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Abstract

We construct several classes of completely regular codes with different parame-
ters, but identical intersection array. Given a prime power q and any two natural
numbers a, b, we construct completely transitive codes over different fields with
covering radius ρ = min{a, b} and identical intersection array, specifically, one
code over Fqr for each divisor r of a or b. As a corollary, for any prime power
q, we show that distance regular bilinear forms graphs can be obtained as coset
graphs from several completely regular codes with different parameters.
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1. Introduction

Let Fq be a finite field of the order q and F∗
q = Fq \ {0}. A q-ary linear code

C of length n is a k-dimensional subspace of Fn
q . Given any vector v ∈ Fn

q ,
its distance to the code C is d(v, C) = minx∈C{d(v,x)}, the minimum distance
of the code is d = minv∈C{d(v, C\{v})} and the covering radius of the code
C is ρ(C) = maxv∈Fn

q
{d(v, C)}. We say that C is a [n, k, d; ρ]q code. The

Hamming weight wt(v) of a vector v ∈ Fn
qwt() is the number of its nonzero

entries, i.e. wt(v) = d(v, 0). Let D = C + x be a coset of C, where + means
the component-wise addition in Fq. The weight wt(D) of D is the minimum
weight of the vectors in D. The weight distribution of D is the the (n+1)-tuple
(w0, w1, . . . , wn) of nonnegative integers, where wi is the number of codewords
of D of weight i

For a given q-ary code C with covering radius ρ = ρ(C) define

C(i) = {x ∈ Fn
q : d(x, C) = i}, i = 1, 2, ..., ρ.

∗Corresponding author

Preprint submitted to Elsevier March 31, 2017



Say that two vectors x and y are neighbors if d(x,y) = 1. For two vectors
x = (x1, . . . , xn) and y = (y1, . . . , yn) over Fq denote by ⟨x,y⟩ their inner
product over Fq, i.e.

⟨x,y⟩ = x1y1 + . . .+ xnyn.

The linear code C⊥ = {v | ⟨v,x⟩ = 0 for all x ∈ C} is the dual code of C. Let
s(C) be the outer distance of C, i.e. the number of different nonzero weights of
codewords in the dual code C⊥.

Definition 1.1. [1] A q-ary code C with covering radius ρ is called completely
regular if the weight distribution of any coset D of C is uniquely defined by the
minimum weight of D.

An equivalent definition of completely regular codes is due to Neumaier [2].

Definition 1.2. [2] A q-ary code C is completely regular, if for all l ≥ 0 every
vector x ∈ C(l) has the same number cl of neighbors in C(l − 1) and the same
number bl of neighbors in C(l + 1). Define al = (q − 1)n − bl − cl and set
c0 = bρ = 0. Denote by {b0, . . . , bρ−1; c1, . . . , cρ} the intersection array of C.

Let M be a monomial matrix, i.e. a matrix with exactly one nonzero entry
in each row and column. If q is a prime, then Aut(C) consist of all monomial
(n×n)-matrices M over Fq such that cM ∈ C for all c ∈ C. If q is a power of a
prime number, then Aut(C) also contains any field automorphism of Fq (which
can be seen as maps of Fn

q into itself by acting on each of the coordinates)
preserving C. The group Aut(C) acts on the set of cosets of C in the following
way: for all σ ∈ Aut(C) and for every vector v ∈ Fn

q we have (v+C)σ = vσ+C.

Definition 1.3. [3, 4] Let C be a linear code over Fq with covering radius ρ.
Then C is completely transitive if Aut(C) has ρ+ 1 orbits in its action on the
cosets of C.

Since two cosets in the same orbit should have the same weight distribution,
it is clear, that any completely transitive code is completely regular.

Definition 1.4. [5] Let C be a q-ary code of length n and let ρ be its covering
radius. We say that C is uniformly packed in the wide sense if there exist
rational numbers α0, . . . , αρ such that for any v ∈ Fn

q

ρ∑
k=0

αk fk(v) = 1, (1)

where fk(v) is the number of codewords at distance k from v.

