
ar
X

iv
:1

50
8.

02
79

3v
3

 [
m

at
h.

C
O

]
 1

6
Fe

b
20

18

A generalized Goulden–Jackson cluster method and

lattice path enumeration

Yan Zhuang

Department of Mathematics

Brandeis University

zhuangy@brandeis.edu

February 20, 2018

Abstract

The Goulden–Jackson cluster method is a powerful tool for obtaining generating

functions counting words in a free monoid by occurrences of a set of subwords. We

introduce a generalization of the cluster method for monoid networks, which generalize

the combinatorial framework of free monoids. As a sample application of the generalized

cluster method, we compute bivariate and multivariate generating functions counting

Motzkin paths—both with height bounded and unbounded—by statistics correspond-

ing to the number of occurrences of various subwords, yielding both closed-form and

continued fraction formulas.

Keywords: Goulden–Jackson cluster method, free monoids, lattice paths, Motzkin paths, generat-

ing functions, statistics

1. Introduction

Given a finite or countably infinite set A, let A∗ be the set of all finite sequences of elements
of A, including the empty sequence. We call A an alphabet, the elements of A letters,
and the elements of A∗ words. By defining an associative binary operation on two words
by concatenating them, we see that A∗ is a monoid under the operation of concatenation
(where the empty word is the identity element), and we call A∗ the free monoid on A. The
length l(α) of a word α ∈ A∗ is the number of letters in α. For α, β ∈ A∗, we say that β is
a subword of α if α = γ1βγ2 for some γ1, γ2 ∈ A∗, and in this case we also say α contains β.

More generally, a free monoid is a monoid isomorphic to a free monoid on some alpha-
bet. The combinatorial framework of free monoids is useful for the study of combinatorial
objects that can be uniquely decomposed into sequences of “prime elements”, corresponding
to letters in an alphabet. This framework can furthermore be generalized using what are
called “monoid networks”, which were first introduced by Gessel [9, Chapter 6] in a slightly

2010 Mathematics Subject Classification. Primary 05A15; Secondary 05A05, 05C50, 68R05.

1

http://arxiv.org/abs/1508.02793v3
mailto:zhuangy@brandeis.edu

different yet equivalent form called “G-systems”.1 Roughly speaking, a monoid network con-
sists of a digraph G with each arc assigned a set of letters from an alphabet A, in which
the set of sequences of arcs in G is given a monoid structure and is equipped with a monoid
homomorphism.

The Goulden–Jackson cluster method allows one to determine the generating function for
words in a free monoid A∗ by occurrences of words in a set B ⊆ A∗ as subwords in terms of
the generating function for what are called “clusters” formed by words in B, which is easier
to compute. As its name suggests, this celebrated result was first given by Goulden and
Jackson in [10]. The cluster method has seen a number of extensions and generalizations
[1, 5, 11, 13, 15, 20, 21], and the cluster method itself can be viewed as a generalization of
the Carlitz–Scoville–Vaughan theorem, which allows one to count words in a free monoid
avoiding a specified set of length 2 subwords.

In this paper, we give a new generalization of the Goulden–Jackson cluster method of a
different flavor: we generalize the cluster method to monoid networks, which gives a way of
counting words in A∗ corresponding to walks between two specified vertices in G (that is,
words in a regular language if the alphabet A is finite) by occurrences of subwords in a set
B. Then the original version of the cluster method corresponds to the special case in which
G consists of a single vertex with a loop to which the entire alphabet A is assigned.

The organization of this paper is as follows. In Section 2, we give an expository account of
the original Goulden–Jackson cluster method. In Section 3, we introduce the combinatorial
framework of monoid networks and present our generalization of the cluster method for
monoid networks. Finally, in Section 4, we demonstrate how our monoid network version of
the cluster method can be used to tackle problems in lattice path enumeration.

Although many types of lattice paths can be represented as walks in certain digraphs, in
this paper we focus on Motzkin paths, which are paths in Z beginning and ending at 0 with
steps −1, 0, and 1 (also called “down steps”, “flat steps”, and “up steps”, respectively). We
consider both regular Motzkin paths and Motzkin paths bounded by height, and our results
include bivariate and multivariate generating functions counting these paths by ascents,
plateaus, peaks, and valleys—all of which are statistics that are determined by occurrences of
various subwords in the underlying word of the Motzkin path—as well as generating functions
for Motzkin paths with restrictions on the heights at which these subwords can occur, yielding
both closed-form and continued fraction formulas. Several interesting identities are uncovered
along the way.

2. The Goulden–Jackson cluster method

We begin this section with a motivating problem: let A be a finite or countably infinite
alphabet and suppose that we want to count words in A∗ that do not contain a specified set
B of forbidden subwords of length at least 2. The Goulden–Jackson cluster method allows
us to count this restricted set of words by counting “clusters” formed by words in B, which
we shall define shortly.

1The term “G-system” was dropped at the request of Ira Gessel, who prefers the name “monoid network”
given by the author.

2

Given a word α = a1a2 · · · an ∈ A∗ (where the ai are letters) and a set B ⊆ A∗, we say
that (i, β) is a marked subword of α if β ∈ B and

β = aiai+1 · · ·ai+l(β)−1,

that is, β is a subword of α starting at position i. Moreover, we say that (α, S) is a marked
word on α if α ∈ A∗ and S is any set of marked subwords of α.

For example, suppose that A = {a, b, c} and B = {abc, bca}. Then

{abcabbcabc, {(1, abc), (2, bca), (6, bca)}}, (1)

is a marked word which can also be displayed as

a b c a b b c a b c .

The concatenation of two marked words is defined in the obvious way. For example, (1)
can be obtained by concatenating {abca, {(1, abc), (2, bca)}} and {bbcabc, {(2, bca)}}, i.e.,

a b c a and b b c a b c .

A marked word on α is called a cluster on α if it is not a concatenation of two nonempty
marked words. So, (1) is not a cluster, but

b c a b c a

is a cluster. Two additional examples of clusters, using A = {a} and B = {aaaa}, are

a a a a a a

and

a a a a a a ,

which we include to emphasize the fact that a cluster is not required to be “maximal” in
the sense that every possible marked subword must be included. If a word α has only one
possible cluster, then there is no need to indicate the positions of the marked subwords and
we say by abuse of language that the only cluster on α is itself.

Before formally presenting the cluster method, we introduce some additional notation.
For a word α ∈ A∗, let occ(α) be the number of occurrences in α of words in B and let Cα be
the set of all clusters on the word α. Given a cluster c, let mk(c) be the number of marked
subwords in c. Given a variable t that commutes with all of the letters in A, define

F (t) :=
∑

α∈A∗

αtocc(α)

and
L(t) :=

∑

α∈A∗

α
∑

c∈Cα

tmk(c),

3

so that F (t) is the generating function for words in A∗ by the number of occurrences of words
in B, and L(t) is the generating function for clusters by the number of marked subwords.
Both F (t) and L(t) are elements of the formal power series algebra K〈〈A∗〉〉[[t]], where K
is a field of characteristic zero (which we can take to be C) and K〈〈A∗〉〉—called the total
algebra of A∗ over K—is the algebra of formal sums of words in A∗ with coefficients in K.

Theorem 1 (Goulden–Jackson cluster method, version 1). Let A be an alphabet and let
B ⊆ A∗ be a set of words of length at least 2. Then,

F (t) =

(

1−
∑

a∈A

a− L(t− 1)

)−1

.

Proof. We prove the equivalent statement

F (1 + t) =

(

1−
∑

a∈A

a− L(t)

)−1

.

We have

F (1 + t) =
∑

α∈A∗

α(1 + t)occ(α)

=
∑

α∈A∗

α
∞∑

k=0

(
occ(α)

k

)

tk

=
∑

α∈A∗

α
∑

S⊆Bα

t|S|, (2)

where Bα is the set of occurrences of words in B in α. Note that (2) counts marked words
weighted by the number of marked subwords that it contains, and from here it is easy to see
that

F (1 + t) =
∑

α∈A∗

α
∑

S⊆Bα

t|S|

=

(

1−
∑

a∈A

a− L(t)

)−1

since every marked word is uniquely built from a sequence of letters in A and clusters.

We indicate three specializations of Theorem 1 that are of particular importance:

• By setting t = 0, we obtain

(

1−
∑

a∈A

a− L(−1)

)−1

as the generating function for words in A∗ that do not contain any words in B, which
solves the problem posed at the beginning of this subsection, assuming that we can
compute the cluster generating function L(t).

4

• If every word in B has length exactly 2, then setting t = 0 yields a result which is
sometimes called the Carlitz–Scoville–Vaughan theorem, independently discovered by
Fröberg [8, Section 4], by Carlitz, Scoville, and Vaughan [3, Theorem 7.3], and by Gessel
[9, Theorem 4.1]. In fact, Chapters 4 and 5 of Gessel’s doctoral thesis [9] are devoted
to the Carlitz–Scoville–Vaughan theorem and its many enumerative applications.

