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How fast can Maker win in fair biased games? ∗
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Abstract

We study (a : a) Maker-Breaker games played on the edge set of the complete graph on
n vertices. In the following four games – perfect matching game, Hamilton cycle game, star
factor game and path factor game, our goal is to determine the least number of moves which
Maker needs in order to win these games. Moreover, for all games except for the star factor
game, we show how Red can win in the strong version of these games.

1 Introduction

Let a and b be two positive integers, let X be a finite set and F ⊆ 2X be a family of the subsets
of X . In the (a : b) positional game (X,F), two players take turns in claiming a, respectively b,
previously unclaimed elements of X , with one of them going first. The set X is referred to as the
board of the game, while the elements of F are referred to as the winning sets. When there is
no risk of confusion on which board the game is played, we just use F to denote the game. The
integers a and b are referred to as biases of the players. When a = b, the game is said to be fair.
If a = b = 1, the game is called unbiased. Otherwise, the game is called biased. If a player has a
strategy to win against any strategy of the other player, this strategy is called a winning strategy.
In the (a : b)Maker-Breaker positional game (X,F), the two players are calledMaker and Breaker.
Maker wins the game F at the moment she claims all the elements of some F ⊆ F . If Maker did
not win by the time all the elements of X are claimed by some player, then Breaker wins the game
F . In order to show that Maker wins the game as both first and second player, we will assume
in this paper that Breaker starts the game (as being the first player can only be an advantage in
Maker-Breaker games).
It is very natural to play Maker-Breaker games on the edge set of a given graph G (see e.g. [2, 8]).
Here, we focus on the (a : b) games played on the edge set of the complete graph on n vertices,
Kn, where n is a sufficiently large integer. That is, in this case the board is X = E(Kn).
For example: in the connectivity game, Tn, the winning sets are all spanning trees of Kn; in the
perfect matching game, Mn, the winning sets are all independent edge sets of size ⌊n/2⌋ (note
that in case n is odd, this matching covers all but one vertex in Kn); in the Hamilton cycle game,
Hn, the winning sets are all Hamilton cycles of Kn; in the k-vertex-connectivity game, Ck

n, for
k ∈ N, the winning sets are all k-vertex-connected graphs on n vertices.
It is not very difficult to see that Maker wins all aforementioned unbiased games. Therefore, we can
ask the following question: How quickly can Maker win the game? With parameter τF (a : b) we
denote the shortest duration of the (a : b) Maker-Breaker game F , i.e. the least number of moves
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t such that Maker has a strategy to win the (a : b) game F within t moves. For completeness, we
say that τF (a : b) = ∞ if Breaker has a winning strategy.
It was shown in [11] that, for n ≥ 4, τTn

(1 : 1) = n − 1, which is optimal. In [7] it was proved
that τMn

(1 : 1) = n/2 + 1, when n is even, and τMn
(1 : 1) = ⌈n/2⌉, when n is odd and also

that τHn
(1 : 1) ≤ n + 2 and τCk

n
(1 : 1) = kn/2 + o(n). Hefetz and Stich in [10] showed that

τHn
(1 : 1) = n + 1, and Ferber and Hefetz [4] recently showed that τCk

n
(1 : 1) = ⌊kn/2⌋ + 1.

Moreover, there are corresponding results when the mentioned games are played on graphs that
are not complete, see e.g. [3].
In this paper, we are particularly interested in (a : a) Maker-Breaker games on E(Kn), for constant
a ≥ 1. Although these games are studied less than unbiased and (1 : b) games, they are also
significant. Just a slight change in the bias from a = 1 to a = 2 can completely change the
outcome (and thus the course of the play) of some games (see [2]). One example is the diameter-2
game (where the winning sets are all graphs with diameter at most 2). It was proved in [1] that
Breaker wins the (1 : 1) diameter-2 game, but Maker wins the (2 : 2) diameter-2 game.
Not so much is known about fast winning strategies in fair (a : a) Maker-Breaker games, where
a can be greater than 1. From the results in [6, 9], we obtain that in the connectivity game
τTn

(a : a) = ⌈(n− 1)/a⌉.
Our research is concentrated on fast winning strategies in four (a : a) Maker-Breaker games, for
a ∈ N. Firstly, we take a look at the (a : a) perfect matching game, Mn. The case a = 1 is already
proved in [7], and we show the following theorem for all a ≥ 2.

Theorem 1.1. Let a ∈ N. Then for every large enough n the following is true for the (a : a)
Maker-Breaker perfect matching game:

τMn
(a : a) =



















n
2a + 1, if a = 1 and n is even,
⌈

n
2a

⌉

− 1, if 2a | n− 1
⌈

n
2a

⌉

, otherwise.

Secondly, we analyse the (a : a) Maker-Breaker Hamilton cycle game, Hn, and prove the following
result for a ≥ 2. The case a = 1 is proved in [10].

Theorem 1.2. Let a ∈ N. Then for every large enough n the following is true for the (a : a)
Maker-Breaker Hamilton cycle game:

τHn
(a : a) =







n
a + 1, if a = 1 or (a = 2 and n is even),
⌈

n
a

⌉

, otherwise.

We study two more (a : a) Maker-Breaker games whose winning sets are spanning graphs. More
precisely, we are interested in factoring the graph Kn with stars and paths. For fixed k ≥ 2, let
Pk denote a path with k vertices, and let Sk denote a star with k − 1 leaves. Now, for all large
enough n, such that k | n, we are interested in finding winning strategies in the (a : a) Pk-factor
game, denoted by Pk,n, and in the (a : a) Sk-factor game, denoted by Sk,n, where the winning
sets are all path factors and star factors of Kn, respectively, on k vertices. We show the following.

Theorem 1.3. Let a ∈ N and k ∈ N. Then for every large enough n, such that k | n, the following
is true for the (a : a) Maker-Breaker Pk-factor game:

τPk,n
(a : a) =

⌈

(k − 1)n

ka

⌉

.
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Theorem 1.4. Let a ≥ 1 and k ≥ 3 be integers. Then for every large enough n, such that k | n,
the following is true for the (a : a) Maker-Breaker Sk-factor game:

τSk,n
(a : a) ≤







⌈

(k−1)n
ka

⌉

, if a ∤ (k−1)n
k ,

(k−1)n
ka + 1, otherwise.

Strong games. We also look at another type of positional games. In the strong positional game
(X,F), the two players are called Red and Blue, and Red starts the game. The winner of the
game is the first player who claims all the elements of one F ∈ F . If none of the players manage
to do that before all the elements of X are claimed, the game ends in a draw.
By the strategy stealing argument (see [2]), Blue cannot have a winning strategy in the strong
game. So, in every strong game, either Red wins, or Blue has a drawing strategy. For the games
where the draw is impossible, we know that Red wins. Unfortunately, the existence of Red’s
strategy tells us nothing about how Red should play in order to win. Finding explicit winning
strategies for Red can be very difficult. The results in [4, 5] show that fast winning strategies for
Maker in certain games can be used in order to describe the winning strategies for Red in the
strong version of these games.
If Maker can win perfectly fast in the (a : a) game F , i.e. if the number of moves, t, she needs
to win is equal to ⌈min(|F | : F ∈ F)/a⌉, that immediately implies Red’s win in the strong game.
Indeed, as Red starts the game, Blue has no chance to fully claim any winning set in less than t
moves. Thus, Red can play according to the strategy of Maker, without worrying about Blue’s
moves, by which Red will claim a winning set in t moves, thus winning the game.
From Theorem 1.1, we see that Maker can win perfectly fast in the (a : a) perfect matching game
in all cases, but in case a = 1. Therefore, we immediately see that for a 6= 1, Red has a winning
strategy for the corresponding strong game. For a = 1 the proof that Red wins the strong game
appears in [4]. Similarly to the perfect matching game, from Theorem 1.2 we can immediately see
that Red has a winning strategy for the strong (a : a) Hamilton cycle game in all but two cases
– the case a = 1 and the case a = 2 and n is even. The case a = 1 appears in [4], and for the
remaining case, we prove the following theorem.

Theorem 1.5. For every large enough even n the following is true: Red has a strategy for the
(2 : 2) Hamilton cycle game to win within n/2 + 1 rounds.

Every Pk-factor of Kn, for given k ∈ N such that k | n, has to have n(k − 1)/k edges. Therefore,
from Theorem 1.3, we obtain that Maker can win perfectly fast in (a : a) game Pk,n and Red can
use the winning strategy of Maker in this game to win in the corresponding strong game.

Notation and terminology. Our graph-theoretic notation is standard and mostly follows that
of [13]. In particular, we use the following. We write [n] := {1, 2, . . . , n}. For a graph G, V (G)
and E(G) denote its sets of vertices and edges respectively, v(G) = |V (G)| and e(G) = |E(G)|.
For disjoint sets A,B ⊆ V (G), let EG(A,B) denote the set of edges of G with one endpoint
in A and one endpoint in B, and eG(A,B) := |EG(A,B)|. Moreover, EG(A) := EG(A,A) and
eG(A) := |EG(A)|. For a vertex x ∈ V (G) and a set S ⊆ V (G), NG(x, S) = {u ∈ S : ux ∈ E(G)}
denotes the set of neighbours of the vertex x in the set S with respect to (w.r.t.) G. We set
NG(x) := NG(x, V (G)). Moreover, dG(x, S) := |NG(x, S)| denotes the degree of x into S, while
dG(x) = |NG(x)| denotes the degree of x in the graph G. Whenever there is no risk of con-
fusion, we omit the subscript G in the notation above. Given a graph G = (V,E), we let
G = (V,E) denote its complement, where E := {xy /∈ E : x, y ∈ V }. For e ∈ E(G), we
set G − e := (V,E \ {e}). For S ⊆ V , G[S] denotes the subgraph of G induced by S, i.e.
G[S] = (S,ES) where ES := {xy ∈ E(G) : x, y ∈ S}. Given another graph H on the same vertex
set as G, we let G−H := (V,E(G) \E(H)). Given a path P in a graph G, we let End(P ) denote
the set of its endpoints. For every family P of disjoint paths, we set End(P) :=

⋃

P∈P End(P ) and
E(P) :=

⋃

P∈P E(P ). With Pn, Sn,Kn and Kn,n we denote the path on n vertices, the star on
n vertices (and n− 1 edges), the complete graph on n vertices and the complete bipartite graph
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with vertex classes of size n each, respectively. A cycle in a graph G is called Hamilton cycle if
it passes through every vertex of G; in case such a cycle exists, G is called Hamiltonian. A set of
pairwise disjoint edges in a graph G is called a matching, and we call it a perfect matching if it
covers every vertex (but at most one, in case v(G) is odd).