Completely regular and completely transitive codes are classical subjects in
algebraic coding theory, which are closely connected with graph theory, combi-
natorial designs and algebraic combinatorics. Existence, construction and enu-
meration of all such codes are open hard problems (see [6, 7, 8, 2] and references
there).
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In this paper we extend our previous construction [9] connecting it with [10]
and, as a result, we obtain, for any prime power q, several different infinite
classes of completely regular codes with different parameters n, k, q and with
identical intersection arrays. This gives different presentations, as coset graphs,
of distance-regular bilinear form graphs.

Under the same conditions, an explicit construction of an infinite family of
q-ary uniformly packed codes (in the wide sense) with covering radius ρ, which
are not completely regular, is also given.

2. Preliminary results

Lemma 2.1. [2] Let C be a linear completely regular code with intersection
array {b0, . . . , bρ−1; c1, . . . , cρ}, and let µi be the number of cosets of C of weight
i. Then

µi−1bi−1 = µici.

Definition 2.2. For two matrices A = [ar,s] and B = [bi,j ] over Fq define a
new matrix H which is the Kronecker product H = A⊗B, where H is obtained
by replacing any element ar,s in A by the matrix ar,sB.

Consider the matrix H = A⊗B and let C, CA and CB be the codes over Fq

which have, respectively, H, A and B as parity check matrices. Assume that A
and B have size ma × na and mb × nb, respectively. Clearly, the codewords in
code C are presented as matrices [c] of size nb × na:

[c] =


c1,1 . . . c1,na

c2,1 . . . c2,na

...
...

...
cnb,1 . . . cnb,na

 =


c1
c2
...

cnb

 =
[
c(1) c(2) . . . c(na)

]
, (2)

where ci,j = ar,jbs,i, cr is the rth row vector of the matrix C and c(ℓ) is its ℓth
column.

The following result was obtained in [9].

Theorem 2.3. Let C(H) be the [n, k, d; ρ]q code with parity check matrix H =
A ⊗ B where A and B are parity check matrices of Hamming [na, ka, 3]q and
[nb, kb, 3]q codes, CA and CB, respectively, where na = (qma − 1)/(q − 1) ≥
3, nb = (qmb − 1)/(q − 1) ≥ 3, ka = na −ma, kb = nb −mb and where

n = nanb, k = n−mamb, d = 3, ρ = min{ma,mb}.

Then the code C is completely transitive and, therefore, completely regular with
covering radius ρ = min{ma,mb} and intersection numbers

bℓ =
(qma − qℓ)(qmb − qℓ)

(q − 1)
, ℓ = 0, . . . , ρ− 1,

cℓ =qℓ−1 · q
ℓ − 1

q − 1
, ℓ = 1, . . . , ρ.

(3)
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Definition 2.4. Let C be the [n, k, d; ρ]q code with parity check matrix H where
1 ≤ k ≤ n − 1 and d ≥ 3. Denote by Cr the [n, k, d]qr code over Fqr with the
same parity check matrix H. Say that code Cr is obtained by lifting C to Fqr .

In [10] we proved the following result

Theorem 2.5. Let Cr(H
q
m) be the [n, n −m, 3; ρ]qr code of length n = (qm −

1)/(q−1) over the field Fqr obtained by lifting a q-ary perfect [n, n−m, 3]q code
C(Hq

m) with parity check matrix Hq
m. Then, the code Cr(H

q
m) is completely

regular with covering radius ρ = min{m, r} and intersection numbers given by
(3) taking ma = m and mb = r.

3. Extending the Kronecker product construction

Recall that by C(H) we denote the code defined by the parity check matrix
H, by Hq

m we denote the parity check matrix of the q-ary Hamming [n, n −
m, 3; 1]q code C = C(Hq

m) of length n = (qm − 1)/(q − 1), and by Cr(H
q
m) we

denote the code (of the same length n = (qm − 1)/(q − 1)) obtained by lifting
C(Hq

m) to the field Fqr .
Considering the above Kronecker construction (Theorem 2.3) we could see

that the alphabets of both matrices A = [ai,j ] and B should be compatible to
each other in the sense that the multiplication ai,jB can be carried out. To
have this compatibility it is enough that, say, the matrix A is over Fqu and B
is over Fq. First, we consider the covering radius of the resulting codes.