• By setting t = 1, we obtain the free monoid identity

∑

α∈A∗

α =

(

1−
∑

a∈A

a

)−1

. (3)

More generally, we can assign each word in B its own variable. Write B = {β1, β2, . . . } so
that the words in B are ordered. (Here, B is presented as countably infinite although in most
applications it is finite.) Given a word α ∈ A∗, let occk(α) be the number of occurrences
of βk in α, and given a cluster c, let mkk(c) be the number of marked subwords in c of the
form (j, βk) for some position j. Let t1, t2, . . . be variables that commute with each other
and with the letters of A, and define the generating functions

F (t1, t2 . . .) :=
∑

α∈A∗

α
∞∏

k=1

t
occk(α)
k

and

L(t1, t2, . . .) :=
∑

α∈A∗

α
∑

c∈Cα

∞∏

k=1

t
mkk(c)
k .

Then we have a refinement of Theorem 1, which follows by the same reasoning as before.

Theorem 2 (Goulden–Jackson cluster method, version 2). Let A be an alphabet and let
B = {β1, β2, . . . } ⊆ A∗ be a set of words of length at least 2. Then,

F (t1, t2 . . .) =

(

1−
∑

a∈A

a− L(t1 − 1, t2 − 1, . . .)

)−1

.

The statement of Theorem 2 uses an infinite set B and infinitely many variables ti, but
it is clear that the finite case works as well. The number of variables also does not need to
equal the number of words in B; for example, we can have B = {β1, . . . , βk} along with two
variables t1 and t2, and attach t1 to all βi with i odd and attach t2 to all βi with i even.

As an example, let A = {a, b, c} and suppose that we want to count words in A∗ by
occurrences of β1 = acb and β2 = bc. Then the only clusters are acb, bc, and acbc, so

L(t1, t2) = acbt1 + bct2 + acbct1t2

and by Theorem 2, we obtain

F (t1, t2) = (1− a− b− c− acb(t1 − 1)− bc(t2 − 1)− acbc(t1 − 1)(t2 − 1))−1 (4)

5

as the generating function for words in A∗ by occurrences of acb and bc. By setting t1 = t2 = 0,
we obtain

(1− a− b− c+ acb+ bc− acbc)−1 (5)

as the generating function for words in A∗ which contain neither acb nor bc.
Now, let x be a variable that commutes with t1 and t2. If we apply the homomorphism

sending each of the letters to x, we obtain the generating functions

1

1− 3x− x2(t2 − 1)− x3(t1 − 1)− x4(t1 − 1)(t2 − 1)

and
1

1− 3x+ x2 + x3 − x4

from (4) and (5), respectively, where x is keeping track of the word length.
We say that the set B is reduced if no word β ∈ B is a subword of another word β ′ in B.

Although the cluster method as presented above works regardless of whether B is reduced,
Goulden and Jackson gave a formula in their original paper [10] for the cluster generating
function when A and B are finite sets with B reduced. A set B of forbidden subwords
can always be replaced by a reduced set and still yield the same restricted set of words; if
β ∈ B is a subword of β ′ ∈ B, then we can remove β ′ from B because containing β ′ implies
containing β. However, the criterion of having a reduced set can be an issue if we want to
count words by occurrences of subwords (that is, without setting t = 0). For instance, we
would not be able to use Goulden and Jackson’s formula to compute the cluster generating
function given B = {aba, abab} since aba is a subword of abab.

As part of [15], Noonan and Zeilberger wrote a Maple package that handles the case
where B is arbitrary (i.e., not necessarily reduced), but without a detailed explanation of
their algorithms. Bassino, Clément, and Nicodème [1] later gave an explicit expression
for the cluster generating function in the non-reduced case. We omit these formulas of
Goulden–Jackson and Bassino–Clément–Nicodème because the cluster generating functions
in Section 4 of this paper will require essentially no computation.

3. Our generalization of the cluster method

3.1. Monoid networks

Throughout this section, fix a field K of characteristic zero and let A be a finite or countably
infinite alphabet. As in the previous section, K〈〈A∗〉〉 is the total algebra of A∗ over K. We
also let Matm(K〈〈A∗〉〉) denote the algebra of m×m matrices with entries in K〈〈A∗〉〉.

Let G be a digraph on the vertex set [m] such that each arc (i, j) of G is assigned a set
of letters Pi,j in A, and let P be the set of all pairs (a, e) where e = (i, j) is an arc of G

and a ∈ Pi,j. Define
−→
P ∗ ⊆ P ∗ to be the subset of all sequences µ = (a1, e1)(a2, e2) · · · (an, en)

where e1e2 · · · en is a walk in G. Given µ = (a1, e1)(a2, e2) · · · (an, en) in
−→
P ∗, we define

ρ(µ) := a1a2 · · · an to be the word obtained by projecting onto A∗ and let E(µ) := (i, j)
where i and j are the initial and terminal vertices, respectively, of the walk e1e2 · · · en.

For example, consider the monoid network in Figure 1.

6

1 2

{a, c}

{b}

{b, c}

Figure 1: An example of a monoid network

Here P = {(b, (1, 1)), (a, (1, 2)), (c, (1, 2)), (b, (2, 1)), (c, (2, 1))}. One element of
−→
P ∗ is µ =

(b, (2, 1))(b, (1, 1))(a, (1, 2)), and so ρ(µ) = bba and E(µ) = (2, 2).

We say that (G,P) a monoid network on A∗ if for all nonempty µ, ν ∈ −→
P ∗, if ρ(µ) = ρ(ν)

and E(µ) = E(ν) then µ = ν. That is, the same word in A∗ cannot be obtained by traversing
two different walks with the same initial and terminal vertices. It is easy to see that (G,P)
in the example given above is a monoid network.

We can very naturally represent words in
−→
P ∗ using matrices. For each element p =

(a, (i, j)) ∈ P , we associate p with the m × m matrix Mp with a in the (i, j) entry and 0
everywhere else, which defines a monoid homomorphism λ : P ∗ → Matm(K〈〈A∗〉〉), where we
consider the codomain as the multiplicative monoid of the algebra Matm(K〈〈A∗〉〉). Applying
λ to the empty word 1 gives the m×m identity matrix Im.

If µ ∈ −→
P ∗ and E(µ) = (i, j) , then λ(µ) is the m×m matrix with ρ(µ) in the (i, j) entry

and 0 everywhere else; we denote this matrix Mµ. If µ /∈ −→
P ∗, then Mµ = λ(µ) = 0m, the

m×m zero matrix.
Returning to the example above, the matrices Mp are

[
b 0
0 0

]

,

[
0 a
0 0

]

,

[
0 c
0 0

]

,

[
0 0
b 0

]

, and

[
0 0
c 0

]

,

and for µ = (b, (2, 1))(b, (1, 1))(a, (1, 2)), we have

λ(µ) =

[
0 0
0 bba

]

.

We then extend λ by linearity to an algebra homomorphism K〈〈P ∗〉〉 → Matm(K〈〈A∗〉〉),
which we also call λ by a slight abuse of notation. Given a monoid network (G,P) and

a subset S ⊆ A∗, let
−→
ΓG(S) ∈ Matm(K〈〈A∗〉〉) be the matrix whose (i, j) entry is the

generating function for words in S that can be obtained by traversing a walk from i to j in
G. It is clear that −→

ΓG(S) =
∑

µ∈V

Mµ

where V is the set of all words µ ∈ P ∗ such that ρ(µ) ∈ S.
If the alphabet A is finite, then the idea of monoid networks may seem too similar to

finite-state automata to warrant its own definition, but our approach is novel and is based
on the monoid structure of P ∗ and the application of the homomorphism λ. Moreover,
our construction generalizes the combinatorial framework of free monoids, hence the name
“monoid network”. For example, the following is an elementary result traditionally proven
using the transfer-matrix method (see [18, Section 4.7] or [7, Section V.6]), but we can give
a very simple proof using the homomorphism λ.

7

Theorem 3. Suppose that (G,P) is a monoid network on A∗. Then

−→
ΓG(A

∗) =

(

Im −
∑

p∈P

Mp

)−1

.

Proof. Take
∑

µ∈P ∗

µ =

(

1−
∑

p∈P

p

)−1

,

which is (3) applied to the free monoid P ∗, and then apply λ to both sides of the equation.

Our proof of the generalized Goulden–Jackson cluster method presented later in this
section is of a similar flavor.

Continuing with the example above, we have

−→
ΓG(A

∗) =

[
1− b −a− c
−b− c 1

]−1

by Theorem 3. If we want the generating function for words by length that can be obtained

by traversing a walk from 1 to 2 in (G,P), then we apply to
−→
ΓG(A

∗) the homomorphism
sending each of the letters to x to obtain the matrix

[
1− x −2x
−2x 1

]−1

=








1

1− x− 4x2

2x

1− x− 4x2

2x

1− x− 4x2

1− x

1− x− 4x2








and then take the (1, 2) entry.

3.2. The Goulden–Jackson cluster method for monoid networks

To motivate our generalization of the Goulden–Jackson cluster method, let us combine two
previous examples and suppose that we want to count words on the alphabet A = {a, b, c}
that satisfy two conditions. First, these words cannot contain any occurrences of β1 = acb
and β2 = bc, and second, these words must be obtainable by traversing a walk from vertex
1 to vertex 2 in the monoid network in Figure 1 (from Subsection 3.1).

