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Abstract

In order to construct quantum [[n, 0, d]] codes for (n, d) = (56, 15),
(57, 15), (58, 16), (63, 16), (67, 17), (70, 18), (71, 18), (79, 19), (83, 20),
(87, 20), (89, 21), (95, 20), we construct self-dual additive F4-codes of
length n and minimum weight d from circulant graphs. The quantum
codes with these parameters are constructed for the first time.

1 Introduction

Let F4 = {0, 1, ω, ω̄} be the finite field with four elements, where ω̄ = ω2 =
ω + 1. An additive F4-code of length n is an additive subgroup of Fn

4 . An
element of C is called a codeword of C. An additive (n, 2k) F4-code is an
additive F4-code of length n with 2k codewords. The (Hamming) weight of a
codeword x of C is the number of non-zero components of x. The minimum
non-zero weight of all codewords in C is called the minimum weight of C.

Let C be an additive F4-code of length n. The symplectic dual code C∗

of C is defined as {x ∈ F
n
4 | x ∗ y = 0 for all y ∈ C} under the trace inner

product:

x ∗ y =

n
∑

i=1

(xiy
2

i + x2

i yi)
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for x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ F
n
4 . An additive F4-code C is

called (symplectic) self-orthogonal (resp. self-dual) if C ⊂ C∗ (resp. C = C∗).
Calderbank, Rains, Shor and Sloane [3] gave the following useful method

for constructing quantum codes from self-orthogonal additive F4-codes (see
[3] for more details on quantum codes). A self-orthogonal additive (n, 2n−k)
F4-code C such that there is no element of weight less than d in C∗ \C, gives
a quantum [[n, k, d]] code, where k 6= 0. In addition, a self-dual additive
F4-code of length n and minimum weight d gives a quantum [[n, 0, d]] code.
Let dmax(n, k) denote the maximum integer d such that a quantum [[n, k, d]]
code exists. It is a fundamental problem to determine the value dmax(n, k)
for a given (n, k). A table on dmax(n, k) is given in [3, Table III] for n ≤ 30,
and an extended table is available online [5].

In this note, we construct self-dual additive F4-codes of length n and
minimum weight d for

(n, d) = (56, 15), (57, 15), (58, 16), (63, 16), (67, 17),

(70, 18), (71, 18), (79, 19), (83, 20), (87, 20), (89, 21), (95, 20). (1)

These codes are obtained from adjacency matrices of some circulant graphs.
The above self-dual additive F4-codes allow us to construct quantum [[n, 0, d]]
codes for the (n, d) given in (1). These quantum codes improve the previously
known lower bounds on dmax(n, 0) for the above n.

The data of these new quantum codes has already been included in [5].
All computer calculations in this note were performed using Magma [1].

2 Self-dual additive F4-codes from circulant

graphs

A graph Γ consists of a finite set V of vertices together with a set of edges,
where an edge is a subset of V of cardinality 2. All graphs in this note are
simple, that is, graphs are undirected without loops and multiple edges. The
adjacency matrix of a graph Γ with V = {x1, x2, . . . , xv} is a v × v matrix
AΓ = (aij), where aij = aji = 1 if {xi, xj} is an edge and aij = 0 otherwise.
Let Γ be a graph and let AΓ be the adjacency matrix of Γ. Let C(Γ) denote
the additive F4-code generated by the rows of AΓ + ωI, where I denotes the
identity matrix. Then C(Γ) is a self-dual additive F4-code [4].
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Two additive F4-codes C1 and C2 of length n are equivalent if there is
a map from Sn

3 ⋊ Sn sending C1 onto C2, where the symmetric group Sn

acts on the set of the n coordinates and each copy of the the symmetric
group S3 permutes the non-zero elements 1, ω, ω̄ of the field in the respective
coordinate. For any self-dual additive F4-code C, it was shown in [4, Theorem
6] that there is a graph Γ such that C(Γ) is equivalent to C. Using this
characterization, all self-dual additive F4-codes were classified for lengths up
to 12 [4, Section 5].

An n× n matrix is circulant if it has the following form:

M =















r1 r2 · · · rn−1 rn
rn r1 · · · rn−2 rn−1

rn−1 rn
. . . rn−3 rn−2

...
...