Lemma 3.1. Let C(Hqu

ma
) and C(Hq

mb
) be two Hamming codes with parameters

[na, na−ma, 3]qu and [nb, nb−mb, 3]q, respectively, where na = (quma−1)/(qu−
1), nb = (qmb − 1)/(q− 1), q is a prime power, ma,mb ≥ 2, and u ≥ 1. Then
the code C with parity check matrix H = Hqu

ma
⊗Hq

mb
, the Kronecker product of

Hqu

ma
and Hq

mb
, has covering radius ρ = min{uma, mb}.

Proof. Assume that the matrices H, Hqu

ma
, and Hq

mb
have columns hi, aj , and

bs, respectively, i.e.

H = [h1| · · · |hn], Hqu

ma
= [a1| · · · |ana ], Hq

mb
= [b1| · · · |bnb

].

We have to prove that any column vector x ∈ (Fqu)
mamb can be presented as a

linear combination of not more than ρ columns of H.
By construction the column hi is

hT
i = [a1,jb

T
s , a2,jb

T
s , . . . , ama,jb

T
s ],

where i = 1, . . . , n, n = nanb, j = 1, . . . , na s = 1, . . . , nb and (·)T means
transposition. By definition, the matrix Hq

mb
contains as column vectors any

vector y ∈ (Fq)
mb over the ground field Fq, up to multiplication by scalars of

Fq. Vectors x are arbitrary vectors over the extended field Fqu and each one
can be presented as a linear combination of u or less vectors from Hq

mb
. Hence
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for any choice of x = (x1, . . . ,xma) we can always take not more than uma

columns of H to have ma equalities of the type

xi =

u∑
s=1

αsbis , i = 1, . . . ,ma, αi ∈ Fqu ,

implying that
ρ ≤ uma.

From the other side, by permuting the rows of H, the column hi can be presented
(with other index, say, i′) as follows:

hT
i′ = [b1,saj , b2,saj , . . . , bmb,saj ].

and with the same argumentation as before we obtain

ρ ≤ mb.

Since in both cases the bounds can be reached by appropriate choices of vector
x, we obtain the result. 2

We also give several simple facts from [9, 10], which will be used in the proof
of the forthcoming theorem. As we said before (2), any codeword c ∈ C(H),
where H = A⊗B, can be seen as a (nb × na)-matrix [c].

For any vector v of length n = nb × na presented as a (nb × na)-matrix [v]
define its syndrome which, in a matrix representation, is a (mb ×ma) matrix

Sv = [(A⊗B)vT ] = B[v ]AT .

If we compute the syndrome of a codeword [c] of the code C(H) we obtain
Sc = [(A⊗B)cT ] = B[ c ]AT = [0].

Fix a 1− 1 mapping ν from Fqu to (Fq)
u writing for any element a ∈ Fqu its

Fq-presentation ν(a):

ν(a) = [a0, a1, . . . , au−1] ←→ a =

u−1∑
i=0

aiνi,

where ν0, ν1, . . . , νu−1 is a fixed basis in Fqu over Fq. Finally, extend the
map ν to vectors v = (v1, . . . , vn) ∈ (Fqu)

n by the obvious way: ν(v) =
[ν(v1) | · · · | ν(vn)].

Definition 3.2. Given a vector v ∈ (Fqu)
n, with syndrome Sv, which is a

(mb×ma) matrix over Fqu denote by νv the (mb× (uma)) matrix obtained from
Sv using the map ν in its rows.

We need the following results.
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Lemma 3.3. Let x,y ∈ (Fqu)
n be two vectors with syndromes Sx and Sy and

corresponding matrices νx and νy, respectively. Then, for any non singular
mb ×mb matrix K over Fq, the two equalities

(νx)
TK = νTy and (Sx)

TK = ST
y

are valid (or do not valid), simultaneously.

Proof. Straightforward.

Lemma 3.4. If v ∈ C(ℓ), then rank(νv) = ℓ.

Proof. The proof is similar to the case of codes over the same alphabet [9].

