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On a class of quaternary complex Hadamard matrices
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Abstract

We introduce a class of regular unit Hadamard matrices whose entries consist of two

complex numbers and their conjugates for a total of four complex numbers. We then

show that these matrices are contained in the Bose-Mesner algebra of an association

scheme arising from skew Paley matrices.

1 Introduction

An n × n matrix H is a unit Hadamard matrix if its entries are all complex numbers of
modulus 1 and it satisfies HH∗ = nIn. If the entries of H are all complex kth roots of
unity, it is called a Butson Hadamard matrix, referred to as a BH(n, k), and the particular
case of k = 2 is a Hadamard matrix. Following Compton et al. [4] we call a Butson or unit
Hadamard matrix unreal if its entries are strictly in C \R. A Hadamard matrix H of order
n is called to be of skew type, if H = I+W , where W is a skew symmetric (0,±1)-matrix. It
follows that WW T = (n− 1)In. For a thorough examination of unit and Butson Hadamard
matrices, we refer the reader to Szöllősi’s PhD thesis [14], and for some fundamental results
and applications of Hadamard matrices, we refer the reader to Seberry and Yamada’s 1992
survey [13]. Given a matrix A of order n, let Ri denote the i-th row of A, S(Ri) the sum
of all entries of Ri and S(A), called the excess of A, the sum of all its entries. A result of
[1] implies that for a unit Hadamard matrix of order n, |S(A)| ≤ n

√
n and equality occurs

if and only if |S(Ri)| =
√
n for 1 ≤ i ≤ n. A unit Hadamard matrix A of order n is called

regular if |S(Ri)| =
√
n for 1 ≤ i ≤ n, see [10] for details.

In this paper we introduce a recursive method to construct pairs of (±1)-matrices sat-
isfying two specific equations. Similar recursive methods were presented in 2005 to obtain
symmetric designs and orthogonal designs [5, 9].

Assuming the existence of a skew type Hadamard matrix of order q+1, we show the pairs
of matrices obtained from our recursive method can be used to construct infinite classes of
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a special type of unit Hadamard matrices of order qm, for each positive integer m, which we
have dubbed quaternary unit Hadamard matrices. In particular, as a corollary we conclude
that for each prime power q ≡ 3 (mod 4), there are infinite classes of unreal BH(3m, 6)’s,
and quaternary unit Hadamard matrices of order qm. Moreover, we will demonstrate that
all of the constructed Butson Hadamard matrices and quaternary unit Hadamard matrices
are regular, and some of those have multicirculant structure.

Some of the results in this paper are closely related to part of the results in a recent
paper by Compton et al. [4], see also [11]. Among other results, Compton et al. proved the
existence of BH(3m, 6)’s for each integer m ≥ 0. Herein, we too will construct BH(3m, 6)’s.
However, our matrices are distinguished from those of Compton et al. in that our BH(3m, 6)’s
are regular and multicirculant. In their paper, Compton et al. also showed that a BH(n, 6)
is equivalent to a pair of amicable (±1)-matrices satisfying a certain equation, and that
this pair of matrices can be used to construct a Hadamard matrix. We have generalized
this result in Section 2 by introducing quaternary Hadamard matrices and showing that
they are equivalent to a pair of amicable (±1)-matrices satisfying an equation analogous
to that introduced by Compton et al. Moreover, we will show that the pairs of amicable
(±1)-matrices equivalent to quaternary unit Hadamard matrices can be used to construct
Hadamard matrices. Next, in Section 3 we will introduce a recursive method to construct
such pairs of matrices, and we will use this method to show that for each prime power q ≡ 3
(mod 4) and integer m ≥ 0, we can construct infinite classes of unreal BH(3m, 6)’s and
unreal quaternary unit Hadamard matrices of order qm. Finally, in Chapter 4, we introduce
an association scheme whose Bose-Mesner algebra contains our quaternary unit Hadamard
matrices.

2 Quaternary Unit Hadamard Matrices

Definition 2.1. We say that an n×n unit Hadamard matrixH is quaternary if there is a pos-

itive integerm such that the entries ofH are all in the set
{

± 1√
m+1

± i
√

m
m+1

,± 1√
m+1

∓ i
√

m
m+1

}

.

For short, we refer to such a quaternary unit Hadamard matrix as a QUH(n,m).

It is readily verified that any QUH(n, 1) or QUH(n, 3) is also a Butson Hadamard matrix.

Lemma 2.2. Let m be a positive integer. Then ζ = 1√
m+1

+ i
√

m
m+1

is a root of unity if and
only if m = 1 or m = 3.

Proof. If ζ is a root of unity, then so are ζ2 and ζ
2
. Thus ζ2 + ζ

2
= −2(m−1)

m+1
is an algebraic

integer, and hence an integer. This implies that m = 1 or 3.

The next proposition follows immediately from the previous lemma and the observation
that any QUH(n, 1) or QUH(n, 3) is also a Butson Hadamard matrix.

Proposition 2.3. A QUH(n,m) is a Butson Hadamard matrix if and only if m = 1 or
m = 3.

