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Abstract

In order to construct quantum [[n, 0, d]] codes for (n,d) = (56, 15),
(57,15), (58,16), (63,16), (67,17), (70,18), (71,18), (79,19), (83,20),
(87,20), (89,21), (95,20), we construct self-dual additive Fy-codes of
length n and minimum weight d from circulant graphs. The quantum
codes with these parameters are constructed for the first time.

1 Introduction

Let Fy = {0,1,w,@} be the finite field with four elements, where @ = w? =
w+ 1. An additive Fy-code of length n is an additive subgroup of F}. An
element of C' is called a codeword of C. An additive (n,2*) Fy-code is an
additive Fy-code of length n with 2% codewords. The (Hamming) weight of a
codeword x of C' is the number of non-zero components of x. The minimum
non-zero weight of all codewords in C' is called the minimum weight of C.

Let C be an additive Fs-code of length n. The symplectic dual code C*
of C' is defined as {z € F} | x xy = 0 for all y € C'} under the trace inner
product:

n

THRY = Z(%yf + z7y;)

i=1
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for x = (x1,29,...,20), y = (Y1, Y2, - - -, Yn) € F}. An additive Fy-code C' is
called (symplectic) self-orthogonal (resp. self-dual) if C' C C* (resp. C' = C*).

Calderbank, Rains, Shor and Sloane [3] gave the following useful method
for constructing quantum codes from self-orthogonal additive Fy-codes (see
[3] for more details on quantum codes). A self-orthogonal additive (n, 2" %)
Fy-code C such that there is no element of weight less than d in C*\ C, gives
a quantum [[n, k,d]] code, where k # 0. In addition, a self-dual additive
[Fy-code of length n and minimum weight d gives a quantum [[n, 0, d]] code.
Let dpax(n, k) denote the maximum integer d such that a quantum [[n, k, d]
code exists. It is a fundamental problem to determine the value dyax(n, k)
for a given (n, k). A table on dyax(n, k) is given in [3, Table III] for n < 30,
and an extended table is available online [5].

In this note, we construct self-dual additive F4-codes of length n and
minimum weight d for

(n,d) = (56, 15), (57, 15), (58, 16), (63, 16), (67, 17),
(70,18), (71, 18), (79, 19), (83, 20), (87, 20), (89, 21), (95, 20). (1)

These codes are obtained from adjacency matrices of some circulant graphs.
The above self-dual additive Fy-codes allow us to construct quantum [[n, 0, d]]
codes for the (n, d) given in (). These quantum codes improve the previously
known lower bounds on dp,.x(n,0) for the above n.

The data of these new quantum codes has already been included in [5].
All computer calculations in this note were performed using MAGMA [1].

2 Self-dual additive F,;-codes from circulant
graphs

A graph T’ consists of a finite set V' of vertices together with a set of edges,
where an edge is a subset of V' of cardinality 2. All graphs in this note are
simple, that is, graphs are undirected without loops and multiple edges. The
adjacency matriz of a graph T' with V' = {x1,29,...,2,} is a v X v matrix
Ar = (aij), where a;; = a;; = 1 if {z;,z;} is an edge and a;; = 0 otherwise.
Let T" be a graph and let Ar be the adjacency matrix of I". Let C'(I") denote
the additive F4-code generated by the rows of Ar + wl, where I denotes the
identity matrix. Then C(I') is a self-dual additive F,-code [4].



Two additive Fy-codes C; and Cy of length n are equivalent if there is
a map from S§ x S, sending C onto Cy, where the symmetric group S5,
acts on the set of the n coordinates and each copy of the the symmetric
group S3 permutes the non-zero elements 1, w, @ of the field in the respective
coordinate. For any self-dual additive Fy-code C', it was shown in [4, Theorem
6] that there is a graph I' such that C'(I") is equivalent to C. Using this
characterization, all self-dual additive F4-codes were classified for lengths up
to 12 [4, Section 5.

An n X n matrix is circulant if it has the following form:

(A1 rg =+ Tp-1 Tn
T'n rnhoo--- Tn—2 Tn-1

M= r1 7Tm - Tn.z Tn-a |. (2)
T2 r3 - Tn A

Trivially, the matrix M is fully determined by its first row (r1,7r9,...,7,). A
graph is called circulant if it has a circulant adjacency matrix. For a circulant
adjacency matrix of the form (2]), we have

7’120 and Ty = Tpt2—4 fOI'ZIQ,,Ln/2J (3)

Circulant graphs and their applications have been widely studied (see [7] for
a recent survey on this subject). For example, it is known that the number
of non-isomorphic circulant graphs is known for orders up to 47 (see the
sequence A049287 in [§]). In this note, we concentrate on self-dual additive
Fy-codes C(I") generated by the rows of Ar+wl, where Ar are the adjacency
matrices of circulant graphs I'. These codes were studied, for example, in [0]
and [9].