Lemma 3.5. Let C = C(H) be a code with parity check matrix H = Hqu

ma
⊗Hq

mb
.

Let µi be the number of cosets in C(i). Then

µi =
Qi(q

mb)Qi(q
uma)

Qi(qi)
,

where Qi(q
j) = (qj − 1)(qj − q) · · · (qj − qi−1).

Proof. From Lemma 3.4 for all vectors v ∈ C(ℓ) we have rank(νv) = ℓ. All
vectors in the same coset C + v have the same syndrome νv. Therefore, the
number of different cosets in C(i) is equal to the number of different syndromes
and so the number of different (mb × (uma)) matrices over Fq of rank i. This
number is well known [11] and gives the statement.

The following theorem generalizes the results of [9, 10].

Theorem 3.6. Let C(Hqu

ma
) and C(Hq

mb
) be two Hamming codes with param-

eters [na, na −ma, 3]qu and [nb, nb −mb, 3]q, respectively, where na = (quma −
1)/(qu − 1), nb = (qmb − 1)/(q − 1), q is a prime power, ma,mb ≥ 2, and
u ≥ 1.

(i) The code C with parity check matrix H = Hqu

ma
⊗ Hq

mb
, the Kronecker

product of Hqu

ma
and Hq

mb
, is a completely transitive, and so completely

regular, [n, k, d; ρ]qu code with parameters

n = na nb, k = n−ma mb, d = 3, ρ = min{uma, mb}. (4)

(ii) The code C has the intersection numbers:

bℓ =
(quma − qℓ)(qmb − qℓ)

(q − 1)
, ℓ = 0, 1, . . . , ρ− 1,

and
cℓ = qℓ−1 q

ℓ − 1

q − 1
, ℓ = 1, 2, . . . , ρ.
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(iii) The lifted code Cmb
(Hq

uma
) is a completely regular code with the same

intersection array as C.

Proof. The proof follows from similar arguments which we used in the two
previous papers [9, 10].

First, from Lemma 3.1, we have that ρ = min{mb, uma}.
The next step is to prove that the code C = C(A⊗B) is completely transitive.

Here we use Lemma 3.3 in order to guaranty the existence of the invertible
mb ×mb matrix K over Fq such that the equality ST

x K = ST
y holds where Sx

and Sy are the syndromes of vectors x and y over Fqu .
Denote by CA and CB the codes over Fqu , with parity check matrices A and

B, respectively.
To prove that C is a completely transitive code it is enough to show that

starting from two vectors x,y ∈ C(ℓ), 1 ≤ ℓ ≤ ρ, there exists a monomial
matrix φ ∈ Aut(C) such that xφ ∈ y + C or, in terms of syndromes,

Sxφ = [(A⊗B)(xφ)T ] = [(A⊗B)(y)T ] = Sy.

Let ϕ1 be any monomial (na × na) matrix and ϕ2 be any monomial (nb × nb)
matrix. It is well known [12] that

(Aϕ1)⊗ (Bϕ2) = (A⊗B)(ϕ1 ⊗ ϕ2)

and ϕ1 ⊗ ϕ2 is a monomial (nanb × nanb) matrix.
Note that if φ ∈ Aut(C) then HφT is a parity check matrix for C when H

is. Therefore, taking the specific case where ϕT
1 ∈ Aut(CA) and ϕT

2 ∈ Aut(CB)
we conclude that (ϕT

1 ⊗ ϕT
2 )

T ∈ Aut(C), or the same ϕ1 ⊗ ϕ2 ∈ Aut(C).
The two given vectors x,y belong to C(ℓ) and, from Lemma 3.4, rank(Sx) =

rank(Sy) = ℓ, where Sx and Sy are the syndrome of x and y, respectively.
To prove that C is a completely transitive code we show that there exists a
monomial matrix ϕT ∈ Aut(CB) such that

(A⊗B)yT = (A⊗Bϕ)xT

= (A⊗B)((Ina ⊗ ϕ)xT )

where Ina
is the na × na identity matrix.