We can do this using our monoid network version of the Goulden–Jackson cluster method,
which we now present in full generality. Let A be an alphabet and let B = {β1, β2, . . . } ⊆ A∗

be a set of words. Moreover, let (G,P) be a monoid network with m vertices, and for

each positive integer k, let
−→
Bk be the set of all words µ in

−→
P ∗ with ρ(µ) = βk, and let−→

B =
⋃∞

k=1

−→
Bk.

Define
−→
FG(t1, t2, . . .) to be the m×m matrix whose (i, j) entry is the sum

∑

µ

ρ(µ)
∞∏

k=1

t
occk(ρ(µ))
k

8

over all µ ∈ −→
P ∗ with E(µ) = (i, j), which is the same as the sum

∑

α

α
∞∏

k=1

t
occk(α)
k

over all α ∈ A∗ that can be obtained by traversing a walk from vertex i to vertex j in the
monoid network (G,P). Furthermore, define

−→
LG(t1, t2, . . .) :=

∑

µ∈
−→
P ∗

Mµ

∑

c∈Cµ

∞∏

k=1

t
mkk(c)
k ,

where Cµ is the set of all clusters (formed by words in
−→
B) on the word µ, and mkk(c) is the

number of marked subwords in c of the form (u, γ) for some position u and some γ ∈ −→
Bk.

We will refer to
−→
LG(t1, t2, . . .) as the cluster matrix.

Theorem 4 (Goulden–Jackson cluster method for monoid networks). Let A be an alphabet
and let B = {β1, β2, . . . } ⊆ A∗ be a set of words of length at least 2. Also, let G be a digraph
on [m] and let (G,P) be a monoid network on A∗. Then,

−→
FG(t1, t2 . . .) =

(

Im −
∑

p∈P

Mp −
−→
LG(t1 − 1, t2 − 1, . . .)

)−1

.

Proof. Apply the original Goulden–Jackson cluster method (Theorem 2) for the alphabet

P and the set
−→
B , where we attach the variable tk to each word in

−→
Bk. Then applying the

homomorphism λ yields the desired result.

As before, the set of words in B need not be infinite, and the number of variables can
be less than the number of words in B. It is also possible to alter the cluster matrix to
only include clusters occurring at specified positions in the monoid network, which we do in
Section 4 to count Motzkin paths with no occurrences of subwords at specified heights.

We mention three specializations which are completely analogous to those given after
Theorem 1:

• By setting each variable equal to 0, we obtain

(

Im −
∑

p∈P

Mp −
−→
LG(−1,−1, . . .)

)−1

as the m ×m matrix whose (i, j) entry is the sum
∑

α α over all α ∈ A∗ that can be
obtained by traversing a walk from vertex i to vertex j in the monoid network (G,P)
and contain no occurrences of words in B.

• If every word in B has length exactly 2, then setting each variable equal to 0 yields a
monoid network version of the Carlitz–Scoville–Vaughan theorem.

• Setting each variable equal to 1 gives an alternative proof for Theorem 3.

9

Observe that the original Goulden–Jackson cluster method corresponds to the special case
in which the monoid network consists of a single vertex with a loop to which the entire
alphabet A is assigned. Thus Theorem 4 can accurately be characterized as a generalization
of the Goulden–Jackson cluster method.

Finally, we note that if the alphabet A is finite, then a monoid network gives the transition
diagram of a unambiguous finite automaton. Unambiguous finite automata are equivalent to
deterministic finite automata, and the transition diagram of a deterministic finite automaton
is a monoid network. Therefore, Theorem 4 can be used to count words in a regular language
by occurrences of a specified set of subwords, which has a rational generating function. See
[2, 7, 16, 18] for several references on the subjects of regular languages, automata, and
rational generating functions.

Let us now complete the example from earlier. We have

−→
LG(t1, t2) =

[
acb 0
0 0

]

t1 +

[
0 0
0 bc

]

t2 +

[
0 bc
0 0

]

t2 +

[
0 acbc
0 0

]

t1t2

=

[
acbt1 bct2 + acbct1t2
0 bct2

]

;

indeed, recall that the only three clusters formed by the words acb and bc are acb, bc, and
acbc, which can be obtained in the given monoid network by traversing walks with initial
and terminal vertices indicated in the matrices above. Thus,

−→
FG(t1, t2) =

(

I2 −
∑

p∈P

Mp −
−→
LG(t1 − 1, t2 − 1)

)−1

=

([
1 0
0 1

]

−
[

b a + c
b+ c 0

]

−
[
acb(t1 − 1) bc(t2 − 1) + acbc(t1 − 1)(t2 − 1)

0 bc(t2 − 1)

])−1

=

[
1− b− acb(t1 − 1) −a− c− bc(t2 − 1)− acbc(t1 − 1)(t2 − 1)

−b− c 1− bc(t2 − 1)

]−1

.

Now we apply the homomorphism sending each of the letters to x, yielding the matrix

[
1− x− x3(t1 − 1) −2x− x2(t2 − 1)− x4(t1 − 1)(t2 − 1)

−2x 1− x2(t2 − 1)

]−1

whose (1, 2) entry is

2x− (1− t2)x
2 + (1− t1 − t2 + t1t2)x

4

1− x− (3 + t2)x2 + (2− t1 − t2)x3 − (1− t1 − t2 + t1t2)x5
,

which is the generating function for words obtained by traversing a walk from vertex 1 to
vertex 2 in the given monoid network, weighted by length, occurrences of acb, and occurrences
of bc. Setting t1 = t2 = 0 gives the generating function

2x− x2 + x4

1− x− 3x2 + 2x3 − x5

for those words that do not contain any occurrences of acb or bc.

10

We also state a weighted version of Theorem 4. Let {w(i.j)
a | (a, (i, j)) ∈ P } be a

set of weights that commute with each other, the variables t1, t2, . . . , and the letters in
A. Set w

(i,j)
a = 0 if (a, (i, j)) /∈ P . Given α = a1a2 · · · ak ∈ A∗ and 1 ≤ i, j ≤ m, let

w(i,j)(α) = we1
a1
· · ·wek

ak
if there exists µ = (a1, e1) · · · (ak, ek) ∈

−→
P ∗ such that E(µ) = (i, j) and

ρ(µ) = α.
Define the map λ̂ : P ∗ → Matm(K〈〈A∗〉〉) by sending p = (a, (i, j)) to the matrix M̂p

with w
(i.j)
a a in the (i, j) entry and 0 everywhere else. If µ = (a1, e1) · · · (an, en) ∈ −→

P ∗ and
E(µ) = (i, j), then λ̂(µ)—which we also denote M̂µ—has we1

a1
· · ·wen

an
ρ(µ) in the (i, j) entry

and 0 everywhere else, and if µ /∈ −→
P ∗ then M̂µ = 0m. Again, λ̂ extends to a homomorphism

K〈〈P ∗〉〉 → Matm(K〈〈A∗〉〉), which we also call λ̂. Note that setting all of the weights equal
to 1 gives λ̂ = λ.

Theorem 5 (Goulden–Jackson cluster method for monoid networks, weighted version). Let
A be an alphabet and let B = {β1, β2, . . . } ⊆ A∗ be a set of words of length at least 2; let
G be a digraph on [m] and let (G,P) be a monoid network on A∗; let F̂G(t1, t2, . . .) be the
m×m matrix whose (i, j) entry is the sum

∑

µ

w(i,j)(ρ(µ))ρ(µ)
∞∏

k=1

t
occk(ρ(µ))
k

over all µ ∈ −→
P ∗ with E(µ) = (i, j); and let

L̂G(t1, . . . , tk) :=
∑

µ∈
−→
P ∗

M̂µ

∑

c∈Cµ

∞∏

k=1

t
mkk(c)
k .

Then,

F̂G(t1, t2 . . .) =

(

Im −
∑

p∈P

M̂p − L̂G(t1 − 1, t2 − 1, . . .)

)−1

.

The proof is the same as that of Theorem 4, except that we apply λ̂ instead of λ.
Although we will not use the weighted version of our main theorem in subsequent sec-

tions, we note that it can be used with the monoid network framework to examine time-
homogeneous Markov chains, which are probabilistic analogues of finite-state automata.
Specifically, let (G,P) be a monoid network with m vertices, and for every a ∈ A and

i, j ∈ [m], let w
(i,j)
a ∈ [0, 1] such that w

(i,j)
a = 0 if (a, (i, j)) /∈ P and

m∑

j=1

∑

a∈A

w(i,j)
a = 1

for each fixed 1 ≤ i ≤ m. With a choice of initial vertex and terminal vertex, we can think of
this monoid network as a random word model, where a word is given by traversing a random
walk in G from the initial vertex to the terminal vertex with w

(i,j)
a being the probability that

at vertex i, the next letter in the word will be a and the next arc (i, j). Using Theorem 5, we
can then compute probabilities associated with this random process, such as the probability
that a length n word obtained from traversing a walk between two specified vertices avoids
a specified set of forbidden subwords.

11

4. An application to lattice path enumeration

4.1. Representing lattice paths using monoid networks

A path on Zk with steps in S ⊆ Zk is an ordered tuple (a0, a1, a2, . . . , an) of values in Zk such
that ai+1 − ai ∈ S for every 0 ≤ i < n. Equivalently, it is an ordered tuple (s1, s2, . . . , sn)
of values in S. Each step s ∈ S is assigned a length in Z—which we take to be 1 unless
otherwise noted—and the length of a path is the sum of the lengths of all of its steps si.