We now demonstrate that QUH(n,m)’s are equivalent to pairs of n×nmatrices satisfying
certain properties. First, however, recall a definition.
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Definition 2.4. Two complex matrices A and B are called amicable if AB∗ = BA∗.

In the reference [4], Compton et al. establish the following result.

Theorem 2.5 (Compton et al., [4]). An unreal BH(n, 6) is equivalent to a pair of n × n
amicable (±1)-matrices A and B satisfying AAT + 3BBT = 4nIn.

With little difficulty, this result can be generalized in the following manner. Assume H
is a QUH(n,m). Then we can write

H =
1√

m+ 1
A+ i

√

m

m+ 1
B

for some (±1)-matrices A and B. Therefore,

nIn =

(

1√
m+ 1

A+ i

√

m

m+ 1
B

)(

1√
m+ 1

A+ i

√

m

m+ 1
B

)∗

,

so
n(m+ 1)In = AAT +mBBT + i

√
m(BAT − ABT ).

Since the right-hand-side must be real, this proves the following generalization of Theo-
rem 2.5.

Theorem 2.6. A QUH(n,m) is equivalent to a pair of n×n amicable (±1)-matrices A and
B satisfying AAT +mBBT = (m+ 1)nIn.

3 A Recursive Method

In this section we will introduce a recursive construction for pairs of matrices satisfying the
aforementioned properties. We use jn and Jn to denote the 1×n and n×n all-ones matrices
respectively. Subscripts will be dropped where no ambiguity arises.

Let q + 1 be the order of a skew type Hadamard matrix H . Multiply rows and columns
of H , if necessary, to get the matrix

(

1 j

−jT I +Q

)

.

The (0,±1)-matrixQ = (qij)
q
i,j=1, called the skew symmetric core of the skew type Hadamard

matrix, is skew symmetric, JqQ = QJq = 0, and QQT = qIq − Jq. For any odd prime power
q the Jacobsthal matrix of order q defined by

qij = χq(ai − aj)(ai, aj ∈ GF (q))

where χq denotes the quadratic character in GF(q), enjoys the following important properties:

1. Q is symmetric if q ≡ 1 (mod 4) and skew symmetric if q ≡ 3 (mod 4).

2. JqQ = QJq = 0.
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3. QQT = qIq − Jq.

So, Jacobsthal matrices provide many examples of skew symmetric cores.
Let q be the order of a skew symmetric core Q. Define the following matrices recursively

for each nonnegative integer m.

J (q)
m =

{

J1 if m = 0

Jq ⊗A(q)
m−1 otherwise

, A(q)
m =

{

J1 if m = 0

Iq ⊗ J (q)
m−1 +Q⊗A(q)

m−1 otherwise.
(1)

It should be noted that when no ambiguity arises, for brevity we will drop the superscripts
on J (q)

m and A(q)
m .

It is not hard to prove by induction that J (q)
m and A(q)

m are amicable for each nonnegative
integer m. Indeed, the base case is clear, and using the induction hypothesis together with
the fact that JqQ = QJq = 0, note that

Jm+1AT
m+1 = (Jq ⊗Am)(Iq ⊗ Jm +Q⊗Am)

T

= Jq ⊗ (AmJ T
m)

= Jq ⊗ (JmAT
m)

= (Iq ⊗Jm +Q⊗Am)(Jq ⊗Am)
T

= Am+1J T
m+1.

It follows that J (q)
m and A(q)

m are amicable for each integer m ≥ 0. It is also straightforward
to prove by induction that

J (q)
m (J (q)

m )T + qA(q)
m (A(q)

m )T = qm(q + 1)Iqm

whenever q + 1 is the order of a skew type Hadamard matrix. Again the base case is
clear. Using the induction hypothesis together with the facts that Q is skew symmetric, that
QQT = qIq − Jq, and that J (q)

m and A(q)
m are amicable, we obtain

Jm+1J T
m+1 + qAm+1AT

m+1

= (Jq ⊗Am)(Jq ⊗AT
m) + q(Iq ⊗Jm +Q⊗Am)(Iq ⊗ J T

m +QT ⊗AT
m)

= qJq ⊗AmAT
m + qIq ⊗ JmJ T

m − q Q⊗JmAT
m + q Q⊗AmJ T

m + q QQT ⊗AmAT
m

= qJq ⊗AmAT
m + qIq ⊗ JmJ T

m + q(qIq − Jq)⊗AmAT
m

= qIq ⊗ (JmJ T
m + qAmAT

m)

= qm+1(q + 1)Iqm+1.