Since ℓ ≤ ρ ≤ mb, it is straightforward to find an invertible (mb×mb) matrix
K over Fq such that νTx K = νTy . By Lemma 3.3 we conclude that ST

x K = ST
y .

Since B is the parity check matrix of a Hamming code, the matrix KT B is
again a parity check matrix for a Hamming code and KTB = Bϕ for some
monomial matrix ϕ. Moreover, if GB is the corresponding generator matrix for
this Hamming code, i.e. BGT

B = [0], then (Bϕ)GT
B = (KTB)GT

B = [0] and so
ϕT ∈ Aut(CB).

Finally, we have

(A⊗B)yT = Sy = KT Sx = KT (B[x]AT )

= Bϕ[x]AT = (A⊗Bϕ)xT

= (A⊗B)((Ina
⊗ ϕ)xt).
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Since the code C is completely transitive we conclude that C is completely
regular with the parameters (4). This gives (i).

Now we have to write down the expressions for all intersection numbers. In
this case we use the same approach as in [10]. We begin computing b0, so the
number of vectors in C(1) which are at distance one from one given vector in
C. Without loss of generality (since C is a linear code) we can fix the zero
codeword 0 in C and count how many different vectors of weight one there are
in C(1). The answer is immediately

b0 = n (qu − 1) =
(quma − 1)(qmb − 1)

(q − 1)
.

Since the code C has minimum distance d > 2, we have c1 = 1.
In general, let 1 ≤ i ≤ ρ − 1. Take a (uma ×mb)-matrix E of rank i, over

Fq, and compute the value bi as the number of different (uma ×mb)-matrices
Ē, over Fq, of rank i+ 1 ≤ ρ, such that E −E has only one nonzero row. This
value is well known ([11, 10]):

bi =
(quma − qi)(qmb − qi)

(q − 1)
.

Now, using the expressions for bi−1, µi and µi−1 from Lemmas 2.1 and 3.5, we
obtain

ci =
µi−1bi−1

µi
= qi−1 · (q

i − 1)

q − 1
,

i.e., we have (ii).
The last statement (iii) follows directly from Theorem 2.5. 2

Remark 3.7. We have to remark here that in the statement (iii) we can not
choose the code Cmb

(Hqu

ma
) (instead of Cmb

(Hq
uma

)), which seems to be natural.
We emphasize that the codes Cmb

(Hq
uma

) and Cmb
(Hqu

ma
) are not only differ-

ent completely regular codes, but the corresponding coset graphs are distance-
regular graphs with different intersection arrays. So, the code Cmb

(Hq
uma

) suits
to the codes from (i) in the sense that it has the same intersection array. For
example, the code C2(H

22

3 ) induces a distance-regular graph with intersection
array {315, 240; 1, 20} and the code C2(H

2
6 ) gives a distance-regular graph with

intersection array {189, 124; 1, 6}. To reach these results in both cases we use
the same Theorem 2.5.

Remark 3.8. The above Theorem 3.6 can not be extended to the more general
case when the alphabets Fqa and Fqb of component codes CA and CB , respec-
tively, neither Fqa is a subfield of Fqb or vice versa Fqb is a subfield of Fqa . We
illustrate it by considering the smallest nontrivial example. Take two Hamming
codes, the [5, 3, 3; 1]4 code CA over F22 with parity check matrix H22

2 , and the
[9, 7, 3; 1]8 code CB over F23 with parity check matrix H23

2 . Then the resulting
[45, 41, 3; 3]64 code C = C(H22

2 ⊗ H23

2 ) over F26 is not even uniformly packed
in the wide sense, since it has the covering radius ρ = 3 and the outer distance
s = 7, which can be checked by considering the parity check matrix of C.
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4. Completely regular codes with different parameters, but the same
intersection array

In [10, Theo. 2.11] it is proved that by lifting a q-ary Hamming code C(Hq
m)

to Fqs we obtain a completely regular code Cs(H
q
m) which is not necessarily

isomorphic to the code Cm(Hq
s ). However, both codes Cs(H

q
m) and Cm(Hq

s )
have the same intersection array. As we saw above, the code obtained by the
Kronecker product construction, or our extension for the case when the compo-
nent codes have different alphabets, can have the same intersection array. The
next statements are the main results of our paper.

