A NEW CYCLIC SIEVING PHENOMENON FOR CATALAN OBJECTS

MARKO THIEL

Abstract

Based on computational experiments, Jim Propp and Vic Reiner suspected that there might exist a sequence of combinatorial objects X_{n}, each carrying a natural action of the cyclic group C_{n-1} of order $n-1$ such that the triple $\left(X_{n}, C_{n-1}, \frac{1}{[n+1]_{q}}\left[\begin{array}{c}2 n \\ n\end{array}\right]_{q}\right)$ exhibits the cyclic sieving phenomenon. We prove their suspicion right.

1. Introduction

1.1. The Cyclic Sieving Phenomenon. Reiner, Stanton and White have observed that the following situation often occurs: one has a combinatorial object X, a cyclic group C that acts on X and a "nice" polynomial $X(q)$ whose evaluations at $|C|$-th roots of unity encode the cardinalities of the fixed point sets of the elements of C acting on X. They termed this the cyclic sieving phenomenon.

Definition 1.1 (RSW04 $)$. Let X be a finite set carrying an action of a cyclic group C and let $X(q)$ be a polynomial in q with nonnegative integer coefficients. Fix an isomorphism ω from C to the set of $|C|-$ th roots of unity, that is an embedding ω : $C \hookrightarrow \mathbb{C}^{*}$. We say that the triple $(X, C, X(q))$ exhibits the cyclic sieving phenomenon (CSP) if

$$
|\{x \in X: c(x)=x\}|=X(q)_{q=\omega(c)} \text { for every } c \in C .
$$

In particular, if $(X, C, X(q))$ exhibits the CSP then $|X|=X(1)$. So $X(q)$ is a q-analogue of $|X|$.
1.2. Catalan numbers. One of the most famous number sequences in combinatorics is the sequence $1,1,2,5,14,42,132, \ldots$ of Catalan numbers given by the formula

$$
C_{n}:=\frac{1}{n+1}\binom{2 n}{n}
$$

A vast variety of combinatorial objects are counted by the Catalan number C_{n}, for example the set of triangulations of a convex $(n+2)$-gon and the set of noncrossing matchings of $\{1,2, \ldots, 2 n\}$. The (MacMahon) q-Catalan number $C_{n}(q)$ is the natural q-analogue of C_{n}, defined as

$$
C_{n}(q):=\frac{1}{[n+1]_{q}}\left[\begin{array}{c}
2 n \\
n
\end{array}\right]_{q},
$$

where $[n]_{q}:=1+q+q^{2}+\ldots+q^{n-1},[n]_{q}!:=[1]_{q}[2]_{q} \cdots[n]_{q}$ and $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}:=\frac{[n]_{q}!}{[n-k]_{q}![k]_{q}!}$. It is a polynomial in q with nonnegative integer coefficients.

The q-Catalan number has the distinction of occurring in two entirely different CSPs for Catalan objects:

Theorem 1.2 (RSW04, Theorem 7.1]). Let Δ_{n} be the set of triangulations of a convex $(n+2)$-gon and let $C_{\Delta_{n}}$ be the cyclic group of order $n+2$ acting on Δ_{n} by rotation. Then $\left(\Delta_{n}, C_{\Delta_{n}}, C_{n}(q)\right)$ exhibits the cyclic sieving phenomenon.

Theorem 1.3 ([PPR09, Theorems 1.4 and 1.5]). Let M_{n} be the set of noncrossing matchings of $[2 n]:=\{1,2, \ldots, 2 n\}$ and let $C_{M_{n}}$ be the cyclic group of order $2 n$ acting on M_{n} by rotation. Then $\left(M_{n}, C_{M_{n}}, C_{n}(q)\right)$ exhibits the cyclic sieving phenomenon.

Computational experiments by Jim Propp and Vic Reiner suggested that substituting an $(n-1)$-th root of unity into $C_{n}(q)$ always yields a positive integer. So they suspected that there might also be cyclic sieving phenomenon involving $C_{n}(q)$ and a cyclic group of order $n-1$. The main result of this note proves that their suspicion is correct.

