is an NG-3 graph. Partition V (G) into sets
B, A, C as follows and let X = A ∪B:

B = {v1, v2, . . . , vm−3},
A = {vm−2, vm−1, vm, vm+1, vm+2},
C = {vm+3, vm+4, . . . , vn}.

We will show that this is the ABC-partition of G. Partition the edge set of G as
E1 ∪ E2 ∪ E3 where E1 is the edge set of G[X ], E3 is the edge set of G[C] and E2 is
the set of edges in G with one endpoint in X and the other in C. Summing vertex
degrees in X and in C we get

m+2
∑

i=1

di = 2|E1|+ |E2| and
n

∑

i=m+3

di = 2|E3|+ |E2|.

Using condition (i) in the hypothesis, we get

2|E1|+ |E2| = (m+ 2)(m+ 1)− 10 + 2|E3|+ |E2|,

or equivalently,
2|E1| = (m+ 2)(m+ 1)− 10 + 2|E3|. (2)

Since |X| = m + 2, each vertex in X has degree in G[X ] of at most m + 1, and by
condition (ii), the five vertices in A have degree m − 1 in G, thus their degree is at
most m − 1 in G[X ]. So summing degrees of vertices in the induced graph G[X ] we
get

2|E1| =
m+2
∑

i=1

degG[X](vi)

≤ 5(m− 1) + (m− 3)(m+ 1) = 5(m+ 1)− 10 + (m− 3)(m+ 1)

= (m+ 2)(m+ 1)− 10.

Combining this with equation (2) we get |E3| = 0 and conclude that C is a stable
set. Now using |E3| = 0 in (2) we get |E1| =

(

m+2
2

)

− 5, so G[X ] is a complete graph
on m+ 2 vertices with five edges removed.

However, G[X ] contains five vertices of degree m − 1, namely those in A. Thus
each vertex in A must be incident to exactly two of the removed edges, and the set of
removed edges forms a 5-cycle. The edges remaining in G[A] also form a 5-cycle (since
C5 = C5). Thus G[X ] consists of a clique G[B] ≈ Km−3, a 5-cycle G[A] and all edges
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between them. We have already verified conditions (i) – (iv) of Theorem 2. Since
G[A] is a 5-cycle, any largest clique in G[X ] consists of the vertices in B together
with two adjacent vertices of A, thus ω(G) ≥ ω(G[X ]) = m − 1. Each vertex in A

has degree m − 1 in G with m − 3 neighbors in G[B] and 2 neighbors in G[A], thus
vertices in A are not adjacent to any vertices of C, proving (v). This also means that
vertices in C have degree at most |B| = m−3 and thus cannot participate in a clique
of size m, hence ω(G) = m− 1.

However, χ(G) ≥ m since the 5-cycle G[A] requires three colors and an additional
m− 3 colors are needed for the clique G[B]. This coloring can be extended to all of
V (G) by assigning a color used in A to all vertices of C. Thus χ(G) = m, the vertices
in A have degree m − 1, vertices in B have degree greater than m − 1 and vertices
in C have degree less than m − 1, so the partition V (G) = A ∪ B ∪ C is in fact an
ABC-partition of G. By Theorem 2, G is an NG-graph and because G[A] is a 5-cycle,
it is an NG-3 graph.

Conversely, suppose G is an NG-3 graph, so its ABC-partition satisfies the con-
ditions of Theorem 2 with G[A] a 5-cycle. By the definition of an ABC-partition,
vertices in B have degree greater than vertices in A which in turn have degree greater
than those in C. Thus B = {v1, v2, . . . , v|B|}, A = {v|B|+1, v|B|+2, . . . , v|B|+5}, and
C = {v|B|+6, . . . , vn}. By the structure of NG-3 graphs, each vertex in A has degree
2 + |B|, thus deg(v|B|+3) ≥ |B|+ 2 but deg(v|B|+4) < |B|+ 3 and hence m = |B|+ 3.
Therefore,

B = {v1, v2, . . . , vm−3},
A = {vm−2, vm−1, vm, vm+1, vm+2},
C = {vm+3, vm+4, . . . , vn}.
Vertices in A have degree 2+ |B| = m−1 and these are the only vertices of degree

m− 1 by definition of the ABC-partition. Thus the second condition in Theorem 22
holds. Vertices in C can only have neighbors in B, thus deg(c) ≤ |B| = m − 3 and
we conclude that di = m − 1 if and only if m − 2 ≤ i ≤ m + 2, which is the second
condition of Proposition 22.