Theorem 4.1. Let q be any prime power and let a, b, u be any natural numbers.
Then:
1) There exist the following completely regular codes with different parameters

[n, k, d; ρ]qr , where d = 3 and ρ = min{ua, b}:
(i) Cua(H

q
b ) over Fqua with n = qb−1

q−1 , k = n− b;

(ii) Cb(H
q
ua) over Fqb with n = qua−1

q−1 , k = n− ua;

(iii) C(Hq
b ⊗Hq

ua) over Fq with n = qb−1
q−1 ×

qua−1
q−1 , k = n− bua;

(iv) C(Hq
b ⊗Hqa

u ) over Fqa with n = qb−1
q−1 ×

qua−1
qa−1 , k = n− bu;

(v) C(Hq
b ⊗Hqu

a ) over Fqu with n = qb−1
q−1 ×

qua−1
qu−1 , k = n− ba;

2) All codes above have the same intersection numbers

bℓ =
(qb − qℓ)(qua − qℓ)

(q − 1)
, ℓ = 0, . . . , ρ− 1, cℓ = qℓ−1 · q

ℓ − 1

q − 1
, ℓ = 1, . . . , ρ.

3) All codes above coming from Kronecker constructions are completely transi-
tive.

Proof. The first two codes are obtained by the known lifting construction of
the corresponding perfect codes and they all come from Theorem 2.5. The
third code is obtained by the known Kronecker product construction (both
components have the same alphabet) and come from Theorem 2.3. The two
last codes are obtained by the Kronecker construction when the two component
codes have different alphabets (q and, qa or qu)) and come from Theorem 3.6.

For every code we find the covering radius and compute the intersection
array using the corresponding expressions given in the quoted theorems. All
these codes have covering radius ρ = min{ua, b}.

Complete transitivity of all codes coming from Kronecker constructions fol-
lows from Theorem 2.3 and Theorem 3.6. 2

It is easy to see that the number of different completely transitive (and,
therefore, completely regular) codes with different parameters and the same in-
tersection array is growing when n is growing and q is fixed. To be more specific
we summarize the results in the following Corollary, which comes straightfor-
wardly from the above Theorem 4.1.

Denote by τ(n) the number of divisors of n.
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Corollary 4.2. Given a prime power q choose any two natural numbers a, b > 1.
For each divisor r of a or b the following τ(a)+τ(b) different codes with identical
intersection array and covering radius ρ = min{a, b}, are constructed:

(i) Completely transitive codes C(Hqr

r̄ ⊗Hq
b ) over Fqr , for any proper divisor

r of a and rr̄ = a.
(ii) Completely transitive codes C(Hq

a ⊗Hqr

r̄ ) over Fqr , for any proper divisor
r of b and rr̄ = b.

(iii) Completely regular codes Ca(H
q
b ) over Fqa and Cb(H

q
a) over Fqb .

5. Uniformly packed codes

Recall that a trivial repetition q-ary code of length n is a perfect code if and
only if q = 2 and n is odd. Denote by Rq

n = [In−1|−1T] the parity check matrix
of the repetition q-ary code of length n . The following statement generalizes
the corresponding result of [9].

Theorem 5.1. Let C(Hqu

m ) be the qu-ary (perfect) Hamming [n, k, 3; 1]qu code
of length na = (qum − 1)/(qu − 1) and C(Rq

nb
) be the repetition q-ary code of

length nb, where q is a prime power, u ≥ 1, m ≥ 2, 4 ≤ nb ≤ (qu − 1)na + 1.

• The code C = C(Hqu

m ⊗ Rq
nb
) is a qu-ary uniformly packed (in the wide

sense) [n, k, d; ρ]qu code with parameters

n = na nb, k = n−m (nb − 1), d = 3, ρ = nb − 1. (5)

• The code C is not completely regular.