These paths are collectively known as lattice paths. In particular, lattice paths on Z

have been widely studied in the literature, usually with the conditions a0 = an = 0 and
ai ≥ 0 for every i. Examples of these paths include Dyck paths, which have steps in {−1, 1};
Motzkin paths, which have steps in {−1, 0, 1}; and Schröder paths, which are Motzkin paths
but with ‘0’ steps having length 2 instead of 1. These paths are often illustrated as paths
in the plane starting at the origin, ending on the x-axis, and never going below the x-axis,
with up steps (1, 1) corresponding to 1, down steps (1,−1) corresponding to −1, and in the
case of Motzkin or Schröder paths, flat steps (1, 0) or (2, 0), respectively, corresponding to
0. See Figure 2 for an example.

Figure 2: The Motzkin path corresponding to UFUUFDUDDDUFD

We say that a lattice path on Z has height bounded by m if we add the condition that
ai ≤ m for every i. Lattice paths with bounded heights correspond to walks in certain
monoid networks. For example, a Dyck path with height bounded by m is a walk from
vertex 0 to itself in the monoid network in Figure 3.

0 1 2 m− 1 m

{U} {U}

{D} {D}

{U}

{D}

Figure 3: Dyck path monoid network

Here the alphabet is {U,D}, with U corresponding to an up step and D corresponding to
a down step. The vertices represent the possible heights at each step of the path; indeed, a
Dyck path with height bounded by m must begin and end at height 0, and its height must
stay between 0 and m.

We can also add a letter F for flat steps, and so we can represent Motzkin paths and
Schröder paths using the monoid network in Figure 4.

12

0 1 2 m− 1 m

{U}
{F}

{U}

{D}

{F}

{D}

{F}
{U}

{F}

{D}

{F}

Figure 4: Motzkin path monoid network

Using monoid networks, we can model a wide variety of bounded lattice paths with
different types of steps and various restrictions, so we may use the tools that we have for
monoid networks to obtain generating functions for counting lattice paths of bounded height.
Taking the formal power series limit as m → ∞ yields analogous results for lattice paths of
unbounded height.

The idea of representing lattice paths as walks in digraphs and the transfer-matrix method
are standard techniques in lattice path enumeration; see [12] for a recent survey of the
literature. Such an approach has not yet been combined with the Goulden–Jackson cluster
method to count lattice paths by occurrences of subwords, which we shall do here.

However, the original version of the cluster method was applied by Wang [19] to count
Dyck paths by occurrences of various subwords. Using his approach, each cluster formed
from the subwords that one wishes to keep track of is given its own step. For example, to
count Dyck paths by occurrences of UUD, the only cluster UUD is replaced by the step U ′,
which reduces the problem to counting paths with steps U , U ′, and D that start at the origin,
end on the x-axis, and never go below the x-axis. More generally, Wang’s method reduces
the problem of counting Dyck paths by occurrences of prescribed subwords to counting paths
with a larger set of steps satisfying the same restrictions, which can be done by producing
recursive decompositions for these paths and solving the associated functional equations for
their generating functions.

Some of our results can be obtained via Wang’s method, but there are two key differences
between our method and Wang’s. First, our method allows us to only keep track of subwords
that occur only at a prescribed set of heights, which is not possible using Wang’s approach.
Moreover, Wang’s approach does not use the correspondence between lattice paths and walks
in digraphs, and also relies on recursive decompositions of paths which may not always be
easy to obtain; our method is more systematic and reduces almost all of the computations to
matrix algebra. Because Wang conducted his investigation on Dyck paths, we shall instead
focus on Motzkin paths in this paper.

4.2. A note on continued fractions

A finite continued fraction is an expression of the form

a0 +
b1

a1 +
b2

. . . +
bm

am

,

13

which we write as

a0 +
b1
a1+

b2
a2+

· · · bm
am

for compactness. We say that a finite continued fraction has depth m if it is written with m
fraction bars when completely written out in this notation, so the continued fraction above
has depth m. We write an infinite continued fraction

a0 +
b1

a1 +
b2

a2 +
. . .

as

a0 +
b1
a1+

b2
a2+

· · · .

Continued fractions arise naturally in combinatorics and especially in lattice path enu-
meration; e.g., see Flajolet’s landmark paper [6]. Many of our results in this section are
continued fraction formulas.

4.3. Counting Motzkin paths by ascents

Let Mm
n be the set of Motzkin paths of length n with height bounded by m and Mn the set

of all Motzkin paths of length n. An ascent of a Motzkin path µ is a maximal consecutive
sequence of up steps in µ, and let asc(µ) be the number of ascents in µ. We also define

F asc
m (x, t) :=

∞∑

n=0

∑

µ∈Mm
n

tasc(µ)xn and F asc(x, t) :=

∞∑

n=0

∑

µ∈Mn

tasc(µ)xn

to be bivariate generating functions for Motzkin paths with height bounded by m and regular
Motzkin paths, respectively, weighted by length and number of ascents. Our main result here
is the following theorem.

Theorem 6. Let {P asc
m (x, t)}m≥0 be the sequence of polynomials defined by P asc

0 (x, t) = 1,
P asc
1 (x, t) = 1− x, and

P asc
m (x, t) = (1− x− x2(t− 1))P asc

m−1(x, t)− (x2 + x3(t− 1))P asc
m−2(x, t)

for m ≥ 2. Then

F asc
m (x, t) =

P asc
m (x, t)

P asc
m+1(x, t)

=
1

1− x− x2(t− 1)−
x2 + x3(t− 1)

1− x− x2(t− 1)− · · · x2 + x3(t− 1)

1− x− x2(t− 1)−
x2 + x3(t− 1)

1− x
︸ ︷︷ ︸

depth m+1

for m ≥ 1 and

F asc(x, t) =
1

1− x− x2(t− 1)−
x2 + x3(t− 1)

1− x− x2(t− 1)−
x2 + x3(t− 1)

1− x− x2(t− 1)− · · ·

=
1− x− x2(t− 1)−

√

1− 2x− x2(2t+ 1)− 2x3(t− 1) + x4(t− 1)2

2(x2 + x3(t− 1))
.

14

Proof. We apply the cluster method to the Motzkin path monoid network with B = {UD,UF},
since the number of occurrences of the subwords UD and UF in a Motzkin path is equal to
its number of ascents. We weight both UD and UF by t. The only clusters formed by UD
and UF are themselves, and so we have the (m+ 1)× (m+ 1) cluster matrix

−→
LG(t) =












UDt UFt
UDt UFt

UDt
. . .
. . .

. . .

UDt UFt
0












.

Then, by Theorem 4,
−→
FG(t) is the inverse matrix of Am − −→

LG(t − 1), where Am is the
(m+ 1)× (m+ 1) matrix given by

Am =













1− F −U
−D 1− F −U

−D 1− F
. . .

. . .
. . .

. . .
. . . 1− F −U

−D 1− F













.

Thus, F asc
m (x, t) is the (1, 1) entry of M−1

m where Mm is the (m+ 1)× (m+ 1) matrix

Mm =














1− x− x2(t− 1) −x− x2(t− 1)
−x 1− x− x2(t− 1) −x− x2(t− 1)

−x 1− x− x2(t− 1)
. . .

. . .
. . .

. . .

. . . 1− x− x2(t− 1) −x− x2(t− 1)
−x 1− x














obtained by applying the homomorphism U,D, F 7→ x to Am−−→
LG(t−1). By Cramer’s rule,

we can compute this generating function as the quotient of two determinants

F asc
m (x, t) =

detMm−1

detMm

.

Using column-addition matrix operations, which preserve the determinant, we can then
transform Mm into an upper-triangular matrix with diagonal entries

ui,i =







1− x− x2(t− 1)−
x2 + x3(t− 1)

ui+1,i+1
, if 1 ≤ i ≤ m

1− x, if i = m+ 1.

15

From here we deduce the recursive expression

detMm =
m+1∏

i=1

ui,i =



1− x− x2(t− 1)− x2 + x3(t− 1)
(

detMm−1

detMm−2

)



 detMm−1

= (1− x− x2(t− 1)) detMm−1 − (x2 + x3(t− 1)) detMm−2

with initial conditions detM−1 = 1 and detM0 = 1 − x. Hence, these determinants are
polynomials in x and t, and we write P asc

m (x, t) = detMm−1. Moreover,

detMm

detMm−1

= 1− x− x2(t− 1)− x2 + x3(t− 1)

1− x− x2(t− 1)− · · · x2 + x3(t− 1)

1− x− x2(t− 1)−
x2 + x3(t− 1)

1− x
︸ ︷︷ ︸

depth m

,

so

F asc
m (x, t) =

1

1− x− x2(t− 1)−
x2 + x3(t− 1)

1− x− x2(t− 1)− · · · x2 + x3(t− 1)

1− x− x2(t− 1)−
x2 + x3(t− 1)

1− x
︸ ︷︷ ︸

depth m+1

.