3 New self-dual additive F;-codes and quan-
tum codes from circulant graphs

3.1 Lengths up to 50

Throughout this section, let I" denote a circulant graph with adjacency ma-
trix Ar. Let C(I') denote the self-dual additive Fy-code generated by the



rows of Ar + wl. Let d., (n) denote the maximum integer d such that
a self-dual additive Fy-code C(I") of length n and minimum weight d ex-
ists. Varbanov [9] gave a classification of self-dual additive Fy-codes C(I") for
lengths n = 13,14, ...,29, 31, 32,33 and determined the values d._ (n) for

lengths up to 33.

Table 1: Self-dual additive F4-codes C(I',,) of lengths n = 34,35, ...,50

n | di..(n) Support of the first row of Ar, dmax(n, 0)
34| 10 |2 3.6,8,9,27, 28, 30, 33, 34 10 12
35| 10 |2 4,6, 7 10,27, 30, 31, 33, 35 11-13
36 | 11 | 23,45 79, 13, 14, 24, 25, 29, 31, 33, 34, 35, 36 12 14
37| 11 |5,6,7,9, 11,12, 27, 28, 30, 32, 33, 34 11-14
38| 12 | 2,3,5, 7 10, 11, 20, 29, 30, 33, 35, 37, 38 1214
39| 11 |2 4,5, 6,7 10, 11, 30, 31, 34, 35, 36, 37, 39 1114
40 | 12 |2 3.5, 8, 10, 21, 32, 34, 37, 39, 40 12 14
41| 12 | 23,4,5,6, 10, 11, 13, 30, 32, 33, 37, 38, 39, 40, 41 1215
42| 12 | 2,3,13, 15, 16, 18, 21, 22, 23, 26, 28, 29, 31, 41, 42 12-16
43| 12 | 3,4,7,9, 10,12, 33, 35, 36, 38, 41, 42 13-16
44| 14 | 4,5,8,10, 13, 17, 18, 21, 23, 25, 28, 29, 33, 36, 38, 41, 42 | 1416
45 | 13 | 2,4,5,9, 10,12, 14, 15, 17, 18, 20, 27, 29, 30, 32, 33, 35, | 1316
37,38, 42, 43, 45
46| 14 | 4,5,7,8,9, 10,11, 12, 13, 14, 15, 17, 19, 24, 29, 31, 33, 14-16
34, 35, 36, 37, 38, 39, 40, 41, 43, 44
A7 | 13 | 4,8, 11,13, 14, 15, 34, 35, 36, 38, 41, 45 13-17
48 | 14 | 3,4,5,10,12, 14, 15, 16, 25, 34, 35, 36, 38, 40, 45, 46, 47 | 1418
49 | 13 | 4,5,7,8, 9,10, 13, 14, 37, 38, 41, 42, 43, 44, 46, 47 1318
50| 14 |3,7.8,9, 11,12, 13, 17, 20, 22, 24, 25, 26, 27, 28, 30, 32, | 14 18
35, 39, 40, 41, 43, 44, 45, 49

For lengths n = 13,14, ...,50, by exhaustive search, we determined the
largest minimum weights d’, (n). In Table [, for lengths n = 34,35, ..., 50,
we list dl,.(n) and an example of a self-dual additive Fy-code C(T',,) having
minimum weight d. . (n), where the support of the first row of the circulant
adjacency matrix Ar, is given. Our present state of knowledge about the
upper bound dyax(n,0) on the minimum distance is also listed in the table.
For most lengths, the self-dual additive Fy-codes give quantum [[n, 0, d]] codes
such that d = dyax(n,0) or d attains the currently known lower bound on
dmax(n, 0); three exceptions (lengths 35,36 and 43) are typeset in italics.

Note that d-_ (36) = 11. For lengths 34,35 and 36, self-dual additive

max
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Table 2: Weight distribution of C'(I'sg)

i A; i A; i A; i A;

0 1 17 16145280 || 24 | 5144050296 || 31 | 3388554144
11 1584 || 18 51147440 || 25 | 7408053504 || 32 | 1588252581
12 9936 || 19 145391760 || 26 | 9402473952 || 33 77571712

13 52992 || 20 370815624 || 27 | 10446604880 || 34 152925552
14 265392 || 21 847669248 || 28 | 10073332800 || 35 26213616
15| 1168032 || 22 | 1733647968 || 29 | 8336897280 | 36 2179688
16 | 4578786 || 23 | 3165414336 || 30 | 5836058352

Fy-codes C(I') with minimum weight 10 were constructed in [9]. For length
36, we found a self-dual additive Fy-code C(I's) of length 36 and minimum
weight 11 (see Table[I]). The weight distribution of the code C(I'sq) is listed
in Table 2, where A; denotes the number of codewords of weight 1.