Proof. First, we find the outer distance of code C. Using [9, Lemma 4] we
see that any linear combination of rows of Hqu

m has weight either qu(m−1) or
zero. By the same arguments used in [9, Theo. 3] (any row of the parity check
matrix of C(Rq

nb
) adds one more value to the weight of C⊥) we conclude that

s(C) = nb − 1.
Now, about the covering radius of code C, we claim that for the case nb ≤

(qu − 1)na + 1 we have ρ = nb − 1.
Since ρ(C) ≤ s(C) [1], it is enough to show that ρ(C) ≥ nb − 1. Take

an arbitrary column vector x = (x1,x2, . . . ,xnb−1)
T where xi is a vector of

length m over Fqu . Present this vector as a linear combination of columns of
Hqu

m ⊗ Rq
nb

. For any vector xi there is a column of Hqu

m which differs from xi

by a scalar. Choose as vectors x1,x2, . . . ,xnb−1 all possible different vectors of
length m over Fqu . This vector can be presented as a linear combination, at
least, of nb − 1 columns of Hqu

m ⊗Rq
nb

. Hence, ρ ≥ nb − 1 as we wanted.
Since (qu − 1)na + 1 = qum for the case when nb ≥ (qu − 1)na + 2, we can

not choose all vectors xi such that they are different. So, if nb = (qu−1)na+2,
for example, then two subvectors xi and, say, xj should be the same. Now
take as columns of Hqu

m ⊗Rq
nb

the column h = (h1, . . . ,hnb−1)
T with the same

10



subcolumns hi = hj . As a result we obtain ρ = nb−2, but s = nb−1, implying
that the resulting code is not uniformly packed [13].

To complete the proof we have to show that C is not completely regular. It is
enough to find an specific counterexample. Take q = 2, u = 1,m = 3, nb = 4 and
consider as C(Hqu

m ) the Hamming [7, 4, 3; 1]2 code and as C(Rq
nb
) the repetition

[4, 1, 4; 1]2] code. The resulting [28, 19, 3; 3]2 code is not completely regular [9].
2

6. Coset distance-regular graphs

Following [6], we give some facts on distance-regular graphs. Let Γ be a finite
connected simple graph (i.e., undirected, without loops and multiple edges). Let
d(γ, δ) be the distance between two vertices γ and δ (i.e., the number of edges in
the minimal path between γ and δ). The diameter D of Γ is its largest distance.
Two vertices γ and δ from Γ are neighbors if d(γ, δ) = 1. Define

Γi(γ) = {δ ∈ Γ : d(γ, δ) = i}.

An automorphism of a graph Γ is a permutation π of the vertex set of Γ such
that, for all γ, δ ∈ Γ we have d(γ, δ) = 1 if and only if d(πγ, πδ) = 1. Let Γi

be the graph with the same vertices of Γ, where an edge (γ, δ) is defined when
the vertices γ, δ are at distance i in Γ. Clearly, Γ1 = Γ. A graph is called
complete (or a clique) if any two of its vertices are adjacent. A connected graph
Γ with diameter D ≥ 3 is called antipodal if the graph ΓD is a disjoint union of
cliques [6].

Definition 6.1. [6] A simple connected graph Γ is called distance-regular if it
is regular of valency k, and if for any two vertices γ, δ ∈ Γ at distance i apart,
there are precisely ci neighbors of δ in Γi−1(γ) and bi neighbors of δ in Γi+1(γ).
Furthermore, this graph is called distance-transitive, if for any pair of vertices
γ, δ at distance d(γ, δ) there is an automorphism π from Aut(Γ) which moves
this pair (γ, δ) to any other given pair γ′, δ′ of vertices at the same distance
d(γ, δ) = d(γ′, δ′).

The sequence {b0, b1, . . . , bD−1; c1, c2, . . . , cD}, where D is the diameter of
Γ, is called the intersection array of Γ. The numbers ci, bi, and ai, where ai =
k−bi−ci, are called intersection numbers. Clearly b0 = k, bD = c0 = 0, c1 = 1.

Let C be a linear completely regular code with covering radius ρ and inter-
section array {b0, . . . , bρ−1; c1, . . . cρ}. Let {B} be the set of cosets of C. Define
the graph ΓC , which is called the coset graph of C, taking all different cosets
B = C + x as vertices, with two vertices γ = γ(B) and γ′ = γ(B′) adjacent if
and only if the cosets B and B′ contain neighbor vectors, i.e., there are v ∈ B
and v′ ∈ B′ such that d(v,v′) = 1.

