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Abstract. Based on computational experiments, Jim Propp and Vic Reiner
suspected that there might exist a sequence of combinatorial objects Xn, each

carrying a natural action of the cyclic group Cn−1 of order n−1 such that the

triple
(
Xn, Cn−1,

1
[n+1]q

[2n
n

]
q

)
exhibits the cyclic sieving phenomenon. We

prove their suspicion right.

1. Introduction

1.1. The Cyclic Sieving Phenomenon. Reiner, Stanton and White have ob-
served that the following situation often occurs: one has a combinatorial object X,
a cyclic group C that acts on X and a “nice” polynomial X(q) whose evaluations at
|C|-th roots of unity encode the cardinalities of the fixed point sets of the elements
of C acting on X. They termed this the cyclic sieving phenomenon.

Definition 1.1 ([RSW04]). Let X be a finite set carrying an action of a cyclic group
C and let X(q) be a polynomial in q with nonnegative integer coefficients. Fix an
isomorphism ω from C to the set of |C|-th roots of unity, that is an embedding ω :
C ↪→ C∗. We say that the triple (X,C,X(q)) exhibits the cyclic sieving phenomenon
(CSP) if

|{x ∈ X : c(x) = x}| = X(q)q=ω(c) for every c ∈ C.

In particular, if (X,C,X(q)) exhibits the CSP then |X| = X(1). So X(q) is a
q-analogue of |X|.

1.2. Catalan numbers. One of the most famous number sequences in combi-
natorics is the sequence 1, 1, 2, 5, 14, 42, 132, . . . of Catalan numbers given by the
formula

Cn :=
1

n + 1

(
2n

n

)
.

A vast variety of combinatorial objects are counted by the Catalan number Cn, for
example the set of triangulations of a convex (n + 2)-gon and the set of noncross-
ing matchings of {1, 2, . . . , 2n}. The (MacMahon) q-Catalan number Cn(q) is the
natural q-analogue of Cn, defined as

Cn(q) :=
1

[n + 1]q

[
2n

n

]
q

,

where [n]q := 1 + q+ q2 + . . .+ qn−1, [n]q! := [1]q[2]q · · · [n]q and
[
n
k

]
q

:=
[n]q !

[n−k]q ![k]q !
.

It is a polynomial in q with nonnegative integer coefficients.

The q-Catalan number has the distinction of occurring in two entirely different
CSPs for Catalan objects:

Theorem 1.2 ([RSW04, Theorem 7.1]). Let ∆n be the set of triangulations of a
convex (n + 2)-gon and let C∆n be the cyclic group of order n + 2 acting on ∆n by
rotation. Then (∆n, C∆n , Cn(q)) exhibits the cyclic sieving phenomenon.
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Theorem 1.3 ([PPR09, Theorems 1.4 and 1.5]). Let Mn be the set of noncross-
ing matchings of [2n] := {1, 2, . . . , 2n} and let CMn

be the cyclic group of order
2n acting on Mn by rotation. Then (Mn, CMn , Cn(q)) exhibits the cyclic sieving
phenomenon.

Computational experiments by Jim Propp and Vic Reiner suggested that substi-
tuting an (n − 1)-th root of unity into Cn(q) always yields a positive integer. So
they suspected that there might also be cyclic sieving phenomenon involving Cn(q)
and a cyclic group of order n − 1. The main result of this note proves that their
suspicion is correct.

Theorem 1.4. For any n > 0, there exists an explicit set Xn that carries an action
of the cyclic group CXn of order n−1 such that the triple (Xn, CXn , Cn(q)) exhibits
the cyclic sieving phenomenon.

2. Proof of Theorem 1.4

The first order of business is to define the set Xn. Call a subset of [m] a ball if
it has cardinality 1 and an arc if it has cardinality 2. Define a (1, 2)-configuration
on [m] as a set of pairwise disjoint balls and arcs. Say that a (1, 2)-configuration F
has a crossing if it contains arcs {i1, i2} and {j1, j2} with i1 < j1 < i2 < j2. If F
has no crossing it is called noncrossing.

1
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6 1

2

34
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F g(F )

Figure 1. The noncrossing (1, 2)-configuration F =
{{1, 3}, {4, 5}, {6}} of [6] and its rotation g(F ).

For n > 0, define Xn to be the set of noncrossing (1, 2)-configurations of [n − 1].
This is a corrected variant of (e8) in Stanley’s Catalan addendum [Sta].