(6)
We now proceed to Motzkin paths unbounded by height. By taking the limit of (6) as
m → ∞, this sequence of formal power series converges to the infinite continued fraction

F asc(x, t) =
1

1− x− x2(t− 1)−
x2 + x3(t− 1)

1− x− x2(t− 1)−
x2 + x3(t− 1)

1− x− x2(t− 1)− · · · . (7)

Equation (7) gives the recursive expression

F asc(x, t) =
1

1− x− x2(t− 1)− (x2 + x3(t− 1))F asc(x, t)

or
(x2 + x3(t− 1))F asc(x, t)2 − (1− x− x2(t− 1))F asc(x, t) + 1 = 0,

and solving this functional equation gives

F asc(x, t) =
1− x− x2(t− 1)±

√

1− 2x− x2(2t+ 1)− 2x3(t− 1) + x4(t− 1)2

2(x2 + x3(t− 1))

but one can easily check that the solution given by the minus sign is the correct one.

The first several terms of F asc(x, t) are in the following table:

n [xn]F asc(x, t) n [xn]F asc(x, t)
0 1 5 1 + 14t+ 6t2

1 1 6 1 + 26t+ 23t2 + t3

2 1 + t 7 1 + 46t+ 70t2 + 10t3

3 1 + 3t 8 1 + 79t+ 186t2 + 56t3 + t4

4 1 + 7t+ t2 9 1 + 133t+ 451t2 + 235t3 + 15t4

16

These numbers are in the OEIS [17, A114580]. Notice that the constant terms of these
polynomials are all 1; the only Motzkin paths with no ascents consist of all flat steps, and
there is exactly one of each length. We also obtain an expression for the linear coefficients,
which count Motzkin paths with exactly one ascent.

Corollary 7. Let Fib(n) denote the nth Fibonacci number defined by Fib(0) = 0, Fib(1) = 1,
and Fib(n) = Fib(n−1)+Fib(n−2) for n ≥ 2. Then the number of Motzkin paths of length
n ≥ 1 with exactly one ascent is equal to Fib(n+ 3)− n− 2.

Proof. Using Maple, one may verify that

[
∂

∂t
F asc(x, t)

]

t=0

=
x2

(1− x− x2)(1− x)2
.

It is known that
x

(1− x− x2)(1− x)2

is the generating function for the sequence Fib(n+ 4)− n− 3 (see [17, A001924]). Then,

[xnt]F plt(x, t) = [xn]

[
∂

∂t
F asc(x, t)

]

t=0

= [xn−1]
x

(1− x− x2)(1− x)2

= Fib(n+ 3)− n− 2.

The leading coefficients of the even-degree polynomials are 1; a Motzkin path of length 2n
has at most n ascents, and only when the path is (UD)n. A Motzkin path of length 2n+ 1
also has at most n ascents, and we show that the leading coefficients of the odd-degree
polynomials are the triangular numbers.

Proposition 8. The number of Motzkin paths of length 2n+ 1 with n ascents is
(
n+2
2

)
.

Proof. The maximum number of ascents that a Motzkin path of length 2n + 1 can have is
n. Fix such a path µ, and let k be the number of subwords UD that occur at height 0 in µ.

• If k = n, then the remaining step (which must be a flat step) can be in k + 1 possible
positions: at the beginning, at the end, or between two consecutive occurrences of UD.

• If k < n, then it is easy to see that in order for µ to have n ascents, the remaining
steps must form the subword UF (UD)n−k−1D beginning at height 0. Again, there are
k+1 possible positions for this subword: at the beginning, at the end, or between two
consecutive occurrences of UD.

Summing over all k, we conclude that the number of Motzkin paths of length 2n+ 1 with n
ascents is equal to

n∑

k=0

(k + 1) =

(
n+ 2

2

)

.

17

We can also use the generalized cluster method to count Motzkin paths with ascents ending
only at specified heights. Let P be the set of positive integers, N the set of non-negative
integers, E the set of positive even integers, O the set of positive odd integers, and E≥0 the
set of non-negative even integers.

Theorem 9. Let A ⊆ P and let

F asc(A; x) :=
∞∑

n=0

cnx
n

where cn is the number of Motzkin paths of length n with every ascent ending at a height in
A. Then,

F asc(A; x) =
1

1− x+ C1−
x2 − xC1

1− x+ C2−
x2 − xC2

1− x+ C3−
· · ·

where

Ci =

{

x2, if i /∈ A

0, otherwise.

Proof. We weight both UD and UF by t, but we only wish to consider instances of these
subwords occuring at impermissible heights as we will be setting t = 0 afterward. The
impermissible heights are i− 1 where i /∈ A, so that the corresponding ascents end at height

i. Thus, following the proof of Theorem 6, we take the cluster matrix
−→
LG(t) but delete

all entries in rows i − 1 with i ∈ A. We obtain the result by applying the cluster method,
using matrix operations to obtain a continued fraction formula, and then taking the limit as
m → ∞—all in the same way as in the proof of Theorem 6—and finally by setting t = 0.

For example, taking A = E and A = O, we obtain

F asc(E; x) =
1

1− x+ x2−
x2 − x3

1− x−
x2

1− x+ x2−
x2 − x3

1− x−
x2

1− x+ x2− · · ·

=
1− 2x+ 2x2 −

√
1− 4x+ 4x2 − 4x4 + 4x5

2(x2 − x3 + x4)

= 1 + x+ x2 + x3 + 2x4 + 5x5 + 12x6 + 27x7 + 60x8 + 135x9 + 309x10 + · · ·

and

F asc(O; x) =
1

1− x−
x2

1− x+ x2−
x2 − x3

1− x−
x2

1− x+ x2−
x2 − x3

1− x− · · ·

=
1− 2x+ 2x2 − 2x3 −

√
1− 4x+ 4x2 − 4x4 + 4x5

2(x2 − 2x3 + x4)

= 1 + x+ 2x2 + 4x3 + 8x4 + 16x5 + 33x6 + 70x7 + 152x8 + 336x9 + 754x10 + · · ·

as the generating functions for Motzkin paths with all ascents ending at even heights and
odd heights, respectively.2

2We note that the coefficients of F asc(E;x) match OEIS sequence [17, A190171] up to x10 and the
coefficients of F asc(O;x) match OEIS sequence [17, A110334] up to x12, but begin to deviate afterward.

18

One can produce a refinement of Theorem 9 that also keeps track of the number of ascents.
Rather than deleting rows in the cluster matrix, assign each UD and UF in those rows a
weight of u. After setting t = 0, the remaining variables x and u would keep track of length
and number of ascents, respectively.

It is also possible to count paths with restrictions on the heights at which ascents begin,
but the analysis is slightly more complicated. Here we would want to set B = {DU,FU},
which suffices for Motzkin paths that do not begin with an ascent. However, Motzkin paths
that begin with an ascent can be counted by considering walks in the monoid network in
Figure 5 from vertex 0′ to vertex 0, and we would multiply the result by t at the end to take
into account the first ascent.

0 1 2 m− 1 m

0′

{U}
{F}

{U}

{D}

{F}

{D}

{F}
{U}

{F}

{D}

{F}

{U}

Figure 5: Monoid network for counting Motzkin paths beginning with an ascent

4.4. Counting Motzkin paths by plateaus

We now count Motzkin paths by occurrences of UF kD, which we call a k-plateau.3 For a
fixed k, let pltk(µ) be the number of k-plateaus of a Motzkin path µ, and let

F pltk
m (x, t) :=

∞∑

n=0

∑

µ∈Mm
n

tpltk(µ)xn and F pltk(x, t) :=
∞∑

n=0

∑

µ∈Mn

tpltk(µ)xn.

Then we have the following formulas.

Theorem 10. Let {P pltk
m (x, t)}m≥0 be the sequence of polynomials defined by P

pltk
0 (x, t) = 1,

P
pltk
1 (x, t) = 1− x, and

P pltk
m (x, t) = (1− x− xk+2(t− 1))P

pltk
m−1(x, t)− x2P

pltk
m−2(x, t)

for m ≥ 2. Then

F pltk
m (x, t) =

P
pltk
m (x, t)

P
pltk
m+1(x, t)

=
1

1− x− xk+2(t− 1)−
x2

1− x− xk+2(t− 1)− · · · x2

1− x− xk+2(t− 1)−
x2

1− x
︸ ︷︷ ︸

depth m+1

3These are sometimes also called k-humps in the literature.

19

for m ≥ 1 and

F pltk(x, t) =
1

1− x− xk+2(t− 1)−
x2

1− x− xk+2(t− 1)−
x2

1− x− xk+2(t− 1)− · · ·

=
1− x− xk+2(t− 1)−

√

(1− x− xk+2(t− 1))2 − 4x2

2x2
.

The two formulas for F pltk(x, t) were found earlier by Drake and Gantner [4, Proposition
3.4 and Theorem 4.2] using a different method; here we give a proof using our generalization
of the cluster method.

Proof. Set B = {UF kD}, and once again consider the Motzkin path monoid network. The
only cluster formed by UF kD is itself, and so the (m+ 1)× (m+ 1) cluster matrix is

−→
LG(t) =












UF kDt
UF kDt

UF kDt
. . .

UF kDt
0












.

By Theorem 4, we have
−→
FG(t) = (Am − −→

LG(t))
−1 (where Am is defined in the proof of

Theorem 6), and so F
pltk
m (x, t) is the (1, 1) entry of M−1

m where Mm is the matrix

Mm =














1− x− xk+2(t− 1) −x

−x 1− x− xk+2(t− 1) −x

−x 1− x− xk+2(t− 1)
. . .