Lemma 6.2. [6, 14] Let C be a linear completely regular code with covering
radius ρ and intersection array {b0, . . . , bρ−1; c1, . . . cρ} and let ΓC be the coset
graph of C. Then ΓC is distance-regular of diameter D = ρ with the same
intersection array. If C is completely transitive, then ΓC is distance-transitive.

11



From all different completely transitive codes described above in Theorem
4.1, we obtain distance-transitive graphs with classical parameters (see [6]).
These graphs have quab vertices, diameter D = min{ua, b}, and intersection
array given by

bl =
(qua − ql)(qb − ql)

(q − 1)
; cl = ql−1 q

l − 1

q − 1
,

where 0 ≤ l ≤ D.
Notice that bilinear forms graphs [6, Sec. 9.5] have the same parameters

and are distance-transitive too. These graphs are uniquely defined by their pa-
rameters (see [6, Sec. 9.5]). Therefore, all graphs coming from the completely
regular and completely transitive codes described in Theorem 4.1 are bilinear
forms graphs. We did not find in the literature (in particular in [15], where the
association schemes, formed by bilinear forms, have been introduced), the de-
scription of these graphs, as many different coset graphs of different completely
regular codes. It is also known that these graphs are not antipodal and do not
have antipodal covers (see [6, Sec. 9.5]). This can also be easily seen from the
proof of Lemma 3.1. Indeed, a given vector x ∈ C(ρ) has many neighbors in
C(ρ).

Theorem 6.3. Let C1, C2, . . ., Ck be a family of linear completely transitive
codes constructed by Theorem 3.6 and let ΓC1 , ΓC2 , . . . ,ΓCk

be their correspond-
ing coset graphs. Then:

(i) Any graph ΓCi
is a distance-transitive graph, induced by bilinear forms.

(ii) If any two codes Ci and Cj have the same intersection array, then the
graphs ΓCi

and ΓCj
are isomorphic.

(iii) If the graph ΓCi
has qm vertices, where m is not a prime, then it can

be presented as a coset graph by several different ways, depending on the
number of factors of m.

Proof. The proofs are straightforward. Given a completely transitive code Ci,
constructed by Theorem 3.6, we conclude that the corresponding coset graph
is distance-transitive with the same intersection array (Lemma 6.2). Then, by
using [6, Sec. 9.5], we conclude that this graph is uniquely defined by their
parameters and, therefore, it is induced by bilinear forms. Since two codes
Ci and Cj with the same intersection arrays induce two coset graphs with the
same parameters, we conclude that the corresponding graphs ΓCi

and ΓCj
are

isomorphic. The last statement follows from Theorem 4.1, since it gives codes
with the same intersection array. 2

7. Conclusions

In the current paper we use the Kronecker product construction [9] for the
case when component codes have different alphabets and connect the result-
ing completely regular codes with codes obtained by lifting q-ary perfect codes.
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This gives several different infinite classes of completely regular codes with dif-
ferent parameters and with identical intersection arrays. Given a prime power
q and any two natural numbers a, b, we construct completely transitive codes
over different fields with covering radius ρ = min{a, b} and identical intersec-
tion array, specifically, one code over Fqr for each divisor r of a or b. We prove
that the corresponding induced distance-regular coset graphs are equivalent.
In other words, the large class of distance-regular graphs, induced by bilinear
forms [15], can be obtained as coset graphs from different non-isomorphic com-
pletely regular codes (either obtained by the Kronecker product construction
from perfect codes over different alphabets, or obtained by lifting perfect codes
[10]). Similar results are obtained for uniformly packed codes in the wide sense.
Under the same conditions, explicit construction of an infinite family of q-ary
uniformly packed codes (in the wide sense) with covering radius ρ, which are
not completely regular, is also given.

Finally, an open question arises: are bilinear forms graphs the only distance-
transitive graphs which have such many different presentations as coset graphs?
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