Assume an (a : a) Maker-Breaker game is in progress. By M we denote Maker’s graph and by
B we denote Breaker’s graph. If an edge is unclaimed by any of the players we call it free. Each
round (but maybe the very last one) consists of exactly one move of Breaker followed by a move
of Maker, where the player claims a edges. Claiming only one of these edges is called a step in the
game.

The rest of the paper is organized as follows. In Section 2 we start with some preliminaries.
In Section 3, we prove Theorem 1.1, in Section 4 we prove Theorem 1.2, in Section 5 we prove
Theorem 1.5 and in Section 6 we prove Theorem 1.3. Finally, in Section 7, we prove Theorem 1.4.

2 Preliminaries

In the strategy for the (a : a) Hamilton cycle game, given later in Section 4, Maker tries to maintain
a linear forest (a collection of vertex disjoint paths) as long as possible. We show that she can do
so for the first ⌈n/a⌉ − 1 rounds. Within the following (at most) two rounds, motivated by the
rotation techniques of Posá (see e.g. [12]), she then adds further edges to her graph and obtains a
Hamilton cycle. In order to guarantee that this is possible, we prove the following statements.

Proposition 2.1. Let P1, P2 be vertex disjoint paths in some graph G, and dG(v) ≤ v(P1)/2− 1

for every v ∈
⋃2

i=1 End(Pi). Then there exists an edge f ∈ E(P1) and two edges e1, e2 ∈ E(G)
such that ((E(P1) ∪ E(P2)) \ {f}) ∪ {e1, e2} induces a path P of G with V (P ) = V (P1) ∪ V (P2)
and End(P ) ⊆ End(P1) ∪ End(P2).

Proof Let End(Pi) = {xi, yi}. For a vertex v ∈ V (P1) \ {x1} we define its left-neighbour v− to
be the unique neighbour of v on the subpath from x1 to v. Similarly, for a vertex v ∈ V (P1) \ {y1}
we define its right-neighbour v+ to be the unique neighbour of v on the subpath from v to y1. Let
S ⊆ V (P1) be some subset, then we set S− := {v− : x1 6= v ∈ S}. Now, let S1 := NG(x1)∩V (P1)
and S2 := NG(x2) ∩ V (P1). Then, by assumption |S−

1 | ≥ v(P1) − 1 − dG(x1) ≥ v(P1)/2 and
|S2| ≥ v(P1) − dG(x2) > v(P1)/2. Thus, |S

−
1 | + |S2| > v(P1) and therefore S−

1 ∩ S2 6= ∅. Let
z ∈ S−

1 ∩ S2. Then ((E(P1) ∪E(P2)) \ {zz+}) ∪ {x1z
+, x2z} induces a path P as claimed. ✷

Corollary 2.2. Let G be a graph on n vertices; let P1, P2, . . . , Pt be pairwise disjoint paths in G
such that

⋃t
i=1 V (Pi) = V (G). Let dG(v) ≤ n/(2t) − 1 for every v ∈

⋃t
i=1 End(Pi). Then there

exists a set E∗ ⊆ E(G) of 2t edges such that
⋃t

i=1 E(Pi) ∪ E∗ contains a Hamilton cycle of G.

Proof W.l.o.g. let v(P1) = max{v(Pi) : 1 ≤ i ≤ t} ≥ n/t and therefore dG(v) ≤ v(P1)/2 − 1

for every v ∈
⋃t

i=1 End(Pi). Then, applying Proposition 2.1 for P1 and P2, we can find two edges
e1, e

′
1 ∈ E(G) such that E(P1)∪E(P2)∪{e1, e′e} contains a path P12 with V (P12) = V (P1)∪V (P2)

and End(P12) ⊆ End(P1)∪End(P2). Now, set P
′
1 = P12, P

′
2 = P3, P

′
3 = P4, . . . , P

′
t−1 = Pt. We can

repeat this argument for P ′
1 and P ′

2, thus reducing the number of paths again by 1, using at most
two further edges from G. Doing this iteratively for t−1 iterations (using at most 2t−2 edges) we
finally end up with a path P such that V (P ) =

⋃t
i=1 V (Pi) = V (G) and End(P ) ⊆

⋃t
i=1 End(Pi).

Let End(P ) = {x, y}. By assumption, dG(x), dG(y) ≥ n/2. Analogously to Bondy’s proof of Dirac’s
Theorem for the existence of Hamilton cycles (see e.g. [13]), we can find (at most) two edges f1, f2
in G such that E(P ) ∪ {f1, f2} contains a Hamilton cycle of G. ✷

3 Weak Perfect Matching Game

The main goal of this section is to prove Theorem 1.1. However, we prove a slightly stronger result
which roughly says that Maker can claim a perfect matching rapidly even if we play on a nearly
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complete bipartite graph. This statement is used later in Section 7.

Proposition 3.1. Let a, C ∈ N be constants with a ≥ 2, then for every large enough n the
following holds: Let G ⊇ Kn,n − H be a graph such that e(H) ≤ C. Playing an (a : a) Maker-
Breaker game on G, Maker has a strategy to gain a perfect matching of G within at most ⌊n/a⌋+1
rounds. In case G = K2n, she can even win within ⌈n/a⌉ rounds.

Before we give the proof of this proposition, let us first see how Theorem 1.1 can be deduced.

Proof of Theorem 1.1. For a = 1 the proof is given in [7]. So, let a ≥ 2. Assume first that
n = 2k is even. Since a perfect matching of Kn has n/2 edges, the game obviously lasts at
least ⌈n/(2a)⌉ rounds. By Proposition 3.1, Maker has a strategy to win within ⌈k/a⌉ = ⌈n/(2a)⌉
rounds. Assume then n to be odd. According to the rules, Maker wins if she claims a matching
covering all but one vertex, i.e. a matching of size (n− 1)/2. This obviously takes at least

⌈

n− 1

2a

⌉

=

{

⌈ n
2a⌉, if 2a ∤ n− 1

⌈ n
2a⌉ − 1, if 2a | n− 1

rounds. However, Maker for her strategy can consider to play on the graph Kn−1 ⊆ Kn. By the
previous argument this takes her at most ⌈(n− 1)/(2a)⌉ rounds, provided n is large enough. ✷

Proof of Proposition 3.1. Assume that Breaker starts the game. Let X ∪Y be the bipartition
of V (G) = V (Kn,n). Further assume that H belongs to Breaker’s graph.

Maker’s strategy is split into two stages.

Stage I. The first stage lasts exactly ⌈n/a⌉ − 1 rounds. For 0 ≤ i ≤ ⌈n/a⌉ − 1, Maker ensures
that immediately after her ith move her graph consists of a matching Mi ⊆ E(X,Y ) of size i · a
and a set of isolated vertices Ii = V \ V (Mi) such that the following properties hold:

(P1) eB(Ii) ≤ max{C − ia, 0},

(P2) ∀v ∈ Ii : dB(v) < n/8.

Maker chooses the edges e1 = e
(i)
1 , . . . , ea = e

(i)
a of her ith move in the following way:

She sets δ = 0 if i ≤ ⌈C/a⌉, and δ = 1 otherwise. Then for every 1 ≤ j ≤ a − δ she sets

I
(j)
i−1 = Ii−1 \ V (e1, . . . , ej−1) and chooses ej = xjyj ∈ E(I

(j)
i−1) ∩ E(X,Y ) such that

• xj maximizes dB(z, I
(j)
i−1) over all choices z ∈ I

(j)
i−1, and

• yj maximizes dB(z, I
(j)
i−1) over all choices z ∈ I

(j)
i−1 with xjz ∈ E(X,Y ) \ E(B).

Afterwards, if i > ⌈C/a⌉ (and so δ = 1), she sets E(I
(a)
i−1) = Ii−1 \ V (e1, . . . , ea−1) and chooses an

unclaimed edge ea = xaya ∈ E(I
(a)
i−1) ∩ E(X,Y ) in such a way that xa maximizes dB(z, V ) over

all choices z ∈ I
(a)
i−1. Finally, she sets Ii = I

(a+1)
i−1 := Ii−1 \ V (e1, . . . , ea).

Stage II. If a ∤ n or G = K2n, Maker plays one further round to complete a perfect matching of
G. Otherwise, she does so within two more rounds. The details of how she can do this are given
later in the proof.

It is evident that, if Maker can follow the strategy, she wins the game within the claimed number
of rounds. Thus, it remains to show that Maker can follow the proposed strategy.

Stage I. We prove, by induction on i, that Maker can follow the strategy of Stage I and ensure
the mentioned properties to hold immediately after her ith move. For i = 0 there is nothing to
prove. So, let i > 0. Assume that (P1) and (P2) were true immediately after Maker’s (i − 1)st

move for the matching Mi−1 and the set Ii−1. To show that Maker can follow the strategy for
round i, we inductively prove the following claim.
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Claim 3.2. For every 1 ≤ j ≤ a − δ, Maker can claim ej and ensure that immediately after

claiming that edge, eB(I
(j+1)
i−1 ) ≤ max{C − (i− 2)a− 2j, a− 2j, 0} holds.

Indeed, if this claim is true, then Maker can claim the first a− δ edges, as described. If δ = 1 and

thus i > ⌈C/a⌉, then after claiming the first a− 1 edges, we have eB(I
(a)
i−1) = 0. That is, Breaker

has no edges among the remaining isolated vertices, and thus Maker can claim ea as described.

Proof of Claim 3.2. We apply induction on j, the number of steps in round i. At first, let
j = 1. If i ≤ ⌈C/a⌉, then by (P1) after Maker’s (i − 1)st move and since Breaker has bias
a, we have eB(Ii−1) ≤ max{C − (i − 2)a, a} < n/2 < |Ii−1 ∩ X | = |Ii−1 ∩ Y | right before
Maker’s first step in round i. If otherwise ⌈C/a⌉ < i ≤ ⌈n/a⌉ − 1, then analogously we have
eB(Ii−1) ≤ a < n− (i−1)a = |Ii−1∩X | = |Ii−1∩Y | right before Maker’s first step in round i. So,
in either case, looking at Breaker’s graph, none of the vertices from Ii−1 ∩X can be adjacent to
all vertices from Ii−1 ∩ Y , and vice versa. So, Maker can claim e1 as given by the strategy. Now,

if eB(I
(1)
i−1) ≥ 2, then by the choice of e1 it easily follows that dB(x1, I

(1)
i−1) + dB(y1, I

(1)
i−1) ≥ 2. But

this gives eB(I
(2)
i−1) ≤ eB(I

(1)
i−1)− 2 ≤ max{C − (i − 2)a− 2, a− 2, 0}. Otherwise, if eB(I

(1)
i−1) ≤ 1,

then e1 is adjacent to all Breaker edges in I
(1)
i−1, ensuring eB(I

(2)
i−1) = 0.