. . .
. . .

...
r2 r3 · · · rn r1















. (2)

Trivially, the matrix M is fully determined by its first row (r1, r2, . . . , rn). A
graph is called circulant if it has a circulant adjacency matrix. For a circulant
adjacency matrix of the form (2), we have

r1 = 0 and ri = rn+2−i for i = 2, . . . , ⌊n/2⌋. (3)

Circulant graphs and their applications have been widely studied (see [7] for
a recent survey on this subject). For example, it is known that the number
of non-isomorphic circulant graphs is known for orders up to 47 (see the
sequence A049287 in [8]). In this note, we concentrate on self-dual additive
F4-codes C(Γ) generated by the rows of AΓ+ωI, where AΓ are the adjacency
matrices of circulant graphs Γ. These codes were studied, for example, in [6]
and [9].

3 New self-dual additive F4-codes and quan-

tum codes from circulant graphs

3.1 Lengths up to 50

Throughout this section, let Γ denote a circulant graph with adjacency ma-
trix AΓ. Let C(Γ) denote the self-dual additive F4-code generated by the
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rows of AΓ + ωI. Let dΓmax(n) denote the maximum integer d such that
a self-dual additive F4-code C(Γ) of length n and minimum weight d ex-
ists. Varbanov [9] gave a classification of self-dual additive F4-codes C(Γ) for
lengths n = 13, 14, . . . , 29, 31, 32, 33 and determined the values dΓmax(n) for
lengths up to 33.

Table 1: Self-dual additive F4-codes C(Γn) of lengths n = 34, 35, . . . , 50

n dΓmax(n) Support of the first row of AΓn
dmax(n, 0)

34 10 2, 3, 6, 8, 9, 27, 28, 30, 33, 34 10–12
35 10 2, 4, 6, 7, 10, 27, 30, 31, 33, 35 11–13
36 11 2, 3, 4, 5, 7, 9, 13, 14, 24, 25, 29, 31, 33, 34, 35, 36 12–14
37 11 5, 6, 7, 9, 11, 12, 27, 28, 30, 32, 33, 34 11–14
38 12 2, 3, 5, 7, 10, 11, 20, 29, 30, 33, 35, 37, 38 12–14
39 11 2, 4, 5, 6, 7, 10, 11, 30, 31, 34, 35, 36, 37, 39 11–14
40 12 2, 3, 5, 8, 10, 21, 32, 34, 37, 39, 40 12–14
41 12 2, 3, 4, 5, 6, 10, 11, 13, 30, 32, 33, 37, 38, 39, 40, 41 12–15
42 12 2, 3, 13, 15, 16, 18, 21, 22, 23, 26, 28, 29, 31, 41, 42 12–16
43 12 3, 4, 7, 9, 10, 12, 33, 35, 36, 38, 41, 42 13–16
44 14 4, 5, 8, 10, 13, 17, 18, 21, 23, 25, 28, 29, 33, 36, 38, 41, 42 14–16
45 13 2, 4, 5, 9, 10, 12, 14, 15, 17, 18, 20, 27, 29, 30, 32, 33, 35, 13–16

37, 38, 42, 43, 45
46 14 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 24, 29, 31, 33, 14–16

34, 35, 36, 37, 38, 39, 40, 41, 43, 44
47 13 4, 8, 11, 13, 14, 15, 34, 35, 36, 38, 41, 45 13–17
48 14 3, 4, 5, 10, 12, 14, 15, 16, 25, 34, 35, 36, 38, 40, 45, 46, 47 14–18
49 13 4, 5, 7, 8, 9, 10, 13, 14, 37, 38, 41, 42, 43, 44, 46, 47 13–18
50 14 3, 7, 8, 9, 11, 12, 13, 17, 20, 22, 24, 25, 26, 27, 28, 30, 32, 14–18

35, 39, 40, 41, 43, 44, 45, 49

For lengths n = 13, 14, . . . , 50, by exhaustive search, we determined the
largest minimum weights dΓmax(n). In Table 1, for lengths n = 34, 35, . . . , 50,
we list dΓmax(n) and an example of a self-dual additive F4-code C(Γn) having
minimum weight dΓmax(n), where the support of the first row of the circulant
adjacency matrix AΓn

is given. Our present state of knowledge about the
upper bound dmax(n, 0) on the minimum distance is also listed in the table.
For most lengths, the self-dual additive F4-codes give quantum [[n, 0, d]] codes
such that d = dmax(n, 0) or d attains the currently known lower bound on
dmax(n, 0); three exceptions (lengths 35, 36 and 43) are typeset in italics.

