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Large butterfly Cayley graphs and digraphs

David Bevan†

Abstract

We present families of large undirected and directed Cayley graphs whose construction is
related to butterfly networks. One approach yields, for every large k and for values of d
taken from a large interval, the largest known Cayley graphs and digraphs of diameter k

and degree d. Another method yields, for sufficiently large k and infinitely many values
of d, Cayley graphs and digraphs of diameter k and degree d whose order is exponentially
larger in k than any previously constructed. In the directed case, these are within a linear
factor in k of the Moore bound.

1 Introduction

The goal of the degree–diameter problem is to determine the largest possible order of a graph
or digraph, perhaps restricted to some special class, with given maximum (out)degree and
diameter. For an overview of progress on a wide variety of approaches to this problem, see the
survey by Miller & Širáň [6].

Our concern here is with large Cayley graphs and digraphs. Recall that, for a group G and a
unit-free generating subset S of G, the Cayley digraph of G generated by S has vertex set G and
a directed edge from g to gs for all g ∈ G and s ∈ S. If S is symmetric, i.e. S = S−1, then the
corresponding undirected simple graph is the Cayley graph of G generated by S. The Cayley
(di)graph is thus regular of (out)degree |S| and vertex-transitive.

We are interested in graphs and digraphs of degree d and diameter k, for arbitrary large k and
varying d. If a construction yields graphs of order nd,k, we say that it has asymptotic order f(d, k)
if, for fixed k,

lim
d→∞

nd,k

f(d, k)
= 1.

No graph or digraph can be larger than the corresponding Moore bound. For undirected graphs,
this bound is Md,k = 1 + d

d−2

(

(d − 1)k − 1
)

if d > 2. In the directed case, it is DMd,k =
1

d−1

(

dk+1 − 1
)

if d > 1. In both cases, the Moore bound has asymptotic order dk.
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Previously, for arbitrary degree and diameter, the largest known directed Cayley graphs were

obtained by Vetrı́k [7] and Abas & Vetrı́k [1], whose constructions have asymptotic order k
(

d
2

)k

for even k, and 2k
(

d
2

)k
for odd k. Our construction yields Cayley digraphs whose order is

asymptotically kdk−1. For fixed diameter k > 8, these digraphs are larger than those in [7]
and [1] for every value of d in a large interval. We also construct, for fixed k and infinitely

many values of d, Cayley digraphs whose asymptotic order is dk

e2k
, a factor of 2k−1

e2k2 larger than
those of Abas & Vetrı́k, and within a linear factor in k of the Moore bound.

The undirected case is similar. Previously, the largest known Cayley graphs were obtained by

Macbeth, Šiagiová, Širáň & Vetrı́k [5], whose construction has asymptotic order k
(

d
3

)k
. For

d − k 6≡ 3 (mod 4), we construct Cayley graphs whose order is asymptotically k
(

d
2

)k−1
. For

sufficiently large diameter k, these graphs are larger than those in [5] for every suitable value
of d in a large interval. We also construct, for given k and infinitely many values of d, Cayley

graphs whose asymptotic order is 1
e2k

(

d
2

)k
, a factor of 1

e2k2

(

3
2

)k
larger than those in [5].

Our constructions are based on a two-parameter family of groups. For t > 2, let Zt = Z/tZ be
the additive group of integers modulo t, and for r > 2, let Z r

t denote the product Zt × . . . × Zt,
where Zt occurs r times, considered as an additive group of vectors. Let α be the automor-
phism of Z r

t , defined by α(v0, . . . , vr−1) = (vr−1, v0, . . . , vr−2), that cyclically shifts coordinates
rightwards by one, and consider the semidirect product G = Z

r
t ⋊ Zr, of order rtr, with the

group operation given by (u, s)·(v, s′) = (u+αs(v), s+s′), for u, v ∈ Z
r
t and s, s′ ∈ Zr. We write

elements of G in the form (v0, . . . , vr−1; s), where each vi ∈ Zt and s ∈ Zr. Using this notation,
the group operation is

(u0, . . . ,ur−1; s)·(v0, . . . , vr−1; s′)

= (u0 + vr−s, . . . , us−1 + vr−1, us + v0, . . . , ur−1 + vr−1−s; s+ s′),

arithmetic in the subscripts being performed modulo r. The group G is used to create all our
Cayley graphs and digraphs.

The Cayley digraph generated by elements of G of the form (a, 0, . . . , 0; 1), a ∈ Zt is isomorphic
to the base-t order-r (wrapped) butterfly network, Bt(r), so called because it is composed of rtr−1

edge-disjoint t-butterflies (copies of the complete bipartite graph Kt,t); see [2, Figure 2]. Butterfly
networks are closely related to the de Bruijn graphs [3], the directed base-t order-r de Bruijn
graph being a coset graph of Bt(r) [2, Theorem 4.4].