Now, let j > 1. After ej−1 is claimed, eB(I
(j)
i−1) ≤ max{C − (i − 2)a − 2(j − 1), a − 2(j − 1), 0}

holds by induction. If i ≤ ⌈C/a⌉, then eB(I
(j)
i−1) < n/2 < |I

(j)
i−1 ∩ X | = |I

(j)
i−1 ∩ Y |. If i > ⌈C/a⌉,

then eB(I
(j)
i−1) ≤ max{a− 2(j − 1), 0} < |Ii−1 ∩ Y | − (j − 1) = |I

(j)
i−1 ∩X | = |I

(j)
i−1 ∩ Y |. So, when

Maker wants to claim her edge ej , none of the vertices from I
(j)
i−1 ∩ X can be adjacent to all

vertices from I
(j)
i−1 ∩ Y , and vice versa. So, as for the induction start, she can claim ej and ensure

eB(I
(j+1)
i−1 ) ≤ max{eB(I

(j)
i−1)− 2, 0} ≤ max{C − (i− 2)a− 2j, a− 2j, 0}. ✷

When Maker claimed all the a edges, she has a matching in E(X,Y ) of size |Mi| = |Mi−1|+a = ia.
Thus, to finish the discussion of Stage I, it remains to show that the mentioned properties are main-
tained. Using the claim, (P1) is given as follows: If i ≤ ⌈n/a⌉, then immediately after Maker’s ith

move, eB(Ii) = eB(I
(a+1)
i−1 ) ≤ max{C−(i−2)a−2a, a−2a, 0}= max{C− ia, 0}. If i > ⌈n/a⌉, then

immediately after claiming ea−1 we have eB(I
(a)
i−1) ≤ max{C−(i−2)a−2(a−1), a−2(a−1), 0}= 0.

In particular, eB(Ii) = 0 follows then. Assume now that (P2) is violated. Then after Maker’s
move there needs to be a vertex vi ∈ Ii of degree at least n/8 in Breaker’s graph. In particular,
i ≥ n/(8a). However, Maker then in each of the last twenty rounds chose (with her last edge) an
isolated vertex in her graph of maximum degree in Breaker’s graph to be matched and therefore
excluded from the set of isolated vertices. That means, if after round i there really was such a
vertex vi, then twenty rounds before there must have been at least twenty vertices of degree at
least n/8− 20a in Breaker’s graph, since otherwise vi would have been matched earlier. But then,
provided n is large enough, Breaker has claimed more than 2n edges, which is in contradiction to
the number of rounds played so far.

Stage II. We need to show that Maker can complete a perfect matching within one round or
two rounds, respectively. From now on, let t = |I⌈n/a⌉−1 ∩X | = |I⌈n/a⌉−1 ∩ Y | be the number of
isolated vertices in X and Y , respectively, at the moment when Maker enters Stage II.

Case 1. a ∤ n. Observe that t = n− |M⌈n/a⌉−1| ≤ a− 1 holds in this case.
Case 1.1. Assume first that t ≤ a/2. Maker then partitions the set of isolated vertices into t
pairs {v1, w1}, . . . , {vt, wt} with vi ∈ Y and wi ∈ X . By Property (P2), she then finds distinct
edges m1 = x1y1,. . . mt = xtyt in M⌈n/a⌉−1 such that for each 1 ≤ i ≤ t, xi ∈ X , yi ∈ Y and the
edges vixi and wiyi do not belong to Breaker’s graph. She then claims the edges vixi and wiyi,
in total 2t ≤ a. By this, she creates a perfect matching of G.
Case 1.2. Assume then that a/2 < t ≤ a − 1. Let F be the graph induced by all free edges
between I⌈n/a⌉−1 ∩X and I⌈n/a⌉−1 ∩ Y . Since by (P2) Breaker can have at most a edges among
all isolated vertices, then e(F ) ≥ t2 − a. Thus, the smallest vertex cover in F is of size at least
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(t2 − a)/t = t − a/t > t − 2. Therefore, by the theorem of König-Egeváry (see e.g. [13]) F has a
matching of size at least t− 1. Maker claims this matching. This way, she creates a matching of
G of size n− 1, and two isolated vertices v ∈ Y and w ∈ X . Again, using Property (P1), she finds
an edge xy in her matching, with x ∈ X and y ∈ Y , such that vx and wy are unclaimed. She
claims these, and then she is done as before. In total, she claims at most (t− 1) + 2 ≤ a edges.
Case 2. a|n. Observe first that t = a. We now want to finish the perfect matching within one
round if G = K2n. Otherwise, it is enough to finish within two further rounds.
Case 2.1. Assume that G = K2n. When Maker enters Stage II, by Property (P1), Breaker claims
at most a edges in G[I⌈n/a⌉−1]. So, there is a bipartite subgraph G′ ⊂ G[I⌈n/a⌉−1] with classes
of size a, such that Breaker claims less than a edges of G′. Set F := G′ \ B. Then, analogously
to Case 1.2, F has a matching of size at least (t2 − (a − 1))/t > a − 1. Thus, within one round,
Maker can claim a matching of size a in F , which completes a perfect matching of G.
Case 2.1. Finally, assume G 6= K2n. Let F be the graph induced by all free edges between
I⌈n/a⌉−1 ∩X and I⌈n/a⌉−1 ∩Y. Since by (P2) Breaker can have at most a edges among all isolated
vertices, we analogously conclude that F contains a matching of size at least a− 1. Maker claims
such a matching in the first round of Stage II, and afterwards, she has a matching of G of size
n−1, and two isolated vertices v ∈ Y and w ∈ X . If vw is free, she claims it and wins. Otherwise,
in the next round, analogously to Case 1.2, she finds an edge xy in her matching, with x ∈ X and
y ∈ Y , such that vx and wy are unclaimed. She then claims these two edges. ✷

4 Weak Hamilton Cycle Game

Proof of Theorem 1.2. For a = 1 the proof is given in [10]. So, let a ≥ 2 and assume that
Breaker starts the game. Since a Hamilton cycle has n edges, the game obviously lasts at least
⌈n/a⌉ rounds. Moreover, one easily verifies that, if a = 2 and n is even, τHn

(a : a) ≥ ⌈n/a⌉+ 1.
Indeed, assume in this case that Maker had a strategy to create a Hamilton cycle within n/2
rounds. Then, after her (n/2− 1)st round her graph would consist of two paths P1 and P2 (maybe
one of length zero). In order to win in the next round, she would need to claim two edges between
End(P1) and End(P2) in such a way that a Hamilton cycle is created. However, before this,
Breaker can claim all edges of E(x,End(P2)) for some x ∈ End(P1), therefore delaying Maker’s
win by at least one further round, in contradiction to the assumption.

Thus, it remains to prove that τHn
(a : a) ≤ ⌈n/a⌉+1 if a = 2 and n is even, and τHn

(a : a) ≤ ⌈n/a⌉
otherwise (for large enough n depending on a).

Maker’s strategy. The main idea of Maker’s strategy is to create a linear forest, i.e. a graph
which only consists of vertex disjoint paths. Her strategy is divided into three stages. In the first
stage, she starts with a perfect matching, similarly to the strategy given for a = 1 in [7]. Then, in
the second stage, she connects the edges of the matchings to create larger paths. Finally, in the
third stage, when the number of paths is at most a, she completes a Hamilton cycle in at most
two further rounds, making use of Proposition 2.1 and Corollary 2.2.

Assume the game is in progress. By P we denote the set of Maker’s (maximal) paths, where an
isolated vertex is seen as a path of length zero (empty path). Throughout the game this set is
updated, meaning that whenever Maker connects the endpoints of two paths P1, P2 ∈ P by an
edge e, we delete P1 and P2 from P and add the new path induced by E(P1) ∪ E(P2) ∪ {e}. By
pi we denote the size of P immediately after Maker’s ith move. Observe that, as long as Maker’s
graph is a linear forest, pi = n− ia holds.
Now, let e be some edge that is incident with the endpoints of two different paths from P . We
say that e is good, if it is free; otherwise we call it bad. By bri we denote the number of bad edges
right after Maker’s ith move. If an edge e is good, we set D(e) to be the number of bad edges
adjacent to e. Thus, D(e) depends on the dynamic family P and on the considered round.

Stage I. Within ⌈n/(2a)⌉ or ⌈n/(2a)⌉ + 1 rounds, Maker claims a collection of vertex disjoint
paths, each of length at least 1, such that every vertex is incident with one of these paths, and
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there is no further Maker’s edge. The details of how she can do this follow later in the proof.
Afterwards, Maker proceeds with Stage II.

Stage II. Let t1 ∈ {⌈n/2a⌉+ 1, ⌈n/2a⌉+ 2} be the round in which Maker enters Stage II. Let

t2 := ⌈n/a⌉ − ⌈n/(6a2)⌉.

Maker now connects the paths of her collection P . To be able to do so, she needs to guarantee
that the number of bad edges does not become too large. For that reason, if a lot of bad edges
exist, she claims good edges that are adjacent to many bad edges (part IIa). Moreover, similarly
to the perfect matching game, she maintains some degree condition by caring about large degree
vertices in Breaker’s graph (part IIb). To be more precise:

For every t1 ≤ i ≤ ⌈n/a⌉ − 1, in her ith, Maker claims edges e1 = e
(i)
1 , . . . , ea = e

(i)
a one after the

other. The jth edge ej is claimed according to the following rules:

• In order to choose ej she considers the following two cases.

IIa. If i ≤ t2 or i ≥ t2 + 8, Maker claims a good edge ej such that D(ej) is maximal.

IIb. Otherwise, if t2 + 1 ≤ i ≤ t2 + 7, she chooses a vertex xj ∈ End(P) of maximal degree
in Breaker’s graph and then claims an arbitrary good edge ej = xjyj .

• By claiming ej , Maker connects two paths Pj,1, Pj,2 ∈ P . Accordingly, she then deletes
Pj,1, Pj,2 from P , and adds to P the path induced by E(Pj,1)∪E(Pj,2)∪{ej}. She updates
the sets of good and bad edges and the values D(·) before she proceeds with ej+1.

Stage III. If a = 2 and n is even, Maker claims a Hamilton cycle within the next two rounds.
Otherwise, she does so within one round. The details of how Maker can do this, follow later in
the proof.

