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A NEW CYCLIC SIEVING PHENOMENON FOR CATALAN
OBJECTS

MARKO THIEL

ABSTRACT. Based on computational experiments, Jim Propp and Vic Reiner
suspected that there might exist a sequence of combinatorial objects X, each
carrying a natural action of the cyclic group C;,—1 of order n — 1 such that the

triple <Xn, Cn—1, ﬁ [%ﬂq) exhibits the cyclic sieving phenomenon. We

prove their suspicion right.

1. INTRODUCTION

1.1. The Cyclic Sieving Phenomenon. Reiner, Stanton and White have ob-
served that the following situation often occurs: one has a combinatorial object X,
a cyclic group C that acts on X and a “nice” polynomial X (¢) whose evaluations at
|C|-th roots of unity encode the cardinalities of the fixed point sets of the elements
of C' acting on X. They termed this the cyclic sieving phenomenon.

Definition 1.1 ([RSWO04)]). Let X be a finite set carrying an action of a cyclic group
C and let X(q) be a polynomial in q with nonnegative integer coefficients. Fiz an
isomorphism w from C to the set of |C|-th roots of unity, that is an embedding w :
C — C*. We say that the triple (X, C, X (q)) exhibits the cyclic sieving phenomenon
(CSP) if

Hzx € X : c(z) = 2} = X(q)g=w(c) for every c € C.

In particular, if (X, C, X(q)) exhibits the CSP then |X| = X(1). So X(¢) is a
q-analogue of | X|.

1.2. Catalan numbers. One of the most famous number sequences in combi-
natorics is the sequence 1,1,2,5,14,42,132,... of Catalan numbers given by the

formula
C 1 (2n>
n+1\n

A vast variety of combinatorial objects are counted by the Catalan number C,,, for
example the set of triangulations of a convex (n + 2)-gon and the set of noncross-
ing matchings of {1,2,...,2n}. The (MacMahon) ¢-Catalan number Cy,(q) is the
natural g-analogue of C,, defined as

1 2n
Colq) = —— :
@ =G5, M
where [n]g := 1+q+¢*+...+¢" L, [nlg! := [1]g[2]g - [n]g and [}] = ol

It is a polynomial in ¢ with nonnegative integer coefficients.

The ¢-Catalan number has the distinction of occurring in two entirely different
CSPs for Catalan objects:

Theorem 1.2 ([RSW04, Theorem 7.1]). Let A,, be the set of triangulations of a
convez (n + 2)-gon and let Ca, be the cyclic group of order n+ 2 acting on A, by
rotation. Then (A, Ca, ,Cn(q)) exhibits the cyclic sieving phenomenon.
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Theorem 1.3 ([PPR09, Theorems 1.4 and 1.5]). Let M, be the set of noncross-
ing matchings of [2n] := {1,2,...,2n} and let Cpy, be the cyclic group of order
2n acting on M, by rotation. Then (M,,Cy, ,Cn(q)) exhibits the cyclic sieving
phenomenon.

Computational experiments by Jim Propp and Vic Reiner suggested that substi-
tuting an (n — 1)-th root of unity into C,,(q) always yields a positive integer. So
they suspected that there might also be cyclic sieving phenomenon involving C, (q)
and a cyclic group of order n — 1. The main result of this note proves that their
suspicion is correct.

Theorem 1.4. For anyn > 0, there exists an explicit set X,, that carries an action
of the cyclic group Cx,, of order n—1 such that the triple (X,,Cx,,Cn(q)) exhibits
the cyclic sieving phenomenon.

2. PROOF oF THEOREM [L.4]

The first order of business is to define the set X,,. Call a subset of [m] a ball if
it has cardinality 1 and an arc if it has cardinality 2. Define a (1, 2)-configuration
on [m] as a set of pairwise disjoint balls and arcs. Say that a (1,2)-configuration F'
has a crossing if it contains arcs {i1,i2} and {j1, 72} with i1 < j1 <ig < jo. U F
has no crossing it is called noncrossing.