Finally, let E1 be the edge set of G[A ∪ B] and E2 be the set of edges in G with
one endpoint in B and the other in C. Since G[A ∪ B] is a clique with a 5-cycle
removed we have,

m+2
∑

i=1

di = 2|E1|+ |E2| = (m+ 2)(m+ 1)− 10 + |E2|.

Also, because C is a stable set and there are no edges between A and C,
∑n

i=m+3 di =
|E2|. Combining these gives the first condition in Proposition 22.
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Example 23. Let G3 be the NG-3 graph formed from G1 in Example 18 by expanding
A to be a 5-cycle. Thus, m = 6 which is the middle index of the 5 vertices of degree
dm = 5.

i 1 2 3 4 5 6 7 8 9 10 11 12
di 10 9 8 5 5 5 5 5 2 2 1 1
i− 1 0 1 2 3 4 5 6 7 8 9 10 11

We know that split graphs are not NG-3 graphs by Proposition 5. Theorem 16
shows that the second condition of Theorem 22 is never satisfied for a split graph.
The following example shows that it is possible for a split graph to satisfy the first
condition of Theorem 22.

Example 24. Let G be the split graph with KS partition K = {v1, v2, v3}, S =
{v4, v5, v6} and E(G) = E(K) ∪ {v1v3, v2v4}. The vertex degrees are: d1 = 3, d2 =
3, d3 = 2, d4 = 1, d5 = 1, d6 = 0, so m = 3. Notice that the first condition in Theorem
22 is satisfied, but the second is not.

Finally, since sorting the degrees of the vertices of a graph can be done in linear
time using stable sort, Theorems 17 and 22 imply the next corollary.

Corollary 25. Given a graph G, determining if G is an NG-1, NG-2 or an NG-3
graph can be done in linear time.

4 Bijections

Throughout this section we are considering unlabeled graphs. Definition 3 divides the
set of NG-graphs into three categories: NG-1, NG-2, and NG-3, according to whether
the set A of the ABC-partition induces a clique, a stable set or a 5-cycle. The first
two categories overlap in the case where |A| = 1. By removing this intersection as
a separate class, we can partition the set of NG-graphs into four classes: (NG-1 −
NG-2), (NG-2 − NG-1), (NG-1 ∩ NG-2) and NG-3. Recall that we also divide
split graphs (S) into balanced (B) and unbalanced (U). Let (T )≤n be the set of split
graphs on n or fewer vertices and recall that (C)n denotes the set of graphs with n

vertices in a class C.
In this section we provide bijections between classes of NG-graphs and classes of

split graphs. In Section 5, we use these results to count the number of graphs in
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each class. Table 1 summarizes the bijection results in this section and Theorem 26
records the locations of each of the proofs. The proofs are organized by the type of
bijection used.

Theorem 26. There is a bijection between any two classes of graphs that appear in
the same row of Table 1.

Proof. The bijections between the classes of graphs in row (a) appear in Theorem 28.
The bijection between (iv) and (iv’) in the proof of Theorem 28 gives the bijection
between the classes in row (b). Complementation provides a bijection between (NG-1
− NG-2)n and (NG-2 − NG-1)n in row (c). A bijection beween (NG-1 − NG-2)n
and (U)n−1 in row (c) is obtained by combining Remark 9 with the bijection given in
the proof of Theorem 28 between the union of classes (i), (ii) and (iii) and the union
of classes (i’), (ii’) and (iii’). For row (d), Theorem 29 provides a bijection between
(NG-3)n and (U)n−4. The remaining bijections appear in Theorem 30.