It is evident that, if Maker can follow the strategy, she wins the game within the desired number
of rounds. Thus, it remains to show that Maker can follow the proposed strategy. Before that, let
us prove the following propositions which bound the number of bad edges throughout the game.

Proposition 4.1. At any point of the game, when |P| ≥ 2 and

• each v ∈ End(P) is incident with at least one good edge,

• D(e) ≤ 1 holds for all good edges e.

Then the number of bad edges is at most 1.

Proof By assumption, each vertex in End(P) is incident with at most one bad edge. If there were
at least 2 bad edges, they would form a matching. Maker could then find a good edge e′ that is
adjacent to two of these edges, in contradiction to D(e′) ≤ 1. ✷

Proposition 4.2. At any point of the game, when |P| ≥ 4 and

• each v ∈ End(P) is incident with at least one good edge,

• D(e) ≤ 2 holds for all good edges e.

Then the number of bad edges is at most |P|.

Proof By assumption, each vertex in End(P) is incident with at most two bad edges. If each
vertex is incident with at most one bad edge, then the bad edges form a matching on End(P).
Thus, there can be at most |P| such edges. So, assume that there is a vertex x incident with
exactly two bad edges xy1 and xy2. Then the number of bad edges is at most 4, which can be
seen as follows: Let z be the other endpoint of the path that x belongs to. If y1 and y2 belong
to the same path in P , then the only further edges that could be bad are zy1 and zy2. Indeed,
if there was another endpoint w /∈ {x, y1, y2, z} incident with some bad edge, then D(xw) ≥ 3, a
contradiction. Otherwise, if y1 and y2 belong to different paths, then similarly one observes that
y1y2 is the only edge that could be bad besides xy1 and xy2. ✷
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Proposition 4.3. Let br and p = |P| > 2 be the numbers of bad edges and Maker’s paths,
respectively, immediately before Maker claims some edge e. If br < 2p − 2, then the following
holds:

i) Each vertex in End(P) is incident with at least one good edge.

ii) If e is a good edge such that D(e) is maximal (at the moment when e is chosen), and if br′

and p′ are the numbers of bad edges and Maker’s paths immediately after Maker claimed e,
then again br′ < 2p′ − 2. Moreover, br′ = 0 if D(e) ≤ 1.

Proof Part i) of the proposition holds, since for each vertex the number of incident good edges
and the number of incident bad edges sums up to 2(p− 1).
So, consider part ii). If D(e) ≥ 2, then Maker gets rid of at least two bad edges by claiming e
which gives br′ ≤ br−2 < 2p−4 = 2p′−2. Otherwise, if D(e) ≤ 1, then br ≤ 1, by Proposition 4.1.
By the choice of e, it follows that br′ = 0. ✷

The last proposition turns out to be very helpful for the discussion of Stage II. The reason is that
whenever br < 2p − 2 holds, then it tells us that Maker can claim a good edge as asked by the
strategy of Stage IIa. Moreover, after Maker claimed such an edge (and thus br′ < 2p′ − 2 holds),
we can reapply this proposition, and continue this way until Maker’s move in Stage IIa is over.
With all the previous propositions in hand, let us now prove that Maker can follow the strategy.

Stage I. If n is even, Maker plays ⌈n/(2a)⌉ rounds according to the strategy given for the perfect
matching game. This produces a perfect matching (thus every vertex is covered) plus at most a
further edges that, together with the matching edges, form a linear forest. In case this strategy
stops in round ⌈n/(2a)⌉ before Maker claimed exactly a edges, Maker claims further edges that
maintain a linear forest. Note that this is possible since n is large enough and Breaker so far
claimed at most n/2 edges. If n is odd, Maker plays ⌈n/(2a)⌉ rounds on Kn−1 ⊆ Kn, analogously
occupying a family of paths of length at least 1, covering all vertices of Kn−1. In the next round,
she connects the unique vertex v ∈ V (Kn) \ V (Kn−1) to an endpoint of one of her paths, and
afterwards claims a − 1 further edges such that her graph remains a linear forest. Again, this is
possible, since Breaker so far claimed at most n/2 + 2a edges.

Stage II. Observe first that, when Maker enters Stage II, her collection P consists of pt1−1 =
n − (t1 − 1)a ≥ n/2 − 2a paths. Moreover, immediately after her previous move the number of
bad edges was brt1−1 ≤ (t1 − 1)a ≤ n/2 + 3a ≤ pt1−1 + 5a. The following claim splits Stage II
naturally into three parts and ensures for each part that Maker can follow the proposed strategy.

Claim 4.4. For Stage II the following is true.

(a) For every t1 ≤ i ≤ t2, Maker can make her ith move according to Stage IIa. After that move,

bri ≤ pi − a or bri − pi < bri−1 − pi−1. (1)

In particular, bri ≤ pi + 5a for every t1 ≤ i ≤ t2, and bri ≤ pi − a for every t1 + 6a ≤ i ≤ t2.

(b) For every t2 +1 ≤ i ≤ t2 +7, Maker can follow her ith move according to Stage IIb, and after
that bri ≤ pi + 13a.

(c) For every t2 +8 ≤ i ≤ ⌈n/a⌉− 1, Maker can follow her ith move according to Stage IIa. After
that move,

bri ≤ max{pi − a, 0} or bri − pi < bri−1 − pi−1. (2)

In particular, bri ≤ pi + 13a always, and bri ≤ max{pi − a, 0} for every i ≥ t2 + 14a+ 8.

Proof
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(a) We prove the statement by induction on i.When Maker has to make her ith move, by induction
hypothesis, she sees at most bri−1 + a ≤ pi−1 +6a < 2pi−1 − 2 bad edges on the board. Thus,
by Proposition 4.3, Maker can follow her strategy and claim e1, . . . , ea. Now, let Dj denote
the value of D(ej) at the moment when ej is chosen, and observe that D1 ≥ D2 ≥ . . . ≥ Da.
Case 1. If Da ≤ 1, then by Proposition 4.3 ii), we obtain bri = 0.
Case 2. If D1 ≥ 3 and Da ≥ 2, then Breaker in his ith move created at most a bad edges,
while Maker gets rid of

∑a
j=1 Dj ≥ 3 + 2(a − 1) bad edges. We conclude that bri − pi ≤

bri−1 + a− (3 + 2(a− 1))− (pi−1 − a) < bri−1 − pi−1.
Case 3. If D1 = Da = 2, then after Breaker’s ith move there were at most pi−1 bad edges,
as given by Proposition 4.2. Maker in her ith move decreases the number of bad edges by
∑a

i=1 Di = 2a, while the number of paths only decreases by a. This gives bri ≤ pi − a.

Thus, in either case (1) holds. Finally, it follows that bri ≤ pi + 5a for all i and bri ≤ pi − a
for all i ≥ t1 + 6a, since the difference bri − pi decreases as long as it is larger than −a.

(b) If Maker can follow the strategy, then one verifies that bri ≤ brt2 + 7a ≤ pt2 + 6a = pt2+7 +
13a ≤ pi + 13a for every t2 + 1 ≤ i ≤ t2 + 7. On the other hand, this inequality ensures
that, when Maker has to make her ith move, each vertex in End(P) is incident with at least
2(pi−1 − 1)− (pi−1+13a) ≥ (n− (t2+6)a)− 14a ≥ n/(7a) good edges. Therefore, Maker can
follow the proposed strategy for Stage IIb.

(c) Similarly to the proof of (a) we apply induction on i. Assume the statement was true until
round i−1. If i < t2+8+14a, then bri−1+a ≤ pi−1+14a < 2pi−1−2. If i ≥ t2+8+14a, then
pi−1 > a and, since by (2) the difference bri − pi decreases as long as it is larger than −a, we
obtain bri−1+ a ≤ pi−1 < 2pi−1− 2. So, in any case, when Maker starts her ith move, she sees
at most bri−1+a < 2pi−1−2 bad edges on the board. Thus, applying Proposition 4.3 we know
that Maker can follow the strategy for the current move. The proof of (2) is done similarly to
the proof of (1) in (a). Indeed, Case 1 and 2 from that proof are handled analogously. Case
3 can be done as before, as long as Proposition 4.2 applies, i.e. as long as pi−1 ≥ 4. Since
pi−1 > a, the only time when this does not happen is when a = 2 and pi−1 = p⌈n/a⌉−2 = 3.
But then i ≥ t2 + 8 + 14a and thus the number of bad edges is at most bri−1 + a ≤ 3 = pi−1,
which is enough to handle Case 3 analogously. Finally, bri ≤ max{pi−a, 0} for i ≥ t2+14a+8
holds, since by (2) the difference bri − pi decreases as long as it is larger than −a. ✷

Stage III. Let p be the size of P when Maker enters Stage III, and observe p = p⌈n/a⌉−1 ≤ a. In
order to create a Hamilton cycle within 1 or 2 further rounds, we now make use of Proposition 2.1
and Corollary 2.2. Before doing that, we need the following claim.

Claim 4.5. Right before Maker’s first move in Stage III, the following properties hold:

(H1) The number of bad edges is at most a,

(H2) ∀ v ∈ End(P) : dB(v) < n/(3a).

Proof By Claim 4.4 (c) we have br⌈n/a⌉−1 ≤ max{p⌈n/a⌉−1 − a, 0} = 0. Breaker in his ⌈n/a⌉th

move creates at most a bad edges, proving (H1). Assume now that (H2) does not hold, i.e.
there is a vertex v ∈ End(P) with degree at least n/(3a) in Breaker’s graph, right after Breaker’s
⌈n/a⌉th move. Then, in round t2 + 1, the degree of vertex v in Breaker’s graph is at least
n/(3a)− a(⌈n/a⌉ − t2) ≥ n/(6a)− a. Now, Maker did not claim a good edge incident to v so far.
Thus, whenever Maker claimed an edge in Stage IIb, one of its endpoints already had degree at
least n/(6a) − a in Breaker’s graph. But, since Maker claims 7a independent edges throughout
Stage IIb, this means that Breaker needs to have at least 7a vertices in his graph of degree at
least n/(6a)− a, which gives the existence of more than n Breaker’s edges, in contradiction to the
number of rounds played so far. ✷

Finally, we show how Maker completes her Hamilton cycle by case distinction on p.
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Case p ≤ a/2. Applying Corollary 2.2 (with G = Kn \B; using Claim 4.5 (H2)), Maker can find
(at most) 2p ≤ a free edges to finish a Hamilton cycle. Maker claims these and is done.