. . .
. . .

. . .

. . . 1− x− xk+2(t− 1) −x

−x 1− x














obtained by applying to Am −−→
LG(t) the homomorphism sending each of U , F , and D to x.

It follows that

F pltk
m (x, t) =

detMm−1

detMm

,

and the determinant of Mm is equal to that of an upper-triangular matrix with diagonal
entries

ui,i =







1− x− xk+2(t− 1)− x2

ui+1,i+1

, if 1 ≤ i ≤ m

1− x. if i = m+ 1.

Thus we have the recursion

detMm =
m+1∏

i=1

ui,i =



1− x− xk+2(t− 1)− x2

(
detMm−1

detMm−2

)



detMm−1

= (1− x− xk+2(t− 1)) detMm−1 − x2 detMm−2

20

with initial conditions detM−1 = 1 and detM0 = 1 − x. These are polynomials in x and t,
and we write P

pltk
m (x, t) = detMm−1. Moreover,

detMm

detMm−1
= 1− x− xk+2(t− 1)− x2

1− x− xk+2(t− 1)− · · · x2

1− x− xk+2(t− 1)−
x2

1− x
︸ ︷︷ ︸

depth m

,

so

F pltk
m (x, t) =

1

1− x− xk+2(t− 1)−
x2

1− x− xk+2(t− 1)− · · · x2

1− x− xk+2(t− 1)−
x2

1− x
︸ ︷︷ ︸

depth m+1

.

Taking the limit as m → ∞, we obtain

F pltk(x, t) =
1

1− x− xk+2(t− 1)−
x2

1− x− xk+2(t− 1)−
x2

1− x− xk+2(t− 1)− · · ·

=
1

1− x− xk+2(t− 1)− x2F pltk(x, t)

which can be rewritten as

x2F pltk(x, t)2 − (1− x− xk+2(t− 1))F pltk(x, t) + 1 = 0. (8)

Solving (8) gives

F pltk(x, t) =
1− x− xk+2(t− 1)±

√

(1− x− xk+2(t− 1))2 − 4x2

2x2
,

but one can check that the solution given by the minus sign is the correct one.

By specializing to k = 0 and defining pk = plt0, we obtain the bivariate generating
function

F pk(x, t) =
1− x− x2(t− 1)−

√

(1− x− x2(t− 1))2 − 4x2

2x2

counting Motzkin paths by peaks, which are occurrences of UD. The first several terms of
F pk(x, t) are in the following table:

n [xn]F pk(x, t) n [xn]F pk(x, t)
0 1 5 8 + 10t+ 3t2

1 1 6 17 + 24t+ 9t2 + t3

2 1 + t 7 37 + 58t+ 28t2 + 4t3

3 2 + 2t 8 82 + 143t+ 81t2 + 16t3 + t4

4 4 + 4 + t2 9 185 + 354t+ 231t2 + 60t3 + 5t4

See [17, A097860] for its OEIS entry. Also see [17, A004148] for the constant coefficients of
these polynomials, which count Motzkin paths with no peaks. The generating function for
the linear coefficients of these polynomials can be verified to be

[
∂

∂t
F pk(x, t)

]

t=0

=
1− x+ x2 −

√
1− 2x− x2 − 2x3 + x4

2
√
1− 2x− x2 − 2x3 + x4

,

21

and interestingly enough, dividing this generating function by x (i.e., shifting the indices
of the underlying sequence) yields the generating function for the number of flat steps in
all peakless Motzkin paths of length n (see [17, A110236]). These numbers are given by a
binomial coefficient sum, which in turn gives us the following corollary.

Corollary 11. The number of Motzkin paths of length n ≥ 2 with exactly one peak is equal
to

∑n−2
k=0

(
k+1

n−k+1

)(
k

n−k

)
.

Now let us consider 1-plateaus, or occurrences of UFD. The bivariate generating function

F plt1(x, t) =
1− x− x3(t− 1)−

√

(1− x− x3(t− 1))2 − 4x2

2x2

counts Motzkin paths by 1-plateaus, and its first several terms are:

n [xn]F plt1(x, t) n [xn]F plt1(x, t)
0 1 5 15 + 6t
1 1 6 36 + 14t+ t2

2 2 7 85 + 39t+ 3t2

3 3 + t 8 209 + 102t+ 12t2

4 7 + 2t 9 517 + 280t+ 37t2 + t3

These are also in the OEIS [17, A114583], along with the constant coefficients [17, A114584],
which count Motzkin paths with no occurrences of UFD.

We can also count Motzkin paths by all plateaus, without a fixed k. Let plt(µ) be the
number of plateaus in a Motzkin path µ, that is, the number of occurrences of subwords
in B = {UD,UFD,UFFD, . . . }. We define the bivariate generating functions F plt

m (x, t)
and F plt(x, t) in the analogous way as before, and to find expressions for these generating
functions, we would change each nonzero entry in the cluster matrix from UF kDt (for a
fixed k) to

∞∑

k=0

UF kDt = U(1 − F)−1Dt.

Then the computation would follow in the same way, yielding the following result.

Theorem 12. Let {Rplt
m (x, t)}m≥0 be the sequence of rational functions defined by Rplt

0 (x, t) =
1, Rplt

1 (x, t) = 1− x, and

Rplt
m (x, t) =

(

1− x− x2

1− x
(t− 1)

)

Rplt
m−1(x, t)− x2Rplt

m−2(x, t)

for m ≥ 2. Then

F plt
m (x, t) =

Rplt
m (x, t)

Rplt
m+1(x, t)

=
1

1− x− x2

1−x
(t− 1)−

x2

1− x− x2

1−x
(t− 1)−

· · · x2

1− x− x2

1−x
(t− 1)−

x2

1− x
︸ ︷︷ ︸

depth m+1

22

for m ≥ 1 and

F plt(x, t) =
1

1− x− x2

1−x
(t− 1)−

x2

1− x− x2

1−x
(t− 1)−

x2

1− x− x2

1−x
(t− 1)−

· · ·

=
1− 2x− x2(t− 2)−

√

1− 4x− 2x2(t− 2) + 4x3t+ x4t(t− 4)

2(x2 − x3)
.

The first several terms of F plt(x, t) are below, which can also be found on the OEIS [17,
A097229]:

n [xn]F plt(x, t) n [xn]F plt(x, t)
0 1 5 1 + 15t+ 5t2

1 1 6 1 + 31t+ 18t2 + t3

2 1 + t 7 1 + 63t+ 56t2 + 7t3

3 1 + 3t 8 1 + 127t+ 160t2 + 34t3 + t4

4 1 + 7t + t2 9 1 + 255t+ 432t2 + 138t3 + 9t4

We now give expressions for the linear and quadratic coefficients of these polynomials.

Corollary 13. The number of Motzkin paths of length n ≥ 1 with exactly one plateau is
equal to 2n−1 − 1.

Proof. Using Maple, one may verify that

[
∂

∂t
F plt(x, t)

]

t=0

=
x2

(1− 2x)(1− x)
.

Then,

[xnt]F plt(x, t) = [xn]

[
∂

∂t
F plt(x, t)

]

t=0

= [xn−2]
1

(1− 2x)(1− x)

= [xn−2]

(
2

1− 2x
− 1

1− x

)

= [xn−2]
(∞∑

n=0

(2n+1 − 1)xn
)

= 2n−1 − 1.

Corollary 14. The number of Motzkin paths of length n ≥ 3 with exactly two plateaus is
equal to (n− 3)n2n−6.

Proof. Using Maple, one may verify that

[
∂2

∂t2
F plt(x, t)

]

t=0

=
2(1− x)x4

(1− 2x)3

23

and (1 − x)x/(1 − 2x)3 is known to be the generating function for the sequence (n(n +
3)2n−3)n≥1 (see [17, A001793]). Then,

[xnt2]F plt(x, t) = [xn]
1

2

[
∂2

∂t2
F plt(x, t)

]

t=0

= [xn−3]
(1− x)x

(1− 2x)3

= (n− 3)n2n−6.

Hence, Motzkin paths with exactly 1 plateau and those with exactly 2 plateaus are
equinumerous with many other combinatorial objects (see [17, A000225 and A001793]).

Drake and Gantner [4, Section 4] showed how one can find continued fraction formulas
for variations of these results, including bivariate generating functions for counting Motzkin
paths by plateaus occurring only at certain heights, and with restrictions on the lengths of
plateaus. Their approach involved inserting appropriate “correction terms” at each level of
the continued fraction formulas that encode the types of plateaus that they wish to count.

All of these variations can also be computed using our method. To disregard plateaus
occurring at certain heights, we would delete the corresponding rows from the cluster matrix,
which is completely analogous to Theorem 9 for ascents. To place restrictions on the lengths
of plateaus, we would alter the “forbidden set” B appropriately and set the appropriate
variables to 0. We leave the details to the reader.

Our method also allows for an interpretation of Drake and Gantner’s correction terms
in terms of clusters. Their correction terms are of the form xk(t − 1) for various k and are
then multiplied by x2, and these precisely correspond to the terms contributed by the cluster
matrix in our computations. This is a relatively simple case because the only clusters formed
by the words in B = {UD,UFD,UFFD, . . . } are the words in B themselves. Counting
paths by subwords having additional clusters would require more complicated correction
terms when working through the lens of Drake and Gantner.