(a) (NG-1)n (NG-2)n (S)n−1

(b) (NG-1 ∩ NG-2)n (B)n−1

(c) (NG-1 − NG-2)n (NG-2 − NG-1)n (U)n−1 (T )≤n−2

(d) (NG-3)n (U)n−4 (T )≤n−5

Table 1: There are bijections between all classes in the same row.

We begin with a lemma that identifies the type of KS-partition that results from
removing AG from an NG-graph G.

Lemma 27. Let G be an NG-graph and V (G) = A∪B∪C be its ABC-partition. Then
G− A is a split graph and has a KS-partition with K = B and S = C. Moreover,

1. if G ∈ NG-1 then KS is S-max, and

2. if G ∈ NG-2 then KS is K-max.

Proof. It is immediate that G−A is a split graph and that K = B, S = C constitutes
a KS-partition of G − A. In the ABC-partition of an NG-1 graph G, every vertex
in B has degree greater than every vertex in A so each vertex in B has a neighbor
in C. Thus in our KS partition of G − A, no vertex in K can be moved to S.
Hence, α(G − A) = |S| = |C|. Similarly, in the ABC-partition of an NG-2 graph
G, every vertex in C has degree less than any vertex in A, so every vertex of C has
a non-neighbor in B. Hence in G − A, no vertex in S can be moved to K. Thus,
ω(G− A) = |K| = |B|.
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For an NG-graph G, let C ′
G be the set of vertices in CG whose neighbor set is all of

BG. In the proof of Theorem 28 we obtain our bijections by removing a single vertex
from AG.

Theorem 28. For n ≥ 1, there are bijections between the following three classes:
(NG-1)n, (NG-2)n and (S)n−1.

Proof. Taking graph complements provides a bijection between the classes (NG-1)n
and (NG-2)n, so it remains to show there exists a bijection between (NG-1)n and
(S)n−1.

For G ∈ (NG-1)n, choose any w ∈ AG and let f(G) = G− w. We will show that
f is our desired bijection. Indeed, we will do more. Partition the set of graphs in
(NG-1)n into four classes: (i) those G with |AG| ≥ 3, (ii) those G with |AG| = 2 and
C ′

G = ∅, (iii) those G with |AG| = 2 and C ′
G 6= ∅ and (iv) those G with |AG| = 1.

Likewise, partition the set of graphs in (S)n−1 into four classes: (i’) (NG-1 − NG-
2)n−1, (ii’) (NG-1 ∩ NG-2)n−1, (iii’) (NG-2 − NG-1)n−1 and (iv’) (B)n−1. We will
show that f is a bijection between each of (i), (ii), (iii) and (iv) and its corresponding
class (i’), (ii’), (iii’), (iv’).

Let G ∈ NG-1n and let A = AG, B = BG, C = CG and C ′ = C ′
G, so G[A] is a

clique. Then χ(G) = |A|+ |B| so each a ∈ A has degG(a) = |A|+ |B| − 1, each b ∈ B

has degG(b) > |A|+ |B| − 1, and each c ∈ C has degG(c) < |A|+ |B| − 1. The graph
G−w has χ(G−w) = |A|+ |B|−1. Each a ∈ A−w has degG−w(a) = degG(a)−1 =
|A|+ |B|−2, thus a ∈ AG−w. Each b ∈ B has degG−w(b) = degB(b)−1 > |A|+ |B|−2
thus b ∈ BG−w. However, each c ∈ C has degG−w(c) = degG(c), so some vertices in C
may be part of AG−w. We consider the cases mentioned above.

Case (i): |AG| ≥ 3. In this case, each c ∈ C has degG−w(c) = degG(c) ≤ |B| <
|A|+ |B| − 2 = χ(G− w)− 1, thus c ∈ CG−w. The ABC-partition of G− w satisfies
the five conditions of Theorem 2, AG−w induces a clique, and |AG−w| ≥ 2, thus G−w ∈
(NG-1 − NG-2)n−1.