Case p = (a + 1)/2. Observe that a ≥ 3 and therefore, by Claim 4.5 (H1), the number of good
edges is at least 4

(

p
2

)

− a > 0. Maker at first claims one such good edge, thus reducing the number
of paths to p − 1. Afterwards, applying Corollary 2.2 as before, she can find 2(p − 1) free edges
finishing a Hamilton cycle. She claims these edges, which is possible since 2(p− 1) + 1 = a.

Case p = (a+ 2)/2 and a > 4. By Claim 4.5 (H1), the number of good edges is at least 4
(

p
2

)

−a ≥
2a+ 2. That is why we can find at least two good edges such that claiming them keeps Maker’s
graph being a linear forest. Maker at first claims these two good edges, thus reducing the number
of paths to p − 2. Afterwards, applying Corollary 2.2 as before, she can find 2(p − 2) free edges
finishing a Hamilton cycle. She claims these edges, which is possible since 2(p− 2) + 2 = a.

Case p = 3 and a = 4. Similarly to the previous case, by Claim 4.5 (H1), the number of good
edges is at least 4

(

p
2

)

− a = 8. It is easily checked that we can find two good edges such that
claiming them Maker’s graph is a Hamilton path. Then, applying Corollary 2.2 and Claim 4.5
(H2), she can close this path into a Hamilton cycle by claiming at most two further edges.

Case p = 2 and a = 2. In this case, n is even, and we are allowed to play two further rounds.
When Maker enters Stage III, her graph consists of two paths P1 and P2. Applying Proposition 2.1
(with G = Kn \ B; using Claim 4.5 (H2)), she can claim two edges to obtain a path P covering
V (P1) ∪ V (P2) = V in the first round. Then similarly, applying Corollary 2.2, she can finish a
Hamilton cycle in the next round.

Case p ≥ (a+ 3)/2. Observe that a ≥ p ≥ 3 and that, when Maker enters Stage III, the number
of bad edges is at most a < 2p− 2. Thus, by Proposition 4.3, Maker at first can claim p− 2 edges
as in Stage IIa. Afterwards, her graph consists of exactly two paths (|P| = 2), while, by the same
proposition, the number of bad edges is smaller than 2|P|− 2 = 2. Thus, one finds two good edges
that finish a Hamilton cycle. Maker claims these, which is possible as (p− 2) + 2 ≤ a. ✷

5 Strong Hamilton Cycle Game

Proof of Theorem 1.5. At first we give a short description of a strategy for Red, and then
we show that Red indeed can follow that strategy and win the (2 : 2) Hamilton cycle game in
the desired number of rounds. As in the proof for the corresponding weak game, Red starts by
maintaining a linear forest for all but a small constant number of rounds. Then she completes a
Hamilton cycle in her graph, while blocking possible Hamilton cycles in Blue’s graph.
Let SHn

be Maker’s strategy given in the previous chapter for the (2 : 2) Weak Hamilton cycle
game. Assume that Red’s graph is a collection P of paths. Again, an edge e between the endpoints
of different paths from P is called good if it is unclaimed. Otherwise, it is called bad. For a good
edge e we set D(e) to be the number of bad edges adjacent to e. Red’s strategy is divided into
the following three stages.

Stage I. For the first n/2− 2 rounds, Red follows the strategy SHn
, thus creating a collection of

4 non-empty paths covering all vertices of Kn.

Stage II. At the very beginning of Stage II, let I2 denote the set of isolated vertices in the graph
of Blue, and let P2 be the collection of Red’s paths (from Stage I). In round n/2− 1, Red claims
two good edges e1 and e2 such that the following properties hold:

(S1) E(P2)∪{e1}∪{e2} induces a collection P3 of two non-empty paths. Moreover, immediately
after Red’s move in round n/2− 1, there is no bad edge among the vertices of End(P3).

(S2) If End(P2) ∩ I2 6= ∅, then (e1 ∪ e2) ∩ I2 6= ∅. (That is, Red decreases the number of Blue’s
isolated vertices among the endpoints of her paths, if this number is not zero.)
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The details of how she can claim her edges follow later in the proof.

Stage III. Within at most 2 further rounds, Red creates a Hamilton cycle. Moreover, in the
meantime she prevents the same in Blue’s graph. The details of how she can do this follow later.

It is evident that, if Red can follow the strategy, she wins the game within the desired number of
rounds. Thus, it remains to show that Red indeed can follow the proposed strategy.

Stage I.We already saw that Red/Maker can follow the strategy SHn
. So, Red creates a collection

P2 of non-empty paths and, since she claims 2 · (n/2− 2) = n− 4 edges in total, we get |P2| = 4.

Stage II. Recall that for the strategy SHn
, the parameters pi and bri were introduced to denote

the number of Maker’s/Red’s paths and the number of bad edges immediately after Maker’s/Red’s
ith move, respectively. By Claim 4.4 (c) we then have that immediately after Red’s last move in
Stage I, the number of bad edges is at most brn/2−2 ≤ max{pn/2−2 − 2, 0} = 2. Thus, when Red
enters Stage II there can be at most 2+ 2 = 4 bad edges. We distinguish between the three cases.

Case 1. The number of bad edges is at most 3. Then Red at first chooses a good edge e1 such
that D(e1) is maximal (w.r.t. P2) and creates a collection P ′

2 induced by E(P2)∪{e1}. Note that,
at the moment when P ′

2 is created, the number of bad edges is at most 1. Indeed, if D(e1) ≥ 2,
then at least two bad edges disappear. Otherwise, if D(e1) ≤ 1, then by Proposition 4.1, the
number of bad edges was already at most 1. So, after e1 is claimed, we have exactly three paths
and at most one bad edge. Then, Red chooses an arbitrary edge e2 which is good (w.r.t. the new
collection P ′

2) such that the following holds: It is adjacent to the remaining bad edge if one exists;
and it is incident with some vertex from I2 if I2∩End(P ′

2) 6= ∅. It is easy to check that Red indeed
can do so, and properties (S1) and (S2) hold then.

Case 2. The number of bad edges is 4, and there is some good edge e with D(e) ≥ 3 (w.r.t. P2).
Then Red chooses e1 and e2 as in Case 1. Just note that, when e1 is chosen, the number of bad
edges drops to at most 1. The rest follows analogously to Case 1.

Case 3. The number of bad edges is 4, and we have D(e) ≤ 2 for every good edge e. Then the
subgraph of Blue’s graph induced on End(P2) is either a matching, or it consists of a 4-cycle and
4 isolated vertices. Indeed, if we don’t have a matching, then there needs to be some x ∈ End(P2)
which is incident with exactly two bad edges xy1 and xy2. Now, as in the proof of Proposition 4.2
either there is some endpoint z ∈ End(P2) such that zy1 and zy2 can be the only further bad
edges, or y1y2 is the only further edge that can be bad. The second case cannot happen, since we
have 4 bad edges, and so there needs to be a 4-cycle (with vertices x, y1, y2, z).
Now, in either case, it is easy to see that Red can choose a good edge e1 such that the following
holds: e1 is adjacent to exactly two bad edges; and e1 is incident with some vertex from I2 if
I2 ∩ End(P2) 6= ∅. Afterwards, the collection P ′

2 induced by E(P2) ∪ {e1} consists of three paths,
while the number of bad edges is 2. Red then chooses e2 to be good w.r.t. P ′

2, in such a way that
e2 intersects both of the remaining bad edges. Again, Red can easily do so, and by this ensure
the properties (S1) and (S2) hold.

Stage III. When Red enters Stage III, her graph is the collection P3 with properties (S1) and
(S2). Moreover, Property (H2) from Claim 4.5 holds again: If there was a vertex of degree at least
n/(3a) before Red’s first move of Stage III (right after Blue’s (n/2− 1)st move), then analogously
to the proof of Claim 4.5 in one of the previous rounds Blue must have had at least 7a vertices of
degree at least n/(6a) − a in his graph, a contradiction. Now, in the following we describe how
Red finishes her Hamilton cycle while preventing such a cycle in Blue’s graph.
For this, let B2 denote Blue’s graph right at the beginning of Stage II (i.e. after Blue’s (n/2−2)nd

move), and let B3 be his graph at the beginning of Stage III.

Case 1. Assume that B3 satisfies one of the following three properties:

• B3 contains a cycle.

• B3 has a vertex of degree at least 3.
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• B3 has at least 3 components.

Then, since |E(B3)| = n − 2, one needs to add at least 3 edges to B3 in order to get a Hamilton
cycle. That is, Blue cannot finish a winning set before round n/2+ 1. Therefore, Red wins, if she
can finish a Hamilton cycle within the next two rounds (round n/2 and n/2 + 1). For this, just
observe that with Property (H2) from Claim 4.5 in hand, Red can just follow Stage III of Maker’s
strategy from the (2 : 2) Weak Hamilton cycle game.

Case 2. Assume that B3 satisfies none of the three properties given in the first case. Then, B3

is a collection of exactly 2 (maybe one-vertex) paths that cover all vertices. Therefore, B2 is a
collection of 4 (maybe one-vertex) paths and thus has at most 3 isolated vertices (i.e. |I2| ≤ 3).
Now, if at the beginning of Stage III there are two good edges in End(P3) that finish a Hamilton
cycle in Red’s graph, then Red just claims these and wins the game.
So, we can assume that there is a vertex w ∈ End(P3), which is incident with two bad edges
f1 = wy1 and f2 = wy2 before Red’s (n/2)th move, y1, y2 ∈ End(P3). Since, by Property (S1),
there was no bad edge among End(P3) right after Red’s (n/2− 1)st move, we have that f1 and f2
were claimed in round n/2− 1 (i.e. f1, f2 ∈ B3 \ B2). But then, since B3 does not have a vertex
of degree at least 3, we know that w must be isolated in B2 (i.e. w ∈ I2). Thus |I2| ≥ 2, since
otherwise in Stage II (Property (S2)) we would ensure that I2 ∩ End(P3) = ∅, in contradiction to
the existence of w. In particular, there is a vertex x ∈ I2 with which Red claims an incident edge
in Stage II, and thus x /∈ {y1, y2}. As |I2| ≤ 3, it follows that at least one of the vertices y1, y2
does not belong to I2, w.l.o.g. let y1 /∈ I2. We are left with two cases.

Case 2.1. |I2| = 3. Then B2 consists of 3 isolated vertices (including w) and a path PB2
with n−3

vertices. Then, the vertex y1 /∈ I2 must be the endpoint of the path PB2
, since E(PB2

)∪f1 ⊆ E(B3)
does not give a vertex of degree at least 3. Since f2 = wy2 ∈ E(B3) cannot create a cycle, we
have y2 ∈ I2. But then, B3 consists of one isolated vertex z, and a path PB3

with n− 1 vertices.
Red’s strategy is as follows: In the first move, Red takes one edge which is good (w.r.t. P3) and
creates a Hamilton path. This is possible, since by (S1) there are only two bad edges between
the two paths of P3. For the second edge, she chooses one edge between z and End(PB3

). In his
next move, Blue cannot close a Hamilton cycle, since this would need the two edges between z
and End(PB3

). In round n/2 + 1, using Claim 4.5 (H2) and Corollary 2.2, Red then completes a
Hamilton cycle.