Theorem 1.4. For any $n>0$, there exists an explicit set X_{n} that carries an action of the cyclic group $C_{X_{n}}$ of order $n-1$ such that the triple $\left(X_{n}, C_{X_{n}}, C_{n}(q)\right)$ exhibits the cyclic sieving phenomenon.

2. Proof of Theorem 1.4

The first order of business is to define the set X_{n}. Call a subset of $[m]$ a ball if it has cardinality 1 and an arc if it has cardinality 2 . Define a (1,2)-configuration on $[m]$ as a set of pairwise disjoint balls and arcs. Say that a $(1,2)$-configuration F has a crossing if it contains arcs $\left\{i_{1}, i_{2}\right\}$ and $\left\{j_{1}, j_{2}\right\}$ with $i_{1}<j_{1}<i_{2}<j_{2}$. If F has no crossing it is called noncrossing.

Figure 1. The noncrossing (1,2)-configuration $F=$ $\{\{1,3\},\{4,5\},\{6\}\}$ of $[6]$ and its rotation $g(F)$.

For $n>0$, define X_{n} to be the set of noncrossing (1,2)-configurations of $[n-1]$. This is a corrected variant of (e^{8}) in Stanley's Catalan addendum Sta.

Theorem 2.1. $\left|X_{n}\right|=C_{n}$ for all $n>0$.
Proof. To choose a noncrossing (1,2)-configuration F of $[n-1]$, first pick the number a of arcs in it. Then pick the subset A of $[n-1]$ to be covered by arcs in one of $\binom{n-1}{2 a}$ ways. Then choose a noncrossing matching of A in one of $C_{a}=\frac{1}{a+1}\binom{2 a}{a}$ ways. Finally choose the set of balls in F from $[n-1] \backslash A$ in one of $2^{n-1-2 a}$ ways. Thus

$$
\left|X_{n}\right|=\sum_{a \geq 0}\binom{n-1}{2 a} \frac{1}{a+1}\binom{2 a}{a} 2^{n-1-2 a}=\frac{1}{n+1}\binom{2 n}{n}
$$

The last equality can be proven in many ways, for example using "snake oil" Wil06.

Define $C_{X_{n}}$ as the cyclic group of order $n-1$ acting on $[n-1]$ by cyclically permuting its elements. The corresponding action of $C_{X_{n}}$ on the set of (1,2)configurations on $[n-1]$ preserves crossings, so it restricts to an action on X_{n}.

Proof of Theorem 1.4. We proceed by direct computation. Let

$$
\begin{aligned}
g:[n-1] & \rightarrow[n-1] \\
i & \mapsto i+1 \text { if } i \neq n-1 \\
n-1 & \mapsto 1
\end{aligned}
$$

be a generator of $C_{X_{n}}$ and let $\omega: g^{k} \mapsto e^{\frac{2 \pi i k}{n-1}}$ be an embedding $C_{X_{n}} \hookrightarrow \mathbb{C}^{*}$. In order to show that

$$
\begin{equation*}
\left|\left\{x \in X_{n}: g^{k}(x)=x\right\}\right|=C_{n}(q)_{q=e^{\frac{2 \pi i k}{n-1}}} \text { for every } k \tag{1}
\end{equation*}
$$

we simply compute both sides. Without loss of generality, we may assume that k divides $n-1$, say $d k=n-1$.

First we compute the right-hand side of (1). If $d=1$, it equals $C_{n}(1)=C_{n}$. If $d=2$, it equals $\binom{n}{\frac{n-1}{2}}$ using $C_{n}(q)=\frac{1}{[n]_{q}}\left[\begin{array}{c}2 n \\ n+1\end{array}\right]_{q}$ and RSW04, Proposition 4.2 (iii)]. If $d \neq 1,2$ it equals $\binom{2 k}{k}$ using $C_{n}(q)=\frac{[2 n]_{q}}{[n]_{q}[n+1]_{q}}\left[\begin{array}{c}2 n-1 \\ n\end{array}\right]_{q}$ and RSW04, Proposition 4.2 (iii)].