Cases (ii) and (iii): |AG| = 2. In this case, A ∪ C ′ − w forms a stable set and
each vertex in A ∪ C ′ − w has neighbor set B. Then for any c′ ∈ C ′ we have
degG−w(c

′) = |B| = (|A| − 1) + |B| − 1 = χ(G − w) − 1 so AG−w = A ∪ C ′ − w,
BG−w = BG, CG−w = C−C ′. The ABC-partition of G−w satisfies the five conditions
of Theorem 2, AG−w induces a stable set, thus G− w ∈ (NG-2)n−1. If C

′
G = ∅ (case

(ii)) then |AG−w| = 1 and G − w ∈ (NG-1 ∩ NG-2)n−1. If C ′
G 6= ∅ (case (iii)) then

|AG−w| ≥ 2 and G− w ∈ (NG-2 − NG-1)n−1.

Case (iv): |A| = 1. By Lemma 27, G− A is a split graph on n − 1 vertices with a
KS-partition that is both K-max and S-max. By Definition 6, the graph G−A is a
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balanced split graph, thus G− A ∈ (B)n−1.

Next, we show the map f is onto by defining its inverse, g. Take any H ∈ (S)n−1.

Case (i’): H ∈ (NG-1 − NG-2)n−1. Thus |AH | ≥ 2 and AH induces a clique. Add
a vertex w to H that is adjacent to every vertex in AH ∪BH to get H +w and define
g(H) = H + w.

Then χ(H) = |AH | + |BH | so each a ∈ AH has degH(a) = |AH | + |BH | − 1, each
b ∈ BH has degH(b) > |AH |+|BH|−1, and each c ∈ CH has degH(c) < |AH |+|BH|−1.
The graph H + w has χ(H + w) = |AH | + |BH | + 1. Each a ∈ AH ∪ {w} has
degH+w(a) = |AH |+ |BH| thus a ∈ AH+w. Each b ∈ BH has degH+w(b) = degH(b)+ 1
thus b ∈ BH+w. Each c ∈ CH has degH+w(c) = degH(c) thus c ∈ CH+w. The ABC-
partition of H + w satisfies the five conditions of Theorem 2, AH+w induces a clique
and |AH+w| ≥ 3, thus H + w ∈ (NG-1 − NG-2)n−1 (case i).

Cases (ii’) and (iii’): H ∈ (NG-2)n−1. In this case, AH is a stable set. Let x be a
vertex in AH . Now χ(H) = |BH |+ 1. Each a ∈ AH has degH(a) = χ(H)− 1 = |BH |,
each b ∈ BH has degH(b) > χ(H) − 1 = |BH |, and each c ∈ CH has degH(c) <
χ(H) − 1 = |BH |. Add a vertex w to H that is adjacent to x and all of BH to get
H +w and let g(H) = H +w. Then χ(H +w) = χ(H) + 1 = |BH |+ 2. The vertices
x and w have degH+w(x) = degH+w(w) = |BH | + 1, thus x, w ∈ AH+w. Each b ∈ BH

has degH+w(b) = degH(b) + 1 > |BH | + 1, thus b ∈ BH+w. Each c ∈ AH ∪ CH − {x}
has degH+w(c) ≤ |BH | < χ(H +w)− 1, thus c ∈ CH+w. The ABC-partition of H +w

satisfies the five conditions of Theorem 2, AH+w induces a clique and |AH+w| = 2,
thus H + w ∈ (NG-1)n with |A| = 2 (cases ii and iii).

Indeed, if H ∈ (NG-1 ∩ NG-2) (case ii’) then AH = {x} and no vertices in H+w
have degree |BH |. But |BH | = |BH+w|, so no vertices inH+w have degree |BH+w| and
C ′

H+w = ∅ (case ii). Finally, ifH ∈ (NG-2−NG-1) (case iii’) then |AH | ≥ 2 and there
exists at least one vertex y ∈ AH−{x}. Then degH(y) = degH+w(y) = |BH | = |BH+w|
so y ∈ C ′

H+w and C ′
H+w 6= ∅ (case iii).