Case 2.2 |I2| = 2. Then B2 consists of 2 isolated vertices (including w) and two (non-empty)
paths covering the remaining n − 2 vertices. By Stage II (see Property (S2)), we ensured that
|I2 ∩End(P3)| ≤ 1, and so w is the unique vertex in I2 ∩End(P3). In particular, y1, y2 /∈ I2. Since
B3 has no cycles and no vertex of degree at least 3, and since f1, f2 ∈ B3, the vertices y1 and y2
must be the endpoints of different paths from B2. But then, B3 again has exactly one isolated
vertex and one path with n− 1 vertices. So, we can proceed as in Case 2.1. ✷

6 Pk-factor game

Proof of Theorem 1.3. If k = 2 and a is any constant, then Pk,n is a perfect matching and we
can use the proof of Theorem 1.1. So, we let k ≥ 3 and we fix some δ < 1/(8k). We first give a
Maker’s strategy. Then we prove that she can follow it and win within ⌈(k − 1)n/(ka)⌉ rounds.

Maker’s strategy is to build n/k vertex disjoint paths of length k − 1. During the course of
the game, the collection of all paths in her graph is denoted by P . Each path in P belongs to
exactly one of the three classes: Pu, which denotes the collection of unfinished paths (the paths of
length at most k − 3), Pf , which denotes the collection of the finished paths (the paths of length
exactly k − 2) or Pc, which denotes the collection of complete paths (the paths of length exactly
k−1). Maker’s strategy consists of three stages. In Stage I of her strategy, Maker makes sure that
every unfinished path becomes (at least) a finished path, while in the following stages she aims
for complete paths. The set of isolated vertices in Maker’s graph is denoted by U = V \ V (P).
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By End(P) we denote the set of endpoints of all paths. At the beginning, P := Pu contains n/k
arbitrarily chosen vertices; Pf and Pc are empty. If P is a path in Maker’s graph, then vP1 and
vP2 represent its endpoints.

Stage I. In this stage, Maker plays as follows: She gradually extends the unfinished paths with
the vertices from U until they are finished. From time to time, we allow her to complete some
of these paths in order to keep control on the distribution of Breaker’s edges (as described by
properties (Q1)–(Q3) in the following paragraph). After each step, the sets Pu,Pf ,Pc and U are
dynamically updated in the obvious way. That is, whenever Maker extends one of her paths, P ,
by some vertex u ∈ U , this vertex is removed from U and added to P , while P may be moved
from Pu to Pf or from Pf to Pc according to its new length.

During Stage I, for a given graph G, we say that (G,P) is good if the following properties hold:

(Q1) ∀u ∈ U : dG(u,End(Pu ∪ Pf )) < δn;

(Q2) G[U ] = ∅;

(Q3) ∀P ∈ Pu ∪ Pf : dG(v
P
1 , U) + dG(v

P
2 , U) ≤ 1.

In each move during this stage, Maker claims a free edges between U and End(Pu ∪ Pf ), so that
after her move (B,P) is good.

In her ith move, Maker chooses the edges e1 = e
(i)
1 , . . . , ea = e

(i)
a one after another. She makes

sure that for every t ∈ {0, 1, . . . , a} the following holds:

(Q4) Immediately after the edges e1, . . . , et are claimed (and the paths are updated accordingly),
there is a subgraph H = Ht ⊆ B with e(H) = a− t such (B \H,P) is good.

Assume e1, . . . , et are already claimed and P is updated accordingly. Then, as next Maker chooses
a free edge et+1 according to the following rules:

R1. If there is u ∈ U with dB(u,End(Pu ∪ Pf )) ≥ δn, then et+1 is chosen such that it extends a
path from Pu by the vertex u, if |Pu| ≥ a+1, or a path from Pf by the vertex u, otherwise.

R2. Otherwise, if there is a path P ∈ Pu with dB(v
P
1 , U) + dB(v

P
2 , U) ≥ 2, then there is an edge

vPi x ∈ Ht with x ∈ U , i ∈ [2]. Maker claims an arbitrary free edge et+1 = vPi u with u ∈ U .

R3. Otherwise, if there is a path P ∈ Pf with dB(v
P
1 , U) + dB(v

P
2 , U) ≥ 2, then there is an edge

vPi x ∈ Ht with x ∈ U , i ∈ [2]. Then

a) if there is a path P0 ∈ Pu, Maker claims an arbitrary free edge et+1 ∈ E(End(P0), x),

b) otherwise, if Pu = ∅, she claims an arbitrary free edge et+1 = vPi u with u ∈ U .

R4. Otherwise, if there is uw ∈ EB(U), w.l.o.g. dB(w,End(Pu ∪ Pf )) ≤ dB(u,End(Pu ∪ Pf)),
then Maker proceeds as follows.

a) If dB(u,End(Pu ∪ Pf )) = dB(w,End(Pu ∪ Pf )) ≥ δn − 1, then Maker chooses a free
edge et+1 = ux with x ∈ NB(w,End(Pu ∪ Pf )). Its existence is proved later.

b) Otherwise, if dB(u,End(Pu∪Pf )) ≥ δn−1 > dB(w,End(Pu∪Pf )), then let P ∈ Pu∪Pf

be a path with eB(End(P ), u) = 0 and dB(v
P
i , U) = 0 for some i ∈ [2]. Its existence is

proved later. Maker then sets et+1 = uvP3−i.

c) Otherwise, if dB(u,End(Pu ∪ Pf )), dB(w,End(Pu ∪ Pf )) < δn − 1, let P ∈ Pu ∪ Pf ,
giving priority to unfinished paths, and let dB(v

P
i , U) ≥ dB(v

P
3−i, U) for some i ∈ [2].

Then Maker claims one of the edges vPi u, v
P
i w.

R5. Otherwise, in all the remaining cases, Maker extends a path which is not complete by some
free edge et+1, arbitrarily, giving priority to unfinished paths.
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Stage I ends when after Maker’s move, her graph consists only of finished paths, complete paths
and isolated vertices. At this point, (n(k − 2))/(ka) + T/a rounds are played with T = |Pc| being
the number of complete paths at the end of Stage I.

Stage II. In the following ⌈(n/k − T )/a⌉ − 1 rounds, Maker extends the finished paths. This
time, Maker is interested in keeping the following property after each of her moves.

(F1) ∀P ∈ Pf : dB(v
P
1 , U) + dB(v

P
2 , U) ≤ 1.

To describe Maker’s strategy, we introduce the following terminology: Let e ∈ E(End(Pf ), U).
Then e is called good if it is free; otherwise we call it bad. We say that P ∈ Pf is a bad path if
dB(v

P
1 , U) + dB(v

P
2 , U) ≥ 2 holds, and with Pb ⊆ Pf we denote the dynamic set of all bad paths.

Moreover, we introduce the potential

ϕ :=
∑

P∈Pb

(dB(v
P
1 , U) + dB(v

P
2 , U)− 1),

which measures dynamically the number of edges that need to be deleted from B in order to
reestablish Property (F1). Finally, with eend we denote the very last edge claimed by Maker in
Stage II.

Now, in every round i played in Stage II, Maker claims edges e1 = e
(i)
1 , . . . , ea = e

(i)
a , one after

another. The jth edge ej is claimed according to the following rules:

• Maker chooses a good edge ej between some vertex u ∈ U and an endpoint of some path
P ∈ Pf such that

(a) in case ϕ > 0, ϕ is decreased after ej is claimed and all sets are updated,

(b) if ej 6= eend, then End(P ) ∪ {u} contains a vertex of the largest degree in Breaker’s
graph among all vertices from End(Pf ) ∪ U ,

(c) if ej = ea = eend, then after ej is claimed and all sets are updated, there is a path
P ∈ Pf with eB(End(P ), U) = 0.

• After ej is claimed, Maker removes u from U and P from Pf , and adds P to Pc, before she
proceeds with ej+1.

The exact details of how Maker finds such an edge ej will be given later in the proof.

Stage III. Within one round, Maker claims at most a free edges to complete a Pk-factor. The
details are given later in the proof.

It is evident that if Maker can follow this strategy, she wins the game in the claimed number of
rounds. For each of the stages above we show separately that Maker can follow her strategy.

Stage I. We start with the following useful claim.

Claim 6.1. As long as Maker follows Stage I, |Pc| ≤ a+ 3/δ < δn.

Proof Following the strategy, Maker only creates complete paths in case there is a vertex of degree
at least δn − 1 in Breaker’s graph which is used to extend a finished path (cases R1, R4.a,b), or
in case Pu = ∅ (cases R3.b, R4.c, R5) holds. The first option happens less than 3/δ times, as
Breaker claims less than n edges throughout Stage I. The second option can only happen in the
last round of Stage I, which cannot lead to more than a additional complete paths. ✷

Now, by induction on the number of rounds, i, we show that Maker can follow the proposed strat-
egy of Stage I. We first observe that before the game starts, (B,P) is good, as B is empty. Now,
let us assume that she could follow the strategy for the first i − 1 rounds and that immediately
after her (i − 1)st move, (B,P) is good. In particular, this also means that in the next round,
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Property (Q4) is guaranteed for t = 0, by choosing H = H0 to be the graph of all the a edges
that Breaker claims in round i. By induction on the number of Maker’s steps in round i, we prove
that she can claim the edges e1, . . . , ea as described, and that she ensures Property (Q4) for every
t ∈ {0, . . . , a}. Setting t = a then tells us that (B,P) is good immediately after Maker’s move,
completing the induction on i.

Let us assume that Maker already claimed e1, . . . , et and that (Q4) holds after step t. Let Ht be
the graph guaranteed by (Q4). We now look at the different cases for step t+ 1.