Next we compute the left-hand side of (11). To choose a noncrossing (1, 2)-configuration F of $[n-1]$ that fixed by g^{k}, first pick the number a of points in $[k]$ that are covered by arcs of F. Then pick the subset of $[k]$ covered by arcs of F in one of $\binom{k}{a}$ ways. The g^{k}-invariance of F then determines the entire subset A of $[n-1]$ covered by arcs of F. In particular $|A|=d a$. Next choose a g^{k}-invariant noncrossing matching of A. These are in natural bijection with the c^{a}-invariant noncrossing matchings of $[d a]$ (where c is the generator of the natural cyclic action on [da]). So using Theorem 1.3 their number is $C_{\frac{d a}{2}}(q)_{q=e} \frac{2 \pi i a}{d a}$ (taken to be 0 if $d a$ is odd). Finally, choose the balls of F in $[k]$ in one of 2^{k-a} ways. By g^{k}-invariance these determine all the balls of F. Putting it all together we have

$$
\begin{equation*}
\left|\left\{x \in X_{n}: g^{k}(x)=x\right\}\right|=\sum_{a \geq 0}\binom{k}{a} C_{\frac{d a}{2}}(q)_{q=e^{\frac{2 \pi i a}{d a}}} 2^{k-a} \tag{2}
\end{equation*}
$$

If $d=1$, then

$$
\left|\left\{x \in X_{n}: g^{k}(x)=x\right\}\right|=\sum_{a \geq 0}\binom{n-1}{2 a} \frac{1}{a+1}\binom{2 a}{a} 2^{n-1-2 a}=\frac{1}{n+1}\binom{2 n}{n}
$$

as in Theorem 2.1.
Now consider the case $d>1$. If $2 \mid a$, then

$$
C_{\frac{d a}{2}}(q)_{q=e^{\frac{2 \pi i a}{d a}}}=\binom{a}{\frac{a}{2}}
$$

using RSW04, Proposition 4.2 (ii)]. If $2 \nmid a$, then using $\left[\begin{array}{c}2 n \\ n\end{array}\right]_{q}-\left[\begin{array}{c}2 n \\ n+1\end{array}\right]_{q}=q^{n} C_{n}(q)$ and [RSW04, Proposition 4.2 (ii)] gives

$$
C_{\frac{d a}{2}}(q)_{q=e^{\frac{2 \pi i a}{d a}}}=\binom{a}{\frac{a-1}{2}} \text { if } d=2
$$

and

$$
C_{\frac{d a}{2}}(q)_{q=e} \frac{2 \pi i a}{d a}=0 \text { if } d>2 .
$$

So we calculate that for $d=2$ we have

$$
\begin{aligned}
& \left|\left\{x \in X_{n}: g^{k}(x)=x\right\}\right| \\
& =\sum_{a \geq 0}\binom{\frac{n-1}{2}}{2 a}\binom{2 a}{a} 2^{\frac{n-1}{2}-2 a}+\sum_{a \geq 0}\binom{\frac{n-1}{2}}{2 a+1}\binom{2 a+1}{a} 2^{\frac{n-1}{2}-2 a-1} \\
& =\binom{n}{\frac{n-1}{2}} .
\end{aligned}
$$

For $d>2$ we have

$$
\left|\left\{x \in X_{n}: g^{k}(x)=x\right\}\right|=\sum_{a \geq 0}\binom{k}{2 a}\binom{2 a}{a} 2^{k-2 a}=\binom{2 k}{k}
$$

as required.

3. Acknowledgements

The author wishes to thank Jim Propp and Vic Reiner for making him aware of their suspicions via the Dynamical Algebraic Combinatorics mailing list.

References

[PPR09] Kyle Petersen, Pasha Pylyavskyy, and Brendon Rhoades. Promotion and cyclic sieving via webs. Journal of Algebraic Combinatorics, 30:19-41, 2009.
[RSW04] Victor Reiner, Dennis Stanton, and Dennis White. The Cyclic Sieving Phenomenon. Journal of Combinatorial Theory, Series A, 108:17-50, 2004.
[Sta] Richard P. Stanley. Catalan Addendum. New Problems for Enumerative Combinatorics, Vol. 2. http://math.mit.edu/~rstan/ec/catadd.pdf
[Wil06] Herbert S. Wilf. generatingfunctionology. A. K. Peters, Ltd., Natick, 2006.
Department of Mathematics, University of Zürich, Winterthurerstrasse 190, 8050 Zürich, Switzerland