Case (iv’): H ∈ (B)n−1. In this case, H has a unique KS-partition by Proposi-
tion 12 such that |K| = ω(H) = χ(H) and |S| = α(H). Add a vertex w to H that is
adjacent to each vertex in K and let g(H) = H + w. Then χ(H + w) = |K|+ 1 and
deg(w) = |K| = χ(H + w)− 1. Each x ∈ K has a neighbor in S since |S| = α(H),
thus degH+w(x) > |K| = χ(H + w)− 1. Similarly, each y ∈ S has a non-neighbor in
K since |K| = ω(H), thus degH+w(y) < |K| = χ(H + w)− 1. The ABC-partition of
H+w is A = {w}, B = K, C = S and this satisfies the five conditions of Theorem 2,
with |AH+w| = 1, thus H + w ∈ (NG-1)n with |A| = 1 (case iv).
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It is not hard to see that the function g is the inverse to f , thus we have described
a bijection between (NG-1)n and (S)n−1.

Theorem 29. There is a bijection between (NG-3)n and (U)n−4.

Proof. We will demonstrate a bijection between (NG-3)n and (NG-1 − NG-2)n−3.
Then the desired bijection follows because we have already established bijections
between the first three classes in row (c) of Table 1. Let G ∈ (NG-3)n and let
V (G) = A ∪ B ∪ C be its ABC-partition. Then G[A] = C5, by definition. Let
a1, a2 ∈ A such that {a1, a2} is an edge in G[A], and define the map f by f(G) =
G[{a1, a2} ∪ B ∪ C]. The graph f(G) has n − 3 vertices and is a split graph with
KS-partition K = {a1, a2} ∪ B and S = C. Since the neighborhood of a1 does not
include any vertices in C, then another KS-partition is K ′ = B and S = C ∪ {a1}.
By Proposition 12, f(G) is an unbalanced split graph, hence f(G) ∈ (NG-1 ∪ NG-2).
Note that ω(f(G)) = χ(f(G)) = 2 + |BG|. The vertices in f(G) that have degree
1+ |BG| include a1 and a2, and also any vertices in BG that have no neighbors in CG.
Hence f(G) ∈ (NG-1 − NG-2)n−3

Now let H ∈ (NG-1 − NG-2)n−3 with ABC-partition AH ∪ BH ∪ CH and let
a1, a2 ∈ AH . We define the map g as follows: g(H) is obtained by adding three vertices
y1, y2, y3 to H so that H [{a1, a2, y1, y2, y3}] is a 5-cycle and adding all edges between
y1, y2, y3 and AH−{a1, a2}∪BH . Then χ(g(H)) = 3+|AH |−2+|BH | = |AH |+|BH |+1.
Each of a1, a2, y1, y2, y3 has 2 neighbors in the 5-cycle and |AH | − 2 + |BH | other
neighbors, so these five vertices are in Ag[H]. The vertices in AH −{a1, a2}∪BH form
a clique and each has at least 5 + |AH | − 3 + |BH | = 2 + |AH | + |BH | neighbors, so
these vertices are in Bg[H]. Finally, the vertices in CH form a stable set and each
has at most |BH | neighbors, so these vertices are in Cg[H]. Hence the ABC-partition
of g(H) is Ag(H) = {a1, a2, y1, y2, y3}, Bg(H) = AH − {a1, a2} ∪ BH , and Cg(H) = CH ,
and g(H) ∈ (NG-3)n. It is straightforward to check that g is the inverse function of
f .

For an NG-graph G, let B′
G be the set of vertices in BG that have no neighbors in

CG. In the proof of Theorem 30, we obtain our bijections by removing AG in part (1)
and AG ∪B′

G in part (2). In both cases, the result is a split graph on n− 2 or fewer
vertices. This motivates our defining (T )≤n to be the set of split graphs on n or fewer
vertices and defining |(S)0| = |(T )≤0| = 1. Then by definition, (S)n = (U)n ∪ (B)n
and (T )≤n = (S)0 ∪ (S)1 ∪ (S)2 ∪ · · · ∪ (S)n.

Theorem 30. Let G be an unlabeled NG-graph on n vertices. Then there are bijec-
tions between the following pairs of sets:
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1. (NG-1 − NG-2)n and (T )≤n−2.