R1. In this case there must be an edge g ∈ E(Ht) between u and End(Pu ∪ Pf ), as (B \Ht,P)
satisfies Property (Q1) after step t. Now, if |Pu| ≥ a + 1, then there needs to be a path
P ∈ Pu with dB(v

P
1 , U) + dB(v

P
2 , U) ≤ 1, as (B \ Ht,P) satisfies (Q3) after step t and

e(Ht) ≤ a. Otherwise, Claim 6.1 ensures that |Pf | ≥ a+ 1 and thus there is a path P ∈ Pf

with the same property. In either case, Maker can extend P by u. Set Ht+1 := Ht − g.
Then, after the update, g ∈ E(End(P)) holds and therefore g has no influence on (Q1)–(Q3)
anymore. Thus, using that (B \Ht,P) satisfied (Q2) after step t, we conclude that u has no
edges towards U in B \Ht+1 after step t+ 1. Now, one easily checks that (B \Ht+1,P) is
good after step t+ 1.

R2. As (B \ Ht,P) satisfies (Q3) after step t, there needs to exist an edge vPi x as claimed.
Moreover, we have |U | ≥ |Pu ∪Pf | =

n
k − |Pc| > dB(v

P
i , U) where the last inequality follows

from Claim 6.1 and the fact that (B \ Ht,P) satisfies (Q3) after step t. Thus, Maker can
claim an edge vPi u as proposed. Afterwards, we set Ht+1 := Ht − vPi x. Then u has no
edge towards U in B \Ht+1 and the edge vPi x has no influence on (Q1)–(Q3) anymore. We
therefore conclude that (B \Ht+1,P) is good after step t+ 1.

R3. The existence of vPi x is given as in case R2. If there is a path P0 ∈ Pu, then not both edges
vP0

1 x, vP0

2 x can be claimed by Breaker, as otherwise P0 would force case R2. If otherwise
Pu = ∅, then analogously to the argument in case R2, we have |U | > dB(v

P
i , U). So, in

either case, Maker can claim an edge as proposed by the strategy. After the update of P ,
we obtain analogously to the previous case that (B \Ht+1) is good with Ht+1 := Ht − vPi x.

R4. As case R1 does not occur, we know that dB(u,End(Pu ∪ Pf )), dB(w,End(Pu ∪ Pf )) < δn.
In particular, a)–c) cover all possible subcases. Moreover, as (B \Ht,P) satisfies (Q2) after
step t, we must have uw ∈ E(Ht).

a) Assume there is no edge ux as proposed by the strategy. Then there must be at
least δn − 1 vertices in End(Pu ∪ Pf ) which have degree at least |{u,w}| = 2 in B,
contradicting the fact that (B \ Ht,P) satisfies (Q3) after step t and e(Ht) ≤ a. So,
Maker can claim an edge ux as proposed. In case xw ∈ E(Ht), we set Ht+1 := Ht−xw.
Then, after the update xw /∈ E(End(P) ∪ U) holds, i.e. this edge has no influence on
(Q1)–(Q3). Moreover, u has no edge towards U in B \Ht+1 after step t+1. Otherwise,
we set Ht+1 := Ht − uw. To see that again (B \Ht+1,P) is good after step t+ 1, just
observe the following: After step t+1, u has exactly one neighbour in U (namely w) in
the graph B \Ht+1. But, as xw ∈ E(B \Ht) and (Q3) was fulfilled by B \Ht after step
t, we know that the other endpoint of the path P has no edges towards U in B \Ht+1.
Moreover, dB\Ht+1

(w,End(Pf ∪Pu)) ≤ dB(w,End(Pf ∪Pu)) < δn is maintained, as in
B, w gains u and looses x as a neighbour in End(Pf ∪ Pu).

b) By Claim 6.1 and since (B \ Ht,P) is good after step t, we have that |Pu ∪ Pf | ≥
n
k −δn > 3a+dB\Ht

(u,End(Pu∪Pf )) ≥ 2a+dB(u,End(Pu∪Pf )). In particular, there
are at least 2a paths P ∈ Pu ∪ Pf with eB(End(P ), u) = 0. As e(Ht) ≤ a and since
(B \Ht,P) satisfied (Q3) after step t, there needs to be such a path with dB(v

P
i , U) = 0

for some i ∈ [2]. Obviously Maker can claim the edge vP3−iu, as eB(End(P ), u) = 0.
Now, set Ht+1 := Ht−uw. Then to see that (B \Ht+1,P) is good after step t+1, just
notice that u has only one edge, uw, towards U in B \Ht+1, while dB\Ht+1

(vPi , U) = 0.
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Moreover, dB(w,End(Pu ∪ Pf)) < δn is guaranteed by the assumption on w for this
case and since w gains at most one new neighbour among End(P), namely u.

c) As the cases R2 and R3 do not occur, we have dB(v
P
3−i, U) = 0 and dB(v

P
i , U) ≤ 1.

In particular, one of the edges vPi u, v
P
i w is free, so Maker can follow the proposed

strategy. W.l.o.g. let Maker claim vPi u. Set Ht+1 := Ht − uw. Then after step t+ 1, u
has exactly one edge towards U (namely uw) in B \Ht+1, while dB\Ht+1

(vP3−i, U) = 0.
Moreover, dB(w,End(Pu ∪Pf )) < δn is guaranteed as in the previous case. Therefore,
we conclude analogously that (B \Ht+1,P) is good after step t+ 1.

R5. As the cases R1–R4 do not occur, (B,P) is good after step t. Therefore, Maker can easily
follow the proposed strategy and afterwards (B \Ht+1,P) is good for every graph Ht+1.

So, in either case Maker can follow the proposed strategy for Stage I.

Stage II. At any moment throughout Stage II, let p := |Pf | and let br denote the number of bad
edges. By the definition of ϕ, it always holds that br ≤ p + ϕ. Moreover, before every move of
Maker in this stage, we have p ≥ a+1, and therefore p ≥ 2 holds immediately before eend is claimed.

By induction on the number of rounds, i, we now prove that Maker can follow the proposed
strategy and always maintains (F1). We can assume that (F1) was already satisfied after Maker’s
last move in Stage I, using (Q3). Now, assume that Maker’s ith move happens in Stage II. As,
by induction, (F1) was satisfied immediately after her previous move and as Breaker afterwards
claimed only a edges in his previous move, we know that ϕ ≤ a < p before Maker’s move, and
therefore br ≤ p + ϕ < 2p. We now observe that such a relation can be maintained as long as
Maker can follow her strategy.

Claim 6.2. Assume that Maker can follow her strategy. Then, after ej is claimed and Pf , U are
updated accordingly, ϕ < p and br < 2p hold.

Proof For induction assume that ϕ < p and br < 2p hold immediately after ej−1 is claimed.
When Maker claims ej , two cases may occur. If ϕ = 0 holds, then after ej is claimed, we still have
ϕ = 0 and br ≤ p+ ϕ < 2p. Otherwise, we have ϕ > 0, in which case Maker claims an edge that
decreases the value of ϕ. As p decreases by one within one step of Maker, we thus obtain that
ϕ < p and br ≤ p+ ϕ < 2p are satisfied after all updates. ✷

With this claim in hand, we can deduce that Maker can always follow the proposed strategy.
Consider first that ej 6= eend. We note that each path in Pf and each vertex in U is incident with
2p > br edges from E(End(Pf ), U). Thus each such path and each such vertex intersects at least
one good edge. Let v be a vertex of the largest Breaker’s degree among all vertices in End(Pf )∪U .
Assume first that v ∈ End(P ) for some P ∈ Pf . If ϕ = 0 or P ∈ Pb, then Maker claims an
arbitrary good edge ej ∈ E(End(P ), U) which exists as explained above. Just note that in case
P ∈ Pb, the value of ϕ will be decreased, as P gets removed from Pb. Moreover, v is contained in
the path P (after the update). Otherwise, if ϕ > 0 and P /∈ Pb, we find some bad path P0 6= P
and some bad edge u0v0 with u0 ∈ U and v0 ∈ End(P0). Then Maker claims an edge ej = xu0,
with x ∈ End(P ) and dB(x, U) = 0. Such a vertex exists, as we assumed P /∈ Pb. Again this
decreases ϕ by (at least) one, as dB(v

P0

1 , U) + dB(v
P0

2 , U) decreases by (at least) one after u0 is
removed from U ; and again v is contained in the updated path P .
Assume then that v ∈ U . If ϕ = 0, then Maker can choose ej to extend an arbitrary path in Pf by
the vertex v, which is possible as there are no bad paths. So, assume that there is a path P ∈ Pb.
If there is a good edge in E(v,End(P )), Maker claims such an edge and then ϕ decreases as P is
removed from Pf , and v again is contained in the updated path P . If there is no such good edge,
then Maker claims an arbitrary good edge between v and some path P0 ∈ Pf \ {P}. Then, ϕ
decreases as eB(v,End(P )) = 2 and v gets removed from U , and v finally belongs to the updated
path P0.
Consider then that ej = ea = eend, and recall that p ≥ 2 before Maker claims eend. We know
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that ϕ ≤ a holds before Maker’s first step in round i. As Maker decreased the value of ϕ by at
least one, in case ϕ > 0, with every previous edge in this round, we know that ϕ ≤ 1 immediately
before she wants to claim eend. W.l.o.g. let ϕ = 1, and let P0 be the unique bad path. Note
that then eB(End(P0), U) = 2. Moreover, let P ∈ Pf \ {P0}. If eB(End(P ), U) = 0, then Maker
extends P0 by an arbitrary edge eend (which is possible as br < 2p). Then, after the update,
ϕ = 0 holds as P0 is removed from Pf , and P satisfies eB(End(P ), U) = 0. Otherwise, we have
eB(End(P ), U) = 1 as P /∈ Pb, and thus there is a unique vertex u such that eB(End(P ), u) = 1.
If eB(End(P0), u) ≤ 1 holds, then Maker claims an edge eend = uvP0

i with i ∈ [2]. Afterwards,
P satisfies eB(End(P ), U) = 0 as u gets removed from U ; ϕ = 0 holds as P0 is removed from
Pb. Otherwise, we have eB(u,End(P0)) = 2 = eB(U,End(P0)) as ϕ = 1. In this case Maker
just claims a free edge eend = uvPi with i ∈ [2] (which is possible as eB(End(P ), u) = 1). Then,
P0 satisfies eB(End(P0), U) = 0 after u is removed from U , and as P0 is not bad anymore, i.e. ϕ = 0.

In total, we see that in either case Maker can claim the edges ej as proposed. Finally, Property
(F1) always holds immediately after ea is claimed. For this just recall that ϕ ≤ a holds immedi-
ately before a Maker’s move, and that Maker reduces ϕ by at least one in each step as long as
ϕ > 0 holds. That is, we obtain ϕ = 0 at the end of her move, which makes Property (F1) hold.

Stage III. Finally, we prove that Maker can finish a Pk-factor within one additional round. We
start with the following claim.

Claim 6.3. Before Maker’s move in Stage III, dB(v) < 2δn holds for every v ∈ (U ∪ End(Pf )).