4.5. Counting Motzkin paths by peaks and valleys

Peaks, or occurrences of UD, were introduced in the previous subsection. Similarly, we define
a valley to be an occurrence of DU , and val(µ) the number of valleys of a Motzkin path µ.
Here we find the joint distribution of peaks and valleys in Motzkin paths. Let

F p,v
m (x, t1, t2) :=

∞∑

n=0

∑

µ∈Mm
n

t
pk(µ)
1 t

val(µ)
2 xn and F p,v(x, t1, t2) :=

∞∑

n=0

∑

µ∈Mn

t
pk(µ)
1 t

val(µ)
2 xn.

Then we have the following theorem.

Theorem 15. Let {Rp,v
m (x, t1, t2)}m≥0 be the sequence of rational functions defined by Rp,v

0 (x, t1, t2) =
1, Rp,v

1 (x, t1, t2) = 1− x− C2, and

Rp,v
m (x, t1, t2) = (1− x− C1 − C2)R

p,v
m−1(x, t1, t2)− (x+ C3)

2Rp,v
m−2(x, t1, t2)

24

for m ≥ 2, where

C1 =
x2(t1 − 1)

1− x2(t1 − 1)(t2 − 1)
, C2 =

x2(t2 − 1)

1− x2(t1 − 1)(t2 − 1)
, and C3 =

x3(t1 − 1)(t2 − 1)

1− x2(t1 − 1)(t2 − 1)
.

Then

F p,v
m (x, t1, t2) =

Rp,v
m (x, t1, t2)

(1− x− C1)R
p,v
m (x, t1, t2)− (x+ C3)2R

p,v
m−1(x, t1, t2)

=
1

1− x− C1−
(x+ C3)

2

1− x− C1 − C2−
· · · (x+ C3)

2

1− x− C1 − C2−
(x+ C3)

2

1− x− C2
︸ ︷︷ ︸

depth m+1

for m ≥ 1 and

F p,v(x, t1, t2) =
1

1− x− C1−
(x+ C3)

2

1− x− C1 − C2−
(x+ C3)

2

1− x− C1 − C2−
· · ·

=
2

1− x− C1 + C2 +
√

(1− x− C1 − C2)2 − 4(x+ C3)2
.

Proof. Set B = {UD,DU}. This time, we weight occurrences of UD by t1 and occurrences
of DU by t2. However, finding the cluster matrix is no longer a trivial task. We make the
following observations:

• Clusters starting and ending at height 0 are of the form UDUD · · ·UD, since a path
cannot go down from height 0. We can decompose these words into a sequence of UDs,
where the first UD contributes a t1 and each subsequent UD contributes a t1 and a t2.

• Clusters starting and ending at height m are of the form DUDU · · ·DU , since a path
cannot go up from height m. We can decompose these words into a sequence of DUs,
where the first DU contributes a t2 and each subsequent DU contributes a t1 and a t2.

• Clusters starting and ending at height k with 0 < k < m are of the above two forms,
since a path can go either up or down from height k.

• Clusters starting at height k and ending at height k+1 are of the form UDUDU · · ·DU ,
which can be decomposed into an initial subword UDU—contributing a t1 and a
t2—and a sequence of DUs, each contributing a t1 and a t2.

• Clusters starting at height k and ending at height k−1 are of the form DUDUD · · ·UD,
which can be decomposed into an initial subword DUD—contributing a t1 and a
t2—and a sequence of UDs, each contributing a t1 and a t2.

Thus, the (m+ 1)× (m+ 1) cluster matrix is

−→
LG(t1, t2) =













Ĉ1 Ĉ3

Ĉ4 Ĉ1 + Ĉ2 Ĉ3

Ĉ4 Ĉ1 + Ĉ2
. . .

. . .
. . .

. . .
. . . Ĉ1 + Ĉ2 Ĉ3

Ĉ4 Ĉ2













25

where

Ĉ1 =
UDt1

1− UDt1t2
, Ĉ2 =

DUt2
1−DUt1t2

, Ĉ3 =
UDUt1t2
1−DUt1t2

, and Ĉ4 =
DUDt1t2
1− UDt1t2

.

By applying Theorem 4, we see that F p,v
m (x, t1, t2) is the (1, 1) entry of M−1

m where Mm

is the (m+ 1)× (m+ 1) matrix

Mm =














1− x− C1 −x− C3

−x− C3 1− x− C1 −C2 −x− C3

−x− C3 1− x−C1 − C2
. . .

. . .
. . .

. . .

. . . 1− x− C1 − C2 −x−C3

−x− C3 1− x− C2














and C1, C2, and C3 are defined in the statement of this theorem. Then,

F p,v
m (x, t1, t2) =

detM ′
m

detMm

=
detM ′

m


1− x− C1 − (x+C3)2
(

detM′
m

detM′

m−1

)



detM ′
m

=
detM ′

m

(1− x− C1) detM ′
m − (x+ C3)2 detM

′
m−1

where M ′
m is the matrix obtained from Mm by deleting the first row and the first column.

The determinant of M ′
m is equal to that of an upper-triangular matrix with diagonal entries

ui,i =







1− x− C1 − C2 −
(x+ C3)

2

ui+1,i+1

, if 1 ≤ i ≤ m

1− x− C2, if i = m+ 1,

so

detM ′
m =

m+1∏

i=1

ui,i =



1− x− C1 − C2 −
(x+ C3)

2

(
detM ′

m−1

detM ′

m−2

)



detM ′
m−1

= (1− x− C1 − C2) detM
′
m−1 − (x+ C3)

2 detM ′
m−2

with initial conditions detM ′
0 = 1 and detM ′

1 = 1− x− C2. These are rational functions in
x, t1, and t2; we write Rp,v

m (x, t1, t2) = detM ′
m. Furthermore,

detMm

detM ′
m

= 1− x− C1 −
(x+ C3)

2

1− x− C1 − C2−
· · · (x+ C3)

2

1− x− C1 − C2−
(x+ C3)

2

1− x− C2
︸ ︷︷ ︸

depth m

,

26

so

F p,v
m (x, t1, t2) =

1

1− x− C1−
(x+ C3)

2

1− x− C1 − C2−
· · · (x+ C3)

2

1− x− C1 − C2−
(x+ C3)

2

1− x− C2
︸ ︷︷ ︸

depth m+1

.

By taking the limit as m → ∞, we have that

F p,v(x, t1, t2) =
1

1− x− C1−
(x+ C3)

2

1− x− C1 − C2−
(x+ C3)

2

1− x− C1 − C2−
· · ·

=
1

1− x− C1 − (x+ C3)2G(x, t1, t2)

where

G(x, t1, t2) =
1

1− x− C1 − C2

(x+ C3)
2

1− x− C1 − C2−
(x+ C3)

2

1− x− C1 − C2−
· · ·

=
1

1− x− C1 − C2 − (x+ C3)2G(x, t1, t2)
.

Thus we have the functional equation

(x+ C3)
2G(x, t1, t2)

2 − (1− x− C1 − C2)G(x, t1, t2) + 1 = 0,

and solving it gives

G(x, t1, t2) =
1− x− C1 − C2 ±

√

(1− x− C1 − C2)2 − 4(x+ C3)2

2(x+ C3)2
.

As before, one can verify that the solution given by the minus sign is the correct one, and
we conclude that

F p,v(x, t1, t2) =
1

1− x− C1 − 1
2

(

1− x− C1 − C2 −
√

(1− x− C1 − C2)2 − 4(x+ C3)2
)

=
2

1− x− C1 + C2 +
√

(1− x− C1 − C2)2 − 4(x+ C3)2
.

The first several terms of F p,v(x, t1, t2) are the following:

n [xn]F p,v(x, t1, t2)
0 1
1 1
2 1 + t1
3 2 + 2t1
4 4 + 4t1 + t21t2
5 8 + 8t1 + 2t1t2 + t21 + 2t2t2
6 16 + t2 + 18t1 + 6t1t2 + 3t21 + 6t21t2 + t31t

2
2

7 33 + 4t2 + 40t1 + 18t1t2 + 9t21 + 16t21t2 + 3t21t
2
2 + 2t31t2 + 2t31t

2
2

8 69 + 13t2 + 90t1 + 50t1t2 + 25t21 + 3t1t
2
2 + 47t21t2 + t31 + 9t21t

2
2 + 6t31t2 + 9t31t

2
2 + t41t

3
2

27

The constant coefficients, which count Motzkin paths with no peaks and valleys, are in the
OEIS [17, A004149].

Liu, Ma, and Yeh [14] gave recursive and continued fraction formulas for counting Dyck
paths with peaks avoiding a specified set of heights and valleys avoiding another specified
set of heights. We can do the same thing by applying our cluster method to the monoid
network for Dyck paths, but here we give the analogous results for Motzkin paths.4

Theorem 16. Let

F p,v(P, V ; x) :=
∞∑

n=0

cnx
n

where cn is the number of Motzkin paths of length n with every peak occuring at a height in
P ⊆ N and every valley occuring at a height in V ⊆ P. Then,

F p,v(P, V ; x) =
1

1− x+ C1,0−
(x+ C3,0)

2

1− x+ C1,1 + C2,1−
(x+ C3,1)

2

1− x+ C1,2 + C2,2−
· · ·

where

C1,i =







x2

1−x2 , if i /∈ P and i+ 1 /∈ V

x2, if i /∈ P and i+ 1 ∈ V

0, otherwise,

C2,i =







x2

1−x2 , if i /∈ V and i− 1 /∈ P

x2, if i /∈ V and i− 1 ∈ P

0, otherwise,

and

C3,i =

{
x3

1−x2 , if i /∈ P and i+ 1 /∈ V

0, otherwise.