2. (NG-3)n and (T )≤n−5.

Proof. Let G be an NG-graph on n vertices and let A∪B ∪C be its ABC-partition.

Proof of (1): Let G ∈ (NG-1 − NG-2)n. By definition of an NG−1 graph, deg(b) >
deg(a) for any a ∈ A, b ∈ B, and hence every b ∈ B has a neighbor in C. Define f :
(NG-1 − NG-2)n → (T )≤n−2 by f(G) = G[B ∪ C]. We will show f is our desired
bijection. Since |A| ≥ 2, the graph G[B ∪ C] has at most n − 2 vertices, and by
Lemma 27, it is a split graph, thus G[B ∪ C] ∈ (T )≤n−2. Since every b ∈ B has a
neighbor in C, the KS-partition K = B, S = C is an S-max partition of G[B ∪ C].

Let H ∈ (T )≤n−2. By Theorem 7, we may choose a KS-partition of H that is
S-max. Hence every b ∈ K has a neighbor in S (otherwise b could be added to S).
Define g : (T )≤n−2 → (NG-1 − NG-2)n by g(H) = G where G is the graph formed
from H by adding a clique A of n− |V (H)| new vertices and joining every vertex in
A to every vertex in K. Note that G has n vertices, and G is an split graph with
KS-partition K ′ = A ∪K and S. For a ∈ A, the sets K ′ − {a} and S ∪ {a} provide
another KS-partition of G, so G is an unbalanced split graph by Proposition 12.

Thus G ∈ (NG-1 ∪ NG-2)n by Theorem 8. Since χ(G) = ω(G) = |A|+ |K|, the
ABC-partition of G is A ∪ K ∪ S and G ∈ (NG-1 − NG-2)n because A is a clique
and |A| ≥ 2. It is straightforward to check that g is the inverse function of f .

Proof of (2): Let G ∈ (NG-3)n. Define f : (NG-3)n → (T )≤n−5 by f(G) =
G[(B − B′) ∪ C]. We will show f is our desired bijection. Since |A| = 5, the graph
f(G) has at most n−5 vertices, and it is a split graph with KS-partition K = B−B′,
S = C. Thus f(G) ∈ (T )≤n−5. Furthermore, since every b ∈ B − B′ has a neighbor
in C, the KS-partition K = B − B′, S = C is an S-max partition of f(G).

Let H ∈ (T )≤n−5. By Theorem 7, we may choose a KS-partition of H that is
S-max. Hence every b ∈ K has a neighbor in S. Define g : (T )≤n−5 → (NG-3)n by
g(H) = G where G is the graph formed from H by adding a set D of n−|V (H)| new
vertices such that G[D] is a clique minus the edges of a 5-cycle, and every vertex in D
is adjacent to every vertex in K but to no vertices in S. Note that G has n vertices,
and χ(G) = |D| − 2 + |K| since the vertices in D in the 5-cycle may be colored with
3 instead of 5 colors. Five vertices in D have degree |D| − 3 + |K| and the rest have
degree |D| − 1 + |K|. For all b ∈ K, degG(b) > |D| + |K| − 1 and for all c ∈ S,
deg(c) ≤ |K|. Thus in the ABC-partition of G, A is the set of five vertices in D that
induce a 5-cycle, B = (D−A)∪K and C = S. It follows from Definition 3 that G ∈
(NG-3)n and it is straightforward to check that g is the inverse function of f .
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In the proof of Theorem 30 we used a more complicated bijection in part (2)
because the function f(G) = G[B ∪ C] is not injective when applied to graphs in
(NG-3)n. This is illustrated in Example 31.

Example 31. Let G be the NG-3 graph where AG = {a1, a2, a3, a4, a5}, BG =
{b1, b2, b3}, CG = {c1, c2} and b1c1 is the only edge between BG and CG. Note that
χ(G) = 6, the vertices in AG have degree 5, those in BG have degree greater than 5,
and those in CG have degree less than 5, as needed. The graph G − AG consists of
a triangle (with vertices b1, b2, b3), an edge between b1 and c1 and an isolated vertex
(c2).