Cayley graphs and digraphs of G were used previously by Macbeth, Šiagiová, Širáň & Vetrı́k [5]
and Vetrı́k [7] in the constructions mentioned above, though in neither case is the connection
to the butterfly networks made explicit. Each of our results is a consequence of choosing an
appropriate set of generators for G. We make use of two distinct constructions.

2



2 The first construction

We present the directed case first, since it is slightly simpler.

Theorem 1. For any k > 4 and d > k − 1, there exist Cayley digraphs that have diameter k,
outdegree d, and order (k− 1)(d − k+ 3)k−1.

Proof. Let r = k − 1 and t = d − k + 3, and let the underlying group of the Cayley digraph be
G = Z

r
t ⋊ Zr. The order of G is rtr = (k − 1)(d − k+ 3)k−1.

As generators for the Cayley digraph we use the t shift and add elements (a, 0, . . . , 0; 1), for
each a ∈ Zt, together with the remaining r − 2 nonzero cyclic shift elements (0, . . . , 0; s), for
2 6 s 6 r − 1. Thus the digraph has outdegree t+ r− 2 = d.

It also has diameter r + 1 = k. Every element is the product of r shift and add operations
(establishing the vector) and possibly a single cyclic shift (to establish the final shift value if it is
nonzero). On the other hand, if s 6= 0 then (1, . . . , 1; s) cannot be obtained as a product of fewer
than k generators.

Clearly, the butterfly network Bt(r) is a subdigraph of the Cayley digraph of Theorem 1. The
additional edges in our construction, corresponding to the cyclic shift elements, consist of tr

vertex-disjoint copies of the complete digraph on r vertices with a directed r-cycle removed.

Vetrı́k [7] presents, for any k > 3 and d > 4, a family of Cayley digraphs of diameter k, degreed,

and order k
⌊

d
2

⌋k
. For odd diameters, Abas & Vetrı́k [1] improve this result by a factor of two,

constructing Cayley digraphs of diameter at most k and degree d of order 2k
⌊

d
2

⌋k
. Clearly, for

large enough d, these digraphs are bigger than those of Theorem 1. However, for any given
diameter k > 8, it can be confirmed (using a computer algebra system, or otherwise) that the
digraphs of Theorem 1 are larger than those of Vetrı́k and Abas & Vetrı́k if

2k+ 2 ln k < d < 2k−1
(

1 − 1
k

)

− k2.

For specific values of the degree, we can do much better. If we set d = k2−3k, then the digraphs
of Theorem 1 have orders at least DMd,k/ek, within a linear factor of the Moore bound, and
exceeding those of Abas & Vetrı́k by a factor of at least 2k−1/ek2, which exceeds 1 for k > 9.

For the undirected case, we simply add elements to the generating set to make it symmetric.

Theorem 2. For any k > 5 and d > k such that d − k 6≡ 3 (mod 4), there exist Cayley graphs that

have diameter k, degree d, and order (k− 1)
(⌊

d−k
2

⌋

+ 2
)k−1

.

Proof. Let r = k−1 and t =
⌊

d−k
2

⌋

+2, and let G = Z
r
t ⋊Zr. As generators for the Cayley graph

of G we use the t elements (a, 0, . . . , 0; 1), along with their inverses (0, . . . , 0,−a;−1), and the
remaining r−3 nonzero elements (0, . . . , 0; s) for 2 6 s 6 r−2. In addition, if d−k ≡ 1 (mod 4),
in which case t is even, then the involution (0, . . . , 0, t

2 ; 0) is also included as a generator.
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Thus the graph has degree 2t+r−3+(d−k mod 2) = d. As in the directed case, it has diameter
r + 1 = k. Every element is the product of k− 1 shift and add operations and possibly a single
cyclic shift. On the other hand, if s /∈ {−1, 0, 1} then (1, . . . , 1; s) cannot be obtained as a product
of fewer than k generators, and G has such an element since r > 4.

Macbeth, Šiagiová, Širáň & Vetrı́k [5] present, for any k > 3 and d > 5, a family of Cayley

graphs with diameter at most k, degree d, and order no greater than k
(

d+1
3

)k
.1 Their construc-

tions also use the group G, with a different generating set. For large enough d, these graphs are
bigger than those of Theorem 2. However, for k > 27, the graphs of Theorem 2 are larger than
those of Macbeth, Šiagiová, Širáň & Vetrı́k for any d− k 6≡ 3 (mod 4) satisfying

3k+ 6 ln k < d < 2
(

3
2

)k(
1 − 1

k

)

− k2.

For specific values of the degree, we can do much better. If we set d = k2 − 2k, then the graphs

of Theorem 2 have orders exceeding those in [5] by a factor of at least 2
ek2

(

3
2

)k
, which exceeds 1

for k > 14.