Note that dΓmax(36) = 11. For lengths 34, 35 and 36, self-dual additive
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Table 2: Weight distribution of C(Γ36)

i Ai i Ai i Ai i Ai

0 1 17 16 145 280 24 5 144 050 296 31 3 388 554 144
11 1 584 18 51 147 440 25 7 408 053 504 32 1 588 252 581
12 9 936 19 145 391 760 26 9 402 473 952 33 577 571 712
13 52 992 20 370 815 624 27 10 446 604 880 34 152 925 552
14 265 392 21 847 669 248 28 10 073 332 800 35 26 213 616
15 1 168 032 22 1 733 647 968 29 8 336 897 280 36 2 179 688
16 4 578 786 23 3 165 414 336 30 5 836 058 352

F4-codes C(Γ) with minimum weight 10 were constructed in [9]. For length
36, we found a self-dual additive F4-code C(Γ36) of length 36 and minimum
weight 11 (see Table 1). The weight distribution of the code C(Γ36) is listed
in Table 2, where Ai denotes the number of codewords of weight i.

Proposition 1. The largest minimum weight dΓmax(36) among all self-dual

additive F4-codes C(Γ) of length 36 from circulant graphs is 11.

A self-dual additive F4-code is called Type II if it is even. It is known
that a Type II additive F4-code must have even length. A self-dual additive
F4-code, which is not Type II, is called Type I. Although the following
proposition is somewhat trivial, we give a proof for completeness.

Proposition 2. Let C(Γ) be the self-dual additive F4-code of even length n
generated by the rows of AΓ+ωI, where AΓ is circulant. Let S be the support

of the first row of AΓ. Then C(Γ) is Type II if and only if n/2 + 1 ∈ S.

Proof. It was shown in [4, Theorem 15] that the codes C(Γ) are Type II if
and only if all the vertices of Γ have odd degree. For a circulant graph Γ,
the degree of the vertices is constant and equals the size of the support S of
the first row of AΓ. From (3) it follows that the size of the support S is odd
if and only if rn/2+1 = 1, i.e., n/2 + 1 ∈ S.

Note that (3) also implies that the size of the support S of the first row
of Aγ is always even when n is odd, i.e., self-dual codes of odd length from
circulant graphs cannot be Type II.

By Proposition 2, the codes C(Γn) (n = 38, 40, 42, 44, 46, 48, 50) are
Type II. In addition, the other codes in Table 1 are Type I. Let dΓmax,I(n)
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denote the maximum integer d such that a Type I additive F4-code C(Γ) of
length n and minimum weight d exists. By exhaustive search, we verified
that dΓmax,I(44) = dΓmax(44) − 2, dΓmax,I(n) = dΓmax(n) − 1 (n = 38, 40, 46, 48)
and dΓmax,I(n) = dΓmax(n) (n = 42, 50). For (n, d) = (42, 12) and (50, 14), we
list an example of Type I additive F4-code C(Γ′

n) of length n and minimum
weight d, where the support of the first row of the circulant adjacency matrix
AΓ′

n

is given in Table 3.

Table 3: Type I additive F4-codes C(Γ′

n) of lengths 42, 50

n d Support of the first row of AΓ′

n

42 12 2, 3, 5, 6, 8, 11, 12, 13, 31, 32, 33, 36, 38, 39, 41, 42
50 14 5, 6, 7, 9, 10, 11, 12, 20, 32, 40, 41, 42, 43, 45, 46, 47

3.2 Sporadic lengths n ≥ 51

For lengths n ≥ 51, by non-exhaustive search, we tried to find self-dual
additive F4-codes C(Γ) with large minimum weight, where Γ is a circulant
graph. By this method, we found new self-dual additive F4-codes C(Γn) of
length n and minimum weight d for

(n, d) = (56, 15), (57, 15), (58, 16), (63, 16), (67, 17),

(70, 18), (71, 18), (79, 19), (83, 20), (87, 20), (89, 21), (95, 20).