Now letH be the NG-3 graph where again AH = {a1, a2, a3, a4, a5}, BH = {b1, b2},
CH = {c1, c2, c3} and the edge set between BH and CH is {b1c1, b1c3, b2c3}. Now
χ(G) = 5, the vertices in AH have degree 4, those in BH have degree greater than 4,
and those in CH have degree less than 4, as needed. The graph H − AH consists of
a triangle (with vertices b1, b2, c3), an edge between b1 and c1 and an isolated vertex
(c2). Thus G and H are not isomorphic, yet G− AG and H −AH are isomorphic.

Theorem 26 includes a bijection between the classes (U)n−4 and (T )≤n−5, which
implies that |(U)n| = |(T )≤n−1|. We provide a second proof of this equality using
the classic presentation of split graphs found in [11] and this second proof does not
rely on NG-graphs. Let (U)Kn be the set of triples (G,KG, SG) where G is an un-
labeled, unbalanced split graph on n vertices, and KGSG is a KS-partition that is
K-max. Similarly, define (U)Sn where the KS-partition KGSG is S-max. Recall from
Proposition 12 that balanced split graphs have a unique KS-partition, so we may de-
fine (B)KS

n to be the set of triples (G,KG, SG) of balanced split graphs on n vertices
together with their unique KS-partition.

Theorem 32. There is a bijection between (U)Kn and (U)Kn−1 ∪ (U)Sn−1 ∪ BKS
n−1, and

|(U)n| = |(T )≤n−1|.

Proof. Let (G,KG, SG) ∈ (U)Kn−1 ∪ (U)Sn−1 ∪ B
KS
n−1. Create a new graph H consisting

of G together with a new vertex w that is adjacent to every vertex in KG. Then H
is a split graph and the sets K = KG ∪ {w} and S = SG form a KS-partition of H .
Further, H is an unbalanced split graph because w is not adjacent to any vertex in S,
hence K ′ = KG, S

′ = SG ∪ {w} is another KS-partition of H . Thus, KS is a K-max
partition of H . Define φ : (U)Kn−1 ∪ (U)Sn−1 ∪ B

KS
n−1 → (U)Kn by φ(G) = H .

We next show that φ is a reversible map. Take any (H,KH , SH) ∈ (U)Kn . By
Theorem 7, there exists w ∈ KH so that KH − {w} is complete and SH ∪ {w} is a
stable set. Let ψ(H) = H − w. Note that ψ(H) is the same unlabeled graph for any
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possible choice of w. Then H−w is a split graph on n−1 vertices and K = KH−{w},
S = SH is a KS-partition of H − w. Therefore, ψ reverses the operation of φ.

Finally, we prove |(U)n| = |(T )≤n−1|. The sets (U)kn−1, (U)
S
n−1, and B

KS
n−1 are dis-

joint by definition, so |(U)Kn | = |(U)kn−1|+|(U)Sn−1|+|BKS
n−1|.We know from Corollary 13

that every unbalanced split graph has exactly two non-isomorphic KS-partitions, one
K-max and the other S-max, thus |(U)n| = |(U)Kn | = |(U)Sn|. Balanced split graphs
have a unique KS-partition (Proposition 12) thus |(B)n| = |(B)KS

n |. Thus

|(U)n| = |(U)Kn | = |UK
n−1|+ |US

n−1|+ |BKS
n−1| = 2|(U)n−1|+ |(B)n−1|.

|(U)n| = |(U)n−1|+ |(S)n−1|.

Since |(T )≤n−1| = |(T )≤n−2| + |(S)n−1|, and |U1| = 1 = |T0|, we see that |(U)n| and
|(T )≤n−1| satisfy the same recurrence and initial condition and therefore are equal.

5 Counting

In this section we use the bijections from Section 4 to calculate the size of classes of
split graphs, NG-graphs and pseudo-split graphs. In [6], Clarke gives an expression
for the number of minimal k-covers of a set of n indistinguishable objects. Royle
[15] then describes a bijection between such k-covers and the set of split graphs on
n vertices with exactly k maximal cliques that each contain a vertex in none of the
other maximal cliques. Summing over k from 1 to n, Royle obtains a formula for
|(S)n|, the number of split graphs on n vertices. Unfortunately, the formula is quite
complicated.