Proposition 1. The largest minimum weight d- . (36) among all self-dual

max

additive Fy-codes C(T') of length 36 from circulant graphs is 11.

A self-dual additive F4-code is called Type II if it is even. It is known
that a Type II additive F4-code must have even length. A self-dual additive
F4-code, which is not Type II, is called Type 1. Although the following
proposition is somewhat trivial, we give a proof for completeness.

Proposition 2. Let C(I") be the self-dual additive Fy-code of even length n
generated by the rows of Ar+wl, where Ar is circulant. Let S be the support
of the first row of Ar. Then C(I') is Type II if and only if n/2 +1 € S.

Proof. It was shown in [4, Theorem 15] that the codes C(I') are Type II if
and only if all the vertices of I' have odd degree. For a circulant graph I,
the degree of the vertices is constant and equals the size of the support S of
the first row of Ar. From (3] it follows that the size of the support S is odd
if and only if 7,041 = 1,16, n/2+1€ 5. O

Note that (3]) also implies that the size of the support S of the first row
of A, is always even when n is odd, i.e., self-dual codes of odd length from
circulant graphs cannot be Type II.

By Proposition 2] the codes C(T',) (n = 38,40,42,44,46,48,50) are
Type II. In addition, the other codes in Table [l are Type 1. Let d._ ,(n)

max,]



denote the maximum integer d such that a Type I additive Fy-code C(I") of
length n and minimum weight d exists. By exhaustive search, we verified

that d?nax,[(44) =d. . (44) — 2, dfnax,[(n) =d...(n) —1 (n = 38,40, 46, 48)
and d . ;(n) = d},(n) (n = 42,50). For (n,d) = (42,12) and (50,14), we

list an example of Type I additive Fy-code C(I",) of length n and minimum
weight d, where the support of the first row of the circulant adjacency matrix
Ar, is given in Table 3]

Table 3: Type I additive F4-codes C(I")) of lengths 42, 50

n | d Support of the first row of Ar/
42 | 12 | 2,3, 5,6, 8, 11, 12, 13, 31, 32, 33, 36, 38, 39, 41, 42
50 | 14 | 5,6, 7,9, 10, 11, 12, 20, 32, 40, 41, 42, 43, 45, 46, 47

3.2 Sporadic lengths n > 51

For lengths n > 51, by non-exhaustive search, we tried to find self-dual
additive Fy-codes C'(I') with large minimum weight, where I is a circulant
graph. By this method, we found new self-dual additive Fy-codes C(I',,) of
length n and minimum weight d for

(n,d) = (56,15), (57, 15), (58, 16), (63, 16), (67, 17),
(70,18), (71,18), (79, 19), (83, 20), (87, 20), (89, 21), (95, 20).

For each self-dual additive Fy-code C(I',,), the support of the first row of
the circulant adjacency matrix Ar, is listed in Table [l Additionally, for
n =>51,...,55,59,60,64,65,66,69,72,...,78,81,82, 84, 88,94, 100, we found
self-dual additive Fy-codes C(I',,) from circulant graphs matching the known
lower bound on the minimum distance of quantum codes [[n,0,d]]. For the
remaining lengths, our non-exhaustive computer search failed to discover a
self-dual additive Fy-code from a circulant graph matching the known lower
bound.

For the codes C(T',) (n = 56,57,58,63,67,70,71,79), we give in Table
part of the weight distribution. Due to the computational complexity, we
calculated the number A; of codewords of weight ¢ for only + = 15,16, ...,19.
As some basic properties of the graphs I',,, we give in Table [0 the valency
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Table 4: New self-dual additive Fy-codes C(T',)

Support of the first row of Ar,

2,3, 7,8, 12, 14, 15, 16, 17, 20, 22, 26, 28, 30, 32, 36, 38, 41, 42, 43,
44, 46, 50, 51, 55, 56

7,8, 10, 12, 17, 18, 22, 23, 24, 35, 36, 37, 41, 42, 47, 49, 51, 52

2,3, 7, 10, 13, 14, 15, 17, 21, 25, 27, 29, 30, 31, 33, 35, 39, 43, 45
46, 47, 50, 53, 57, 58