For each self-dual additive F4-code C(Γn), the support of the first row of
the circulant adjacency matrix AΓn

is listed in Table 4. Additionally, for
n = 51, . . . , 55, 59, 60, 64, 65, 66, 69, 72, . . . , 78, 81, 82, 84, 88, 94, 100, we found
self-dual additive F4-codes C(Γn) from circulant graphs matching the known
lower bound on the minimum distance of quantum codes [[n, 0, d]]. For the
remaining lengths, our non-exhaustive computer search failed to discover a
self-dual additive F4-code from a circulant graph matching the known lower
bound.

For the codes C(Γn) (n = 56, 57, 58, 63, 67, 70, 71, 79), we give in Table 5
part of the weight distribution. Due to the computational complexity, we
calculated the number Ai of codewords of weight i for only i = 15, 16, . . . , 19.
As some basic properties of the graphs Γn, we give in Table 6 the valency
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Table 4: New self-dual additive F4-codes C(Γn)

Code Support of the first row of AΓn

C(Γ56) 2, 3, 7, 8, 12, 14, 15, 16, 17, 20, 22, 26, 28, 30, 32, 36, 38, 41, 42, 43,
44, 46, 50, 51, 55, 56

C(Γ57) 7, 8, 10, 12, 17, 18, 22, 23, 24, 35, 36, 37, 41, 42, 47, 49, 51, 52

C(Γ58) 2, 3, 7, 10, 13, 14, 15, 17, 21, 25, 27, 29, 30, 31, 33, 35, 39, 43, 45,
46, 47, 50, 53, 57, 58

C(Γ63) 2, 5, 6, 9, 13, 14, 15, 16, 17, 19, 46, 48, 49, 50, 51, 52, 56, 59, 60, 63

C(Γ67) 4, 5, 6, 11, 12, 14, 15, 16, 17, 18, 21, 25, 26, 27, 28, 30, 39, 41, 42,
43, 44, 48, 51, 52, 53, 54, 55, 57, 58, 63, 64, 65

C(Γ70) 2, 6, 7, 8, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 28, 29, 30, 32,
33, 35, 36, 37, 39, 40, 42, 43, 44, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59,
60, 61, 64, 65, 66, 70

C(Γ71) 2, 3, 5, 11, 12, 15, 17, 20, 23, 26, 27, 28, 31, 34, 35, 38, 39, 42, 45, 46,
47, 50, 53, 56, 58, 61, 62, 68, 70, 71

C(Γ79) 2, 4, 7, 10, 13, 15, 18, 19, 20, 21, 23, 24, 25, 29, 30, 31, 32, 35, 36, 37,
39, 42, 44, 45, 46, 49, 50, 51, 52, 56, 57, 58, 60, 61, 62, 63, 66, 68, 71,
74, 77, 79

C(Γ83) 3, 4, 5, 7, 9, 11, 14, 19, 20, 21, 22, 23, 24, 27, 28, 30, 31, 32, 33, 34,
36, 38, 41, 44, 47, 49, 51, 52, 53, 54, 55, 57, 58, 61, 62, 63, 64, 65, 66,
71, 74, 76, 78, 80, 81, 82

C(Γ87) 7, 11, 12, 13, 14, 15, 20, 23, 24, 25, 27, 28, 29, 30, 31, 34, 35, 37, 40,
41, 42, 47, 48, 49, 52, 54, 55, 58, 59, 60, 61, 62, 64, 65, 66, 69, 74, 75,
76, 77, 78, 82

C(Γ89) 3, 4, 7, 10, 14, 15, 18, 19, 21, 23, 25, 26, 30, 32, 34, 35, 37, 39, 40,
45, 46, 51, 52, 54, 56, 57, 59, 61, 65, 66, 68, 70, 72, 73, 76, 77, 81,
84, 87, 88

C(Γ95) 4, 5, 6, 11, 12, 14, 15, 18, 19, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36,
38, 40, 42, 43, 45, 47, 50, 52, 54, 55, 57, 59, 61, 62, 63, 64, 65, 66,
67, 69, 70, 71, 78, 79, 82, 83, 85, 86, 91, 92, 93
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Table 5: Number Ai of codewords of weight i (i = 15, 16, . . . , 19)