Proof Suppose that the statement does not hold, i.e. there exists a vertex v ∈ U ∪End(Pf ) such
that dB(v) ≥ 2δn. Then, during the last ⌊3/δ⌋ rounds of Stage II, dB(v) > δn. However, in each
step of these rounds (except when claiming eend), Maker included a vertex w into some complete
path for which dB(w) ≥ dB(v) > δn was satisfied (see (b)). But then, Breaker would have claimed
more than n edges, a contradiction to the number of edges he could claim in all rounds so far. ✷

With this claim in hand, we are able to describe how to finish a Pk-factor within one further
round. We distinguish between the following cases depending on the size of U .

Case 1: 0 < |U| ≤ a/2. We denote the isolated vertices in U by u1, u2, . . . , ut, and the paths in
Pf by P1 . . . , Pt. Using Claim 6.3, for every i ∈ [t], we find at least |Pc| − 4δn > n/(4k) paths

R ∈ Pc such that uiv
R
1 , v

R
2 v

Pi

1 are free. We thus can fix t distinct paths R1, . . . , Rt ∈ Pc such that,
for every i ∈ [t], the edges uiv

Ri

1 , vRi

2 vPi

1 are free. Maker claims these edges, in total at most a,
and by this completes a Pk,n, as V (Ri) ∪ V (Pi) ∪ {ui} contains a copy of P2k for every i ∈ [t].
Case 2: a/2 < |U| = a. Let G = (Pf ∪U,E(G)) be the bipartite graph where two vertices u ∈ U
and P ∈ Pf form an edge if and only if dB(u,End(P )) ≤ 1. Then e(G) ≤ a − 1 holds, as after
Maker’s last move in Stage II we had eB(End(Pf ), U) ≤ a − 1 (by (F1) and (c)), while Breaker
afterwards claimed at most a bad edges. By the theorem of König-Egervary (see e.g. [13]) we thus
obtain that G contains a matching of size at least

|U |2 − e(G)

|U |
>

{

|U | − 1, if |U | = a

|U | − 2, if a/2 < |U | < a.

So, in case |U | = a, we have that G contains a perfect matching, say u1P1, u2P2, . . . , uaPa.
Then Maker claims a good edge in E(ui,End(Pi)) for every i ∈ [a], and by this creates a
copy of Pk,n. Otherwise, in case a/2 < |U | ≤ a − 1, we find a matching of size |U | − 1,
say u1P1, u2P2, . . . , u|U|−1P|U|−1. Maker then claims a good edge in E(ui,End(Pi)) for every
i ∈ [|U | − 1], in total at most a− 2 edges. For the remaining (unique) vertices u ∈ U and P ∈ Pf

that are not covered by the matching, we proceed as in Case 1: we find a path R ∈ Pc such that
the edges uvR1 , v

R
2 v

P
1 are free, which then Maker claims to complete a Pk-factor. ✷
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7 Weak Sk-factor game

Proof of Theorem 1.4. In the following we give a strategy for Maker in the Sk,n game. After-
wards, we prove that she can follow that strategy and win in the claimed number of rounds.

Maker’s strategy. Maker makes the k-star factor by gradually increasing the size of n/k stars,
so that at any point of the game, no two disjoint stars differ in size by more than one. Before the
game starts, she splits the vertex set into three sets C, R and F , that are dynamically maintained.
C represents the centres of the stars in the star factor, F contains the endpoints of the current
stars, and R are the remaining isolated vertices in Maker’s graph. At the beginning of the game,
F := ∅, C contains n/k arbitrary chosen vertices and V = C ∪R. All the star centres have degree
0 at the beginning of the game. Maker’s strategy consists of the following two stages.

Stage I. Maker divides this stage into phases 1, 2, . . . , k − 1. The game starts in phase 1, when
all vertices in C have degree 0 in Maker’s graph. In phase i, 1 ≤ i ≤ k− 1, she makes the vertices
in C get degree exactly i in her graph. The phase i, 1 ≤ i ≤ k − 2 finishes (and the phase i + 1
starts) immediately after the step in which the last vertex of C reached degree i. So, it might
happen that Maker switches from phase i to phase i+ 1 between two steps of the same move. In
particular, she will play exactly n/k consecutive steps (from consecutive rounds) in each of her
first k− 2 phases. Finally, Stage I ends immediately after the Maker’s move in which phase k − 2
ended, i.e. when all the vertices in C have degree at least k − 2 in Maker’s graph. (Note that it
might happen that phase k − 1 consists of zero steps.)

To describe Maker’s strategy more precisely, we let CA always denote the subset of C containing
the vertices of smallest degree in her graph. That is, in phase i, CA contains those vertices that
are centres of stars of size i − 1. At the beginning of each phase, CA = C. Moreover, we call a
Breaker’s edge e bad if e ∈ E(C,R).

Assume now, Maker wants to make her jth move in Stage I. Let t be the number of elements in

CA right at the beginning of her move. Maker iteratively chooses the edges e1 = e
(j)
1 , . . . , ea = e

(j)
a

of her jth move in the following way: For every 1 ≤ s ≤ a, she first sets t := |CA|. Then,

(1) if there is a free edge eF ∈ E(CA, R) such that ∅ 6= eF ∩ eB ∈ R for some bad edge eB, then
Maker chooses es to be such an edge eF . Let xs ∈ CA and ys ∈ R be the vertices of es.

(2) Otherwise, she chooses es = xsys arbitrarily with xs ∈ CA and ys ∈ R.

(3) Afterwards, she updates R := R \ {ys}, F := F ∪ {ys} and CA := CA \ {xs} if t 6= 1, or
CA := C if t = 1, before she proceeds with es+1.

This stage lasts ⌈(k − 2)n/(ak)⌉ rounds.

Stage II. When Maker enters Stage II, her graph consists of stars of size k−2 and k−1. Moreover,

|CA| = |R| =
(k − 1)n

k
− a

⌈

(k − 2)n

ak

⌉

=: N.

Maker now completes her k-star factor, by claiming a perfect matching between CA and R in the
following ⌊N/a⌋+ 1 rounds. The details follow later in the proof.

It is easy to see that if Maker can follow the strategy, she wins the Sk,n within the claimed number
of rounds. Indeed, the number of rounds Stage I and II last together is

⌈

(k − 2)n

ak

⌉

+ ⌊N/a⌋+ 1 =

⌊

(k − 1)n

ak

⌋

+ 1 =

{

⌈ (k−1)n
ak ⌉, if ak ∤ (k − 1)n

⌈ (k−1)n
ak ⌉+ 1, otherwise.

So, to finish the proof, we show separately for each stage that Maker can follow the proposed
strategy.
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Stage I. In order to show that Maker can follow her strategy in this stage, we first prove that as
long as she can follow the strategy, the number eB(C,R) of bad edges cannot be too large. Based
on this, we then conclude that Maker indeed can follow her strategy.
Before this, it is useful to observe the following: If |CA| > eB(C,R) holds before Maker claims an
edge, we know that each vertex in R has a free neighbour in CA. Thus, Maker can easily claim an
edge according to (1) if there exists some bad edge. Moreover, this bad edge then disappears from
the set of bad edges when F and R are updated. Thus, the number of bad edges decreases, and
again |CA| > eB(C,R) holds. In particular, we can continue this way. So, if |CA| > eB(C,R) =: b′

holds at the beginning of a Maker’s move, then Maker in her whole move decreases the number
of bad edges by at least min{a, b′}. Using this, we prove our first claim.

Claim 7.1. Assume that Maker can follow the proposed strategy. Then, for each 1 ≤ i ≤ k − 2,
there exists a constant upper bound c = c(a, i) for the number of bad edges throughout the phase i.

Proof The proof goes by induction on i. Set c(a, 0) := 0. There can be at most c(a, i − 1) + a
bad edges before the first Maker’s move that happens completely in phase i, either by induction
hypothesis (when i > 1) or as Breaker claims a edges in his first move (when i = 1). Now, by the
observation above, we know that as long as |CA| > eB(C,R), Maker can reduce the number of
bad edges by (at least) min{eB(C,R), a} in each round, while Breaker can increase this number
by at most a. Thus, as long as |CA| > c(a, i− 1)+a holds before some Maker’s move, her strategy
ensures that after such a move, eB(C,R) ≤ c(a, i − 1) holds. Just when |CA| ≤ c(a, i − 1) + a
holds before a move of Maker, it might happen that Maker cannot reduce the number of bad
edges anymore. But then, the number of remaining steps in phase i is bounded by a constant,
and Breaker can add only another constant number of bad edges until phase i ends, giving some
constant bound c(a, i). Thus, before any Maker’s move in phase i there cannot be more than
c(a, i) bad edges, which completes the claim. ✷

Claim 7.2. For large n, Maker can follow the strategy of Stage I.

Proof Assume that Maker could follow the strategy for the first j rounds. Our goal is to show
that she can do so in round j + 1 as well. For this, observe that before Maker’s move, |R| ≥ n/k
holds. Moreover, the number of bad edges is bounded by a constant, according to the previous
claim. So, provided n is large enough, there exist more than a vertices in R that are not incident
with bad edges. In particular, in each step of her (j+1)st move, Maker can claim an edge according
to (2). Thus, she can follow the strategy. ✷

Stage II. Observe that when Maker enters Stage II, the number of bad edges is at most c(a, k −
2)+ a, according to the Claim 7.1. Moreover, N = |CA| = |R| ≥ n/k− a. Provided that n is large
enough, Proposition 3.1 (with G being the bipartite graph induced by the free edges between CA

and R) now ensures that Maker has a strategy to create the desired matching within ⌊N/a⌋+ 1
rounds. ✷

8 Conculding remarks and open problems

Star factor game. Theorem 1.4 tells us that τSk,n
(a : a) ∈ {(k− 1)n/(ka), (k− 1)n/(ka)+1} for

large enough n, in case ak|(k− 1)n. In fact, in can be checked that there are pairs (a, k) were the
first value occurs, while there exist pairs (a, k) for which it does not. It would be interesting to
describe all the pairs (a, k) for which Maker cannot win the (a : a) Sk,n-game perfectly fast and to
determine a winning strategy for the first player in the corresponding strong version in these cases.

H-factors. More generally, it seems to be challenging to describe τF(a : a) in case F is the family
of H-factors, for any given graph H not being a forest. Even in the case a = 1 not so much is
known. In all the games F we studied here, it happens that τF (a : a) = (1+ o(1))τF (1 : 1)/a. We
wonder whether there exist families F of spanning subgraphs of Kn, where such a relation does
not hold.
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