3 The second construction

In our second construction, we conceive of the vectors of length r as being partitioned into k−1
long blocks, each of length ℓ, and a single short block, of length m.

Again, the directed case is presented first, since it is simpler.

Theorem 3. For any k, ℓ, t > 2 and positive m < ℓ, there exist Cayley digraphs that have diameter k,
outdegree tℓ + (r − 1)tm − 1, and order rtr, where r = (k− 1)ℓ +m.

Proof. As before, let G = Z
r
t ⋊ Zr, of order rtr. As generators for the Cayley digraph, we use

the tℓ long elements (a1, . . . ,aℓ, 0, . . . , 0; ℓ), ai ∈ Zt, together with the additional (r − 1)tm − 1
nonzero short elements (a1, . . . ,am, 0, . . . , 0; s), ai ∈ Zt, s 6= ℓ. Thus the digraph has outdegree
tℓ + (r − 1)tm − 1. Long elements shift by ℓ and modify a long block; short elements shift
arbitrarily and modify a short block.

The digraph has diameter k. Every element is the product of a single short element (establishing
m components of the vector and guaranteeing the final shift value) and k − 1 long elements
(establishing the remaining (k − 1)ℓ = r − m components of the vector). On the other hand,
(1, . . . , 1; 0) cannot be obtained as a product of fewer than k generators.

The Cayley digraph of Theorem 3 contains both of the butterfly networks Btℓ(r) and Btm(r)

as subdigraphs. Its edges can be partitioned into rtr−ℓ copies of the tℓ-butterfly, from the long
elements, r(r − 2)tr−m copies of the tm-butterfly, from the short elements that have nonzero
shift, and a collection of directed cycles from the short elements with zero shift.

1The graphs in [5] are slightly larger than those of Macbeth, Šiagiová & Širáň [4], whose order is at most k
(

d+1
3

)k
−k.
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Given k, ℓ and t, for judicious choice of m, these digraphs are larger than those of Abas &
Vetrı́k [1]. For example, if we let t = 2, then for all k > 31 and sufficiently large ℓ, the order of
our digraphs is greater than that of those in [1] if

ℓ − k− log2ℓ + 2 < m < ℓ − log2kℓ−
2
k
(log2k+ 2).

If m is chosen optimally, we can do much better than that.

Corollary 4. For any k > 3, there are arbitrarily large values of d for which there exist Cayley

digraphs that have diameter k, outdegree d, and order at least 1
k

(

k
k+2(d + 1)

)k
.

Proof. We use the construction of Theorem 3. Let t = 2, and let ℓ be any sufficiently large
positive integer such that log2 k

2ℓ 6 3
4ℓ. Let r =

⌈

kℓ− log2 k
2ℓ
⌉

, and m = r − (k − 1)ℓ, so
r = (k− 1)ℓ +m. Note that 0 < m < ℓ.

The digraph has diameter k and order r2r, which (rounding r down) is at least

n0 =
(

kℓ− log2 k
2ℓ
)

2kℓ−log2 k
2ℓ =

(

1

k
−

log2 k
2ℓ

k2ℓ

)

2kℓ.

Its degree is d = 2ℓ + (r − 1)2m − 1, which (substituting for m and rounding r up) is less than

d+ = 2ℓ +
(

kℓ− log2 k
2ℓ
)

2kℓ−log2 k
2ℓ+1−(k−1)ℓ − 1 =

(

1 +
2

k
−

2 log2 k
2ℓ

k2ℓ

)

2ℓ − 1.

Let θ =
log2 k

2ℓ

kℓ
. Note that the condition on ℓ implies that θ 6

3
4k 6

1
4 , since k > 3.

Now,

kn0

(

k

k+ 2
(d+ + 1)

)−k

= (1 − θ)

(

1 +
2θ

k+ 2 − 2θ

)k

> (1 − θ)

(

1 +
2kθ

k+ 2 − 2θ

)

,

which is at least 1 if k > 2 and 0 6 θ 6 k−2
2k−2 . Since k > 3 and θ 6 1

4 , the result follows.

These digraphs have asymptotic order exceeding dk

e2k
, a factor of 2k−1

e2k2 larger than those of Abas
& Vetrı́k, and within a linear factor in k of the Moore bound.

It is worth briefly explaining the choice of values for t and r in the proof of Corollary 4. Suppose
we fix t and r (and hence the order rtr), and also fix the diameter k. What is the optimal choice
for ℓ, that minimises the degree tℓ + (r − 1)tr−(k−1)ℓ − 1? Differentiating with respect to ℓ and
equating to zero yields ℓ = 1

k

(

r + logt(k− 1)(r − 1)
)

. Solving for r then gives

r =
1

ln t
W

(

tkℓ−1 ln t

k− 1

)

+ 1,

where W is the Lambert W function, defined implicitly by W(z)eW(z) = z. Asymptotically,
W(z) = ln z − ln ln z + o(1). Applying this approximation for W then yields r ≈ kℓ − logtk

2ℓ.
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Using this value for r results in a digraph whose order is asymptotically at least 1
k

(

k
k+t

(d+1)
)k

.
Setting t = 2 makes this maximal.