Proof. We weight both UD and DU by t, but we only wish to consider instances of UD at
heights i /∈ P and instances of DU at heights i /∈ V . We claim that the cluster matrix is

−→
LG(t) =













Ĉ1,0 Ĉ3,0

Ĉ4,1 Ĉ1,1 + Ĉ2,1 Ĉ3,1

Ĉ4,2 Ĉ1,2 + Ĉ2,2
. . .

. . .
. . .

. . .
. . . Ĉ1,m−1 + Ĉ2,m−1 Ĉ3,m−1

Ĉ4,m Ĉ2,m













where

Ĉ1,i =







UD(t−1)
1−UD(t−1)2

, if i /∈ P , i+ 1 /∈ V

UD(t− 1), if i /∈ P , i+ 1 ∈ V

0, otherwise,

Ĉ2,i =







DU(t−1)
1−UD(t−1)2

, if i /∈ V , i− 1 /∈ P

DU(t− 1), if i /∈ V , i− 1 ∈ P

0, otherwise,

Ĉ3,i =

{
UDU(t−1)

1−DU(t−1)2
, if i /∈ P , i+ 1 /∈ V

0, otherwise,
Ĉ4,i =

{
DUD(t−1)
1−UD(t−1)2

, if i /∈ V , i− 1 /∈ P

0, otherwise.

4Liu, Ma, and Yeh defined the height of a peak (respectively, valley) to be the height at which its down
step (respectively, up step) occurs, but we use the convention that the height of a peak or valley is the height
at which the corresponding subword (UD or DU) begins.

28

For example, Ĉ1,i gives clusters starting and ending at height i and beginning with an

up step. Every such cluster begins with a peak, so if i ∈ P , then Ĉ1,i = 0. Otherwise, i /∈ P ,
and if i+1 ∈ V , then the only possible such cluster is UD because all other possible clusters
begin with UD and are followed by a valley at height i+1. However, if i /∈ P and i+1 /∈ V ,
then every subword of the form UDUD · · · is a valid cluster. One can verify the formulas
for Ĉ2,i, Ĉ3,i, Ĉ4,i using similar reasoning, and the result follows from the same process as
before.

Below are the generating functions for Motzkin paths with parity restrictions on the
heights of peaks and valleys:

F p,v(O,E≥0; x) =
1

1− x+ x2

1−x2−
(x+ x3

1−x2)
2

1− x+ x2

1−x2−
x2

1− x+ x2

1−x2−
(x+ x3

1−x2)
2

1− x+ x2

1−x2−
x2

1− x+ x2

1−x2−
· · ·

=
1− 2x+ 2x2 − 2x4 −

√
1− 4x+ 4x2 − 4x4

2x2(1− x+ x3)

= 1 + x+ x2 + 2x3 + 5x4 + 12x5 + 27x6 + 60x7 + 136x8 + · · ·

F p,v(E≥0,O; x) =
1

1− x−
x2

1− x+ x2

1−x2−
(x+ x3

1−x2)
2

1− x+ x2

1−x2−
x2

1− x+ x2

1−x2−
(x+ x3

1−x2)
2

1− x+ x2

1−x2−
· · ·

=
2(1− x+ x3)

1− 2x+ 2x3 +
√
1− 4x+ 4x2 − 4x4

= 1 + x+ 2x2 + 4x3 + 8x4 + 17x5 + 38x6 + 88x7 + 208x8 + · · ·

F p,v(O,O; x) =
1

1− x+ x2−
x2

1− x−
x2

1− x+ 2x2−
x2

1− x−
x2

1− x+ 2x2− · · ·

=
2(1− x)

1− 2x+ x2 +
√
1− 4x+ 6x2 − 8x3 + 5x4 − 4x5 + 4x6

= 1 + x+ x2 + 2x3 + 5x4 + 12x5 + 27x6 + 60x7 + 137x8 + · · ·

F p,v(E≥0,E≥0; x) =
1

1− x−
x2

1− x+ 2x2−
x2

1− x−
x2

1− x+ 2x2−
x2

1− x− · · ·

=
1− 2x+ 3x2 − 2x3 −

√
1− 4x+ 6x2 − 8x3 + 5x4 − 4x5 + 4x6

2x2(1− x)

= 1 + x+ 2x2 + 4x3 + 7x4 + 13x5 + 27x6 + 59x7 + 131x8 + · · ·

29

We note that the list of coefficients of F p,v(E≥0,O; x) in particular is a shifted version of the
OEIS sequence [17, A025276], which can be verified by comparing generating functions.

Acknowledgements. The author thanks Ira Gessel and Jordan Tirrell for reading earlier
versions of the manuscript and providing helpful suggestions; Cyril Banderier for several
generous discussions pertaining to this project at the 8th International Conference on Lat-
tice Path Combinatorics & Applications; and an anonymous referee for their constructive
comments and suggestions.

References

[1] Frédérique Bassino, Julien Clément, and Pierre Nicodème. Counting occurrences for a
finite set of words: combinatorial methods. ACM Trans. Algorithms, 8(3):Article 31,
28, 2012.

[2] Jean Berstel and Christophe Reutenauer. Rational Series and Their Languages, vol-
ume 12 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag,
Berlin, 1988.

[3] L. Carlitz, Richard Scoville, and Theresa Vaughan. Enumeration of pairs of sequences
by rises, falls and levels. Manuscripta Math., 19(3):211–243, 1976.

[4] Dan Drake and Ryan Gantner. Generating functions for plateaus in Motzkin paths. J.
Chungcheong Math. Soc., 25(3):475–489, 2012.

[5] Anne E. Edlin and Doron Zeilberger. The Goulden-Jackson cluster method for cyclic
words. Adv. in Appl. Math., 25(2):228–232, 2000.

[6] P. Flajolet. Combinatorial aspects of continued fractions. Discrete Math., 32(2):125–161,
1980.

[7] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University
Press, Cambridge, 2009.

[8] Ralph Fröberg. Determination of a class of Poincaré series. Math. Scand., 37(1):29–39,
1975.

[9] Ira Martin Gessel. Generating Functions and Enumeration of Sequences. PhD thesis,
Massachusetts Institute of Technology, 1977.

[10] I. P. Goulden and D. M. Jackson. An inversion theorem for cluster decompositions of
sequences with distinguished subsequences. J. London Math. Soc. (2), 20(3):567–576,
1979.

[11] Yong Kong. Extension of Goulden-Jackson cluster method on pattern occurrences in
random sequences and comparison with Régnier-Szpankowski method. J. Difference
Equ. Appl., 11(15):1265–1271, 2005.

30

[12] Christian Krattenthaler. Lattice Path Enumeration. In Miklós Bóna, editor, Handbook
of Enumerative Combinatorics, chapter 10, pages 589–678. CRC Press, 2015.

[13] Elizabeth J. Kupin and Debbie S. Yuster. Generalizations of the Goulden-Jackson
cluster method. J. Difference Equ. Appl., 16(12):1463–1480, 2010.

[14] Shu-Chung Liu, Jun Ma, and Yeong-Nan Yeh. Dyck paths and peak- and valley-avoiding
sets. Stud. Appl. Math., 121(3):263–289, 2008.

[15] John Noonan and Doron Zeilberger. The Goulden-Jackson cluster method: extensions,
applications and implementations. J. Differ. Equations Appl., 5(4-5):355–377, 1999.

[16] Arto Salomaa and Matti Soittola. Automata-Theoretic Aspects of Formal Power Se-
ries. Springer-Verlag, New York-Heidelberg, 1978. Texts and Monographs in Computer
Science.

[17] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. Published electroni-
cally at http://oeis.org, 2015.

[18] Richard P. Stanley. Enumerative Combinatorics, volume 1. Cambridge University Press,
Cambridge, 2nd edition, 2011.

[19] Chao-Jen Wang. Applications of the Goulden-Jackson cluster method to counting Dyck
paths by occurrences of subwords. PhD thesis, Brandeis University, 2011.

[20] Xiangdong Wen. The symbolic Goulden-Jackson cluster method. J. Difference Equ.
Appl., 11(2):173–179, 2005.

[21] Doron Zeilberger. The umbral transfer-matrix method. V. The Goulden-Jackson cluster
method for infinitely many mistakes. Integers, 2:Paper A5, 12, 2002.

31

http://oeis.org

	1 Introduction
	2 The Goulden–Jackson cluster method
	3 Our generalization of the cluster method
	3.1 Monoid networks
	3.2 The Goulden–Jackson cluster method for monoid networks

	4 An application to lattice path enumeration
	4.1 Representing lattice paths using monoid networks
	4.2 A note on continued fractions
	4.3 Counting Motzkin paths by ascents
	4.4 Counting Motzkin paths by plateaus
	4.5 Counting Motzkin paths by peaks and valleys

	References