Theorem 2.1. |Xn| = Cn for all n > 0.

Proof. To choose a noncrossing (1, 2)-configuration F of [n−1], first pick the number
a of arcs in it. Then pick the subset A of [n − 1] to be covered by arcs in one of(
n−1
2a

)
ways. Then choose a noncrossing matching of A in one of Ca = 1

a+1

(
2a
a

)
ways. Finally choose the set of balls in F from [n − 1]\A in one of 2n−1−2a ways.
Thus

|Xn| =
∑
a≥0

(
n− 1

2a

)
1

a + 1

(
2a

a

)
2n−1−2a =

1

n + 1

(
2n

n

)
.

The last equality can be proven in many ways, for example using “snake oil” [Wil06].
�

Define CXn as the cyclic group of order n − 1 acting on [n − 1] by cyclically
permuting its elements. The corresponding action of CXn on the set of (1, 2)-
configurations on [n− 1] preserves crossings, so it restricts to an action on Xn.
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Proof of Theorem 1.4. We proceed by direct computation. Let

g : [n− 1]→ [n− 1]

i 7→ i + 1 if i 6= n− 1

n− 1 7→ 1

be a generator of CXn and let ω : gk 7→ e
2πik
n−1 be an embedding CXn ↪→ C∗. In

order to show that

(1) |{x ∈ Xn : gk(x) = x}| = Cn(q)
q=e

2πik
n−1

for every k

we simply compute both sides. Without loss of generality, we may assume that k
divides n− 1, say dk = n− 1.

First we compute the right-hand side of (1). If d = 1, it equals Cn(1) = Cn.
If d = 2, it equals

(
n
n−1
2

)
using Cn(q) = 1

[n]q

[
2n
n+1

]
q

and [RSW04, Proposition 4.2

(iii)]. If d 6= 1, 2 it equals
(

2k
k

)
using Cn(q) =

[2n]q
[n]q [n+1]q

[
2n−1

n

]
q

and [RSW04, Propo-

sition 4.2 (iii)].

Next we compute the left-hand side of (1). To choose a noncrossing (1, 2)-configuration
F of [n−1] that fixed by gk, first pick the number a of points in [k] that are covered

by arcs of F . Then pick the subset of [k] covered by arcs of F in one of
(
k
a

)
ways.

The gk-invariance of F then determines the entire subset A of [n − 1] covered by
arcs of F . In particular |A| = da. Next choose a gk-invariant noncrossing matching
of A. These are in natural bijection with the ca-invariant noncrossing matchings
of [da] (where c is the generator of the natural cyclic action on [da]). So using
Theorem 1.3 their number is C da

2
(q)

q=e
2πia
da

(taken to be 0 if da is odd). Finally,

choose the balls of F in [k] in one of 2k−a ways. By gk-invariance these determine
all the balls of F . Putting it all together we have

(2) |{x ∈ Xn : gk(x) = x}| =
∑
a≥0

(
k

a

)
C da

2
(q)

q=e
2πia
da

2k−a

If d = 1, then

|{x ∈ Xn : gk(x) = x}| =
∑
a≥0

(
n− 1

2a

)
1

a + 1

(
2a

a

)
2n−1−2a =

1

n + 1

(
2n

n

)
as in Theorem 2.1.

Now consider the case d > 1. If 2 | a, then

C da
2

(q)
q=e

2πia
da

=

(
a
a
2

)
using [RSW04, Proposition 4.2 (ii)]. If 2 - a, then using

[
2n
n

]
q
−
[

2n
n+1

]
q

= qnCn(q)

and [RSW04, Proposition 4.2 (ii)] gives

C da
2

(q)
q=e

2πia
da

=

(
a

a−1
2

)
if d = 2,

and

C da
2

(q)
q=e

2πia
da

= 0 if d > 2.
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So we calculate that for d = 2 we have

|{x ∈ Xn : gk(x) = x}|

=
∑
a≥0

(n−1
2

2a

)(
2a

a

)
2
n−1
2 −2a +

∑
a≥0

( n−1
2

2a + 1

)(
2a + 1

a

)
2
n−1
2 −2a−1

=

(
n

n−1
2

)
.

For d > 2 we have

|{x ∈ Xn : gk(x) = x}| =
∑
a≥0

(
k

2a

)(
2a

a

)
2k−2a =

(
2k

k

)
as required. �
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