The results in the undirected case are similar. As before, we just add elements to the generating
set to make it symmetric.

Theorem 5. For any k, ℓ, t > 2 and positive m < ℓ, there exist Cayley graphs that have diameter k,
degree 2tℓ + (2r − 3)tm − r, and order rtr, where r = (k − 1)ℓ +m.

Proof. Let G = Z
r
t ⋊ Zr. As generators for the Cayley graph of G with these parameters, we

use:

• the tℓ long elements (a1, . . . ,aℓ, 0, . . . , 0; ℓ), ai ∈ Zt

• their tℓ inverses (0, . . . , 0,a1, . . . ,aℓ;−ℓ)

• the (r − 2)(tm − 1) short elements (a1, . . . ,am, 0, . . . , 0; s), ai ∈ Zt not all zero, s /∈ {0, ℓ}

• their (r − 2)(tm − 1) inverses (0, . . . , 0,

s
︷ ︸︸ ︷

a1, . . . ,am, 0, . . . , 0;−s)

• the tm − 1 nonzero short elements (a1, . . . ,am, 0, . . . , 0; 0); this set is symmetric

• the r − 3 short elements (0, . . . , 0; s), s /∈ {0,±ℓ}; this set is also symmetric

Thus the graph has degree 2tℓ + (2r − 3)tm − r. As in the directed case, it has order rtr and
diameter k.

Given k, ℓ and t, for appropriate choice of m, these graphs are larger than those of Macbeth,
Šiagiová, Širáň & Vetrı́k [5]. For example, if we let t = 2, then for all k > 69 and sufficiently
large ℓ, the order of our graphs is greater than that of those in [5] if

ℓ + k− log23kℓ+ 1 < m < ℓ − log2kℓ−
3
k
(log2k+ 2) − 1.

If m is chosen optimally, we have the following.

Corollary 6. For any k > 3, there are arbitrarily large values of d for which there exist Cayley graphs
that have diameter k, degree d, and order at least

1
k

(

k
2k+4

(

d + k log2
d
2 − log2 log2 d − log2 8k2

)

)k

.

Proof. We use the construction of Theorem 5. As in the proof of Corollary 4, let t = 2, and let ℓ
be any sufficiently large positive integer such that log2 k

2ℓ 6
3
4ℓ. Let r =

⌈

kℓ− log2 k
2ℓ
⌉

, and
m = r− (k− 1)ℓ, so r = (k− 1)ℓ +m.

The graph has diameter k and order r2r, which is at least

n0 =
(

kℓ− log2 k
2ℓ
)

2kℓ−log2 k
2ℓ =

(

1

k
−

log2 k
2ℓ

k2ℓ

)

2kℓ.
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Its degree is d = 2ℓ+1 + (2r − 3)2m − r, which (substituting for m and rounding r up in the
second term) is less than

2ℓ+1 +
(

2kℓ− 2 log2 k
2ℓ− 1

)

2kℓ−log2 k
2ℓ+1−(k−1)ℓ − r =

(

2 +
4

k
−

1 + 4 log2 k
2ℓ

k2ℓ

)

2ℓ − r.

Thus, 1
2(d + r) is less than q =

(

1 + 2
k
−

2 log2 k
2ℓ

k2ℓ

)

2ℓ, and by the argument in the proof of

Corollary 4 (with q = d+ + 1), we know that kn0 >
(

kq
k+2

)k
>

(

k
2k+4(d + r)

)k
.

It remains to establish the appropriate lower bound for r.

Now, kn0 < 2kℓ and q > d
2 , so 2ℓ > kd

2k+4 and thus ℓ > log2
kd

2k+4 = log2
d
2 − log2

(

1 + 2
k

)

.

Since
(

1 + 2
k

)k
< e2 < 23, we have log2

(

1 + 2
k

)

< 3
k

and thus ℓ > log2
d
2 − 3

k
.

Now, r > kℓ− log2 k
2ℓ, so

r > k log2
d
2 − 3 − log2 k

2 − log2

(

log2
d
2 − 3

k

)

,

which is greater than k log2
d
2 − log2 log2 d− log2 8k2, as required.

These graphs have asymptotic order exceeding 1
e2k

(

d
2

)k
, a factor of 1

e2k2

(

3
2

)k
larger than those

of Macbeth, Šiagiová, Širáň & Vetrı́k.
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