2,9,6,9, 13, 14, 15, 16, 17, 19, 46, 48, 49, 50, 51, 52, 56, 59, 60, 63

4,5, 6, 11, 12, 14, 15, 16, 17, 18, 21, 25, 26, 27, 28, 30, 39, 41, 42
43, 44, 48, 51, 52, 53, 54, 55, 57, 58, 63, 64, 65

2,6, 7,8, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 28, 29, 30, 32,
33, 35, 36, 37, 39, 40, 42, 43, 44, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59,
60, 61, 64, 65, 66, 70

2, 3,5, 11,12, 15, 17, 20, 23, 26, 27, 28, 31, 34, 35, 38, 39, 42, 45, 46,
47, 50, 53, 56, 58, 61, 62, 68, 70, 71

2,4, 7, 10, 13, 15, 18, 19, 20, 21, 23, 24, 25, 29, 30, 31, 32, 35, 36, 37,
39, 42, 44, 45, 46, 49, 50, 51, 52, 56, 57, 58, 60, 61, 62, 63, 66, 68, 71,
74, 77, 79

3,4, 5,7, 0, 11, 14, 19, 20, 21, 22, 23, 24, 27, 28, 30, 31, 32, 33, 34,
36, 38, 41, 44, 47, 49, 51, 52, 53, 54, 55, 57, 58, 61, 62, 63, 64, 65, 66,
71, 74, 76, 78, 80, 81, 82

C(Tg7)

7,11, 12, 13, 14, 15, 20, 23, 24, 25, 27, 28, 29, 30, 31, 34, 35, 37, 40,
41, 42, 47, 48, 49, 52, 54, 55, 58, 59, 60, 61, 62, 64, 65, 66, 69, 74, 75
76, 77, 78, 82

C(Tg)

3,4, 7, 10, 14, 15, 18, 19, 21, 23, 25, 26, 30, 32, 34, 35, 37, 39, 40,
45, 46, 51, 52, 54, 56, 57, 59, 61, 65, 66, 68, 70, 72, 73, 76, 77, 81,
84, 87, 88

C(Tg5)

1,5, 6, 11, 12, 14, 15, 18, 19, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36,
38, 40, 42, 43, 45, 47, 50, 52, 54, 55, 57, 59, 61, 62, 63, 64, 65, 66,
67, 69, 70, 71, 78, 79, 82, 83, 85, 86, 91, 92, 93




Table 5: Number A; of codewords of weight i (i = 15,16, ...,19)

Code | d | Ass A Aqr Arg Aqg
C(Ts6) | 15 | 4032 | 25508 | 173264 | 1124648 | 6839 224
C(Ts7) | 15 1938 | 18126 | 120783 838451 | 5093 409
C(Tss) | 16 24 882 0 | 1205240 0
C(Tg3) | 16 2142 12726 113 568 757 575
C(Ter) | 17 2978 | 23785 | 193429
C(Tr) | 18 15 260 0
C(T71) | 18 6745 | 43949
C(T79) | 19 1343

k(I'),), the diameter d(I',), the girth ¢g(I',), the size w(I',) of the maximum
clique and the order | Aut(I',,)| of the automorphism group. With the excep-
tion of n = 53, the automorphism group is the dihedral group on n points
of order 2n. Note, however, that the notion of equivalence for graphs and
codes are different, i.e., the graph invariants are not preserved with respect
to code equivalence [2]. By Proposition 2], the codes C'(I'ss) and C(I'z) are
Type II.

Finally, by the method in [3], the existence of our self-dual additive Fy4-
codes C(I',) yields the following:

Theorem 3. There are a quantum [[n,0,d]] codes for

(n,d) = (56, 15), (57, 15), (58, 16), (63, 16), (67, 17),
(70, 18), (71, 18), (79, 19), (83, 20), (87, 20), (89, 21), (95, 20).

The above quantum [[n,0,d]] codes improve the previously known lower
bounds on dy,.x(n,0) (n = 56,57, 58,63,67,70,71,79,87,89). More precisely,



Table 6: Properties of the graphs I,
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we give our present state of knowledge about dp,ax(n,0) [5]:

15 < dipax(56,0) < 20, 15 < diax(57,0) < 20,
16 < dpax(58,0) <20, 16 < dpyax(63,0) < 22,
17 < dpax(67,0) < 24, 18 < dpyax(70,0) < 24,
18 < dimax(71,0) < 25, 19 < dipax(79,0) < 28,
20 < dmax(83,0) <29, 20 < dnax(87,0) < 30,
21 < dmax(89,0) < 31, 20 < dpax(95,0) < 33.
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