Code d A15 A16 A17 A18 A19

C(Γ56) 15 4 032 25 508 173 264 1 124 648 6 839 224
C(Γ57) 15 1 938 18 126 120 783 838 451 5 093 409
C(Γ58) 16 24 882 0 1 205 240 0
C(Γ63) 16 2 142 12 726 113 568 757 575
C(Γ67) 17 2 278 23 785 193 429
C(Γ70) 18 15 260 0
C(Γ71) 18 6 745 43 949
C(Γ79) 19 1 343

k(Γn), the diameter d(Γn), the girth g(Γn), the size ω(Γn) of the maximum
clique and the order |Aut(Γn)| of the automorphism group. With the excep-
tion of n = 53, the automorphism group is the dihedral group on n points
of order 2n. Note, however, that the notion of equivalence for graphs and
codes are different, i. e., the graph invariants are not preserved with respect
to code equivalence [2]. By Proposition 2, the codes C(Γ58) and C(Γ70) are
Type II.

Finally, by the method in [3], the existence of our self-dual additive F4-
codes C(Γn) yields the following:

Theorem 3. There are a quantum [[n, 0, d]] codes for

(n, d) = (56, 15), (57, 15), (58, 16), (63, 16), (67, 17),

(70, 18), (71, 18), (79, 19), (83, 20), (87, 20), (89, 21), (95, 20).

The above quantum [[n, 0, d]] codes improve the previously known lower
bounds on dmax(n, 0) (n = 56, 57, 58, 63, 67, 70, 71, 79, 87, 89). More precisely,
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Table 6: Properties of the graphs Γn

Graph dmin(C(Γn)) k(Γn) d(Γn) g(Γn) ω(Γn) |Aut(Γn)|

Γ51 14 24 2 3 6 102
Γ52 14 16 3 3 4 104
Γ53 15 26 2 3 5 1378
Γ54 16 29 2 3 8 108
Γ55 14 14 3 3 4 110
Γ56 15 26 2 3 19 112
Γ57 15 18 2 3 5 114
Γ58 16 25 2 3 7 116
Γ59 15 30 2 3 8 118
Γ60 16 31 2 3 6 120
Γ63 16 20 2 3 5 126
Γ64 16 43 2 3 12 128
Γ65 16 28 2 3 6 130
Γ66 16 33 2 3 6 132
Γ67 17 32 2 3 6 134
Γ69 17 38 2 3 7 138
Γ70 18 45 2 3 10 140
Γ71 18 30 2 3 6 142
Γ72 18 27 2 3 6 144
Γ73 18 40 2 3 8 146
Γ74 18 32 2 3 6 148
Γ75 18 34 2 3 6 150
Γ76 18 37 2 3 8 152
Γ77 18 48 2 3 10 154
Γ78 18 35 2 3 7 156
Γ79 19 42 2 3 8 158
Γ81 19 40 2 3 7 162
Γ82 20 43 2 3 7 164
Γ83 20 46 2 3 9 166
Γ84 20 25 2 3 6 168
Γ87 20 42 2 3 7 174
Γ88 20 37 2 3 6 176
Γ89 21 40 2 3 6 178
Γ94 20 44 2 3 10 188
Γ95 20 50 2 3 7 190
Γ100 20 48 2 3 7 200
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we give our present state of knowledge about dmax(n, 0) [5]:

15 ≤ dmax(56, 0) ≤ 20, 15 ≤ dmax(57, 0) ≤ 20,

16 ≤ dmax(58, 0) ≤ 20, 16 ≤ dmax(63, 0) ≤ 22,

17 ≤ dmax(67, 0) ≤ 24, 18 ≤ dmax(70, 0) ≤ 24,

18 ≤ dmax(71, 0) ≤ 25, 19 ≤ dmax(79, 0) ≤ 28,

20 ≤ dmax(83, 0) ≤ 29, 20 ≤ dmax(87, 0) ≤ 30,

21 ≤ dmax(89, 0) ≤ 31, 20 ≤ dmax(95, 0) ≤ 33.
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