Our bijections from Section 4 allow us to calculate the number of balanced and
unbalanced split graphs, all categories of NG-graphs and pseudo-split graphs solely in
terms of the number of split graphs. Let (PS)n denote the set of pseudo-split graphs
on n vertices. The corollary below describes the exact formulas.

Corollary 33. The following equalities hold for each n ≥ 1.

(1) |(U)n| =
∑n−1

i=0 |(Si)|

(2) |(B)n| = |(S)n| −
∑n−1

i=0 |(Si)|

(3) |(NG-1)|n = |(NG-2)|n = |(S)n−1|

(4) |(NG-3)|n =
∑n−5

i=0 |(Si)|
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(5) |(NG)n| =
∑n−1

i=0 |(Si)|+
∑n−5

i=0 |(Si)|

(6) |(PS)n| = |(S)n|+
∑n−5

i=0 |(Si)|

Proof. The formulas in (1), (3) and (4) follow directly from the bijections in Sec-
tion 4. To prove (2), we use (1) and the fact that a split graph is either balanced or
unbalanced, and to prove (5) we apply (1) and (4) and Remark 9. Finally, to prove
(6), we use Remark 4 and apply the formula from (4).

Recall that |(T )≤n| =
∑n

i=0 |(Si)|. In Table 2, we make use of the values computed
by Royle [15] for |(S)n| and the formulas in Corollary 33 to determine the values for
|(T )≤n|, |(U)n|, |(B)n|, |(NG)n| and |(PS)n| for n = 0, . . . , 11. The table in [15]
shows rapid growth in the number of split graphs. Royle does not divide split graphs
into balanced and unbalanced as we do. Table 3 shows the ratio of the number of
balanced split graphs to the number of split graphs on n vertices, indicating that the
rapid growth in the number of split graphs comes from the balanced category. We
conjecture that this ratio approaches 1 as n goes to infinity. We now show why this
may be the case.

Theorem 34. If limn→∞
|(S)n−1|
|(S)n|

→ 0 then limn→∞
|(B)n|
|(S)n|

→ 1.

Proof. From Table 1, |(U)n| = |(T )≤n−1|, hence |(U)n| − |(U)n−1| = |(S)n−1|. Thus,

|(B)n| − |(B)n−1| = (|(S)n| − |(U)n|)− (|(S)n−1| − |(U)n−1|)

= (|(S)n| − |(S)n−1|)− (|(U)n| − |(U)n−1|) = |(S)n| − 2|(S)n−1|.

Thus, by the hypothesis and the Sandwich Theorem,

1 ≥ lim
n→∞

|(B)n|

|(S)n|
≥ lim

n→∞

|(B)n| − |(B)n−1|

|(S)n|
= lim

n→∞

|(S)n| − 2|(S)n−1|

|(S)n|

= lim
n→∞

1− 2

(

|(S)n−1|

|(S)n|

)

= 1.
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n 0 1 2 3 4 5 6 7 8 9 10 11

|(S)n| 1 1 2 4 9 21 56 164 557 2,223 10,766 64,956
|(T )≤n| 1 2 4 8 17 38 94 258 815 3,038 13,804 78,760
|(U)n| 0 1 2 4 8 17 38 94 258 815 3,038 13,804
|(B)n| 1 0 0 0 1 4 18 70 299 1,408 7,728 51,152
|(NG)n| 0 1 2 4 8 18 40 98 266 832 3,076 13,898
|(PS)n| 1 1 2 4 9 22 58 168 565 2,240 10,804 65,050

Table 2: The number of split graphs (total, balanced, unbalanced) and NG-graphs
on n vertices.

n 4 5 6 7 8 9 10 11 12 13 14 15 16

ratio .11 .19 .32 .42 .54 .63 .72 .79 .84 .89 .92 .94 .96

Table 3: The ratio of the number of balanced split graphs to split graphs on n vertices.
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