F g(F)
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FIGURE 1. The noncrossing (1,2)-configuration F =
{{1,3},{4,5},{6}} of [6] and its rotation g(F).
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For n > 0, define X,, to be the set of noncrossing (1, 2)-configurations of [n — 1J.
This is a corrected variant of (%) in Stanley’s Catalan addendum [Stal.

Theorem 2.1. |X,| = C,, for alln > 0.

Proof. To choose a noncrossing (1, 2)-configuration F of [n—1], first pick the number
a of arcs in it. Then pick the subset A of [n — 1] to be covered by arcs in one of
("2;1) ways. Then choose a noncrossing matching of A in one of C, = T}H(zj)
ways. Finally choose the set of balls in F' from [n — 1]\ A4 in one of 2"~172¢ ways.

Thus
n—1 1 2a 1 2n
X — 2n7172a: .
[l Z<2a >a+1(a> n+1(n>

a>0

The last equality can be proven in many ways, for example using “snake oil” [Wil06].
O

Define Cx, as the cyclic group of order n — 1 acting on [n — 1] by cyclically
permuting its elements. The corresponding action of Cx, on the set of (1,2)-
configurations on [n — 1] preserves crossings, so it restricts to an action on X,,.
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Proof of Theorem[1.]} We proceed by direct computation. Let

g:i[n—1—=[n—-1]
ivitlifign—1
n—1—1

be a generator of Cx, and let w : g* "= be an embedding Cy, < C*. In
order to show that
(1) Hz € X, : ¢"(x) = x}| = Cn(q) 2ni for every k

g=en=
we simply compute both sides. Without loss of generality, we may assume that k
divides n — 1, say dk =n — 1.

First we compute the right-hand side of (I). If d = 1, it equals C,(1) = C,.

If d = 2, it equals (&) using C,(q) = [nl] [nzfl]q and [RSW04, Proposition 4.2
2 q

1i)]. , 2 1t equals using C(q) = -5+ 1". | an , Propo-
iii)]. fd # 1,21 Is (2F) using C - [ Y], and [RSW04, P
sition 4.2 (iii)].

Next we compute the left-hand side of . To choose a noncrossing (1, 2)-configuration
F of [n—1] that fixed by g”, first pick the number a of points in [k] that are covered
by arcs of F'. Then pick the subset of [k] covered by arcs of F' in one of (’;) ways.
The gF-invariance of F' then determines the entire subset A of [n — 1] covered by
arcs of F'. In particular |A| = da. Next choose a g*-invariant noncrossing matching
of A. These are in natural bijection with the c®-invariant noncrossing matchings
of [da] (where c is the generator of the natural cyclic action on [da]). So using
Theorem H their number is C'aa (q)qze% (taken to be 0 if da is odd). Finally,

choose the balls of I in [k] in one of 2¥~% ways. By g*-invariance these determine
all the balls of F. Putting it all together we have

a g=e da
a>0

) e Xu: @) =all =3 (£) Cuo),_ s

If d =1, then

o e Xn:gb @) =a} =) (n2_a 1) aJlr 1 (2;)2n_1_2a - n«1k1<2:>

as in Theorem [2.11

Now consider the case d > 1. If 2 | a, then

a
Claa (Q)q:e e T (;)

using [RSW04, Proposition 4.2 (ii)]. If 2 { a, then using ﬁ?]q — [f_fl]q = q"Cy(q)
and [RSWO04, Proposition 4.2 (ii)] gives

2

Cua(q) _ 2ia = (aal) if d =2,

q=e da

and
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So we calculate that for d = 2 we have
H{z € X, : gk(x) =z}

n—1 n—1
= Z T (2 9" 20 4 Z 2 2a +1 95t —2a-1
2a a 20+ 1 a
a>0 a>0

For d > 2 we have

{z € X, : () = 2}| = Z% <2l; ) <2j) oh—2a _ <2kk:>

as required. O
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