Therefore, for each skew symmetric core of order q and integer m ≥ 0, the matrices J (q)
m and

A(q)
m are a pair of amicable (±1)-matrices satisfying

J (q)
m (J (q)

m )T + qA(q)
m (A(q)

m )T = qm(q + 1)Iqm.
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Thus, using the results of Section 2 we obtain a QUH(qm, q). Explicitly, the quaternary unit
Hadamard matrices are

1√
q + 1

J (q)
m + i

√

q

q + 1
A(q)

m . (2)

In the next subsection, we will show that these quaternary unit Hadamard matrices have
some interesting properties. However, first we will take this opportunity to make a brief
comment on our recursive method. Notice that our proof that J (q)

m and A(q)
m are a pair of

amicable (±1)-matrices satisfying

J (q)
m (J (q)

m )T + qA(q)
m (A(q)

m )T = qm(q + 1)Iqm

only relied on the fact that J1 is amicable with itself and that J1J
T
1 + qJ1J

T
1 = (q + 1)I1.

Therefore, it is straightforward to see that given any pair of n × n amicable (±1)-matrices
X and Y satisfying XXT + qY Y T = n(q + 1)In, where q is the order of a skew symmetric
core, the matrices

Xm =

{

X if m = 0

Jq ⊗ Ym−1 otherwise
, Ym =

{

Y if m = 0

Iq ⊗ Xm−1 +Q⊗ Ym−1 otherwise

are amicable and satisfy

XmX T
m + qYmYT

m = nqm(q + 1)Inqm

for each integer m ≥ 0.
As an application, for the prime power q ≡ 1 (mod 4), by using the Jacobsthal matrix

Q and complex numbers we can get a recursive construction similar to that in Equation (1):

C(q)
m =

{

J1 if m = 0

Jq ⊗D(q)
m−1 otherwise

, D(q)
m =

{

J1 if m = 0

Iq ⊗ C(q)
m−1 + i Q⊗D(q)

m−1 otherwise
. (3)

Almost identical proofs to those above show that C(q)
m and D(q)

m are always amicable and that

C(q)
m (C(q)

m )∗ + qD(q)
m (D(q)

m )∗ = qm(q + 1)Iqm.

Therefore, the following is a unit Hadamard matrix (each entry of the matrix being one of
±1,±i, it is called a quaternary Hadamard matrix ) for each m ≥ 0 and prime power q ≡ 1
(mod 4).

(

0 jq
jTq Q

)

⊗D(q)
m + i Iq+1 ⊗ C(q)

m .

3.1 An infinite class of quaternary unit Hadamard matrices

By using the appropriate Jacobsthal matrix Q in the definition of J (q)
m and A(q)

m , we can
ensure that the resulting QUH(qm, q)’s have an interesting structure, which we have dubbed
multicirculant. Before defining this structure, we remind the reader that a circulant matrix
with first row (a1, . . . , an) is denoted circ(a1, . . . , an), and that a block-circulant matrix is a
matrix of the form circ(A1, . . . , An), where the Ai are its blocks.
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Definition 3.1. Let M be a matrix of order n. If n = 1, then we call M a multicirculant
matrix. If n > 1, then we call M multicirculant if and only if it is a block-circulant matrix
whose blocks are multicirculant matrices.

Two facts about multicirculant matrices are straightforward to verify and will be used
shortly. First, the Kronecker product of two multicirculant matrices is itself a multicirculant
matrix. Second, if A and B are two multicirculant n× n matrices such that all their blocks
are of the same dimensions, then A+B is also a multicirculant matrix.

For any odd prime power q, it is well known that one can construct a multicirculant
Jacobsthal matrix Q. When q ≡ 3 (mod 4), use a multicirculant Jacobsthal matrix to

construct J (q)
m and A(q)

m . Then the two facts listed in the previous paragraph imply that
J (q)

m and A(q)
m will be multicirculant. It follows that the QUH(qm, q)’s in Equation (2) are

multicirculant.
The QUH(qm, q)’s in Equation (2) have another interesting property: they have maximal

excess. To prove this, we introduce a lemma.

Lemma 3.2. The following holds for all integers m ≥ 0 and prime powers q ≡ 3 (mod 4).

(i) S(J (q)
2m ) = S(A(q)

2m) = q3m.

(ii) S(J (q)
2m+1) = q3m+2.

(iii) S(A(q)
2m+1) = q3m+1.

Proof. First notice that

S(Jm) = S(Jq ⊗Am−1)

= S(Jq ⊗ (Iq ⊗Jm−2 +Q⊗Am−2))

= S((Jq ⊗ Iq)⊗ Jm−2) + S((Jq ⊗Q)⊗Am−2)

= S(Jq)S(Iq)S(Jm−2) + S(Jq)S(Q)S(Am−2)

= q3 S(Jm−2)

(4)

and

S(Am) = S(Iq ⊗Jm−1 +Q⊗Am−1)

= S(Iq ⊗ (Jq ⊗Am−2)) + S(Q)S(Am−1)

= S(Jq)S(Iq)S(Am−2)

= q3 S(Am−2).

(5)

We now prove that S(J (q)
2m ) = S(A(q)

2m) = q3m by induction on m. For the base case, notice

S(J0) = S(A0) = 1. Now suppose k ≥ 1 and that S(J (q)
2k ) = S(A(q)

2k ) = q3k. Equation (4)
together with the induction hypothesis implies S(J2(m+1)) = q3 S(J2m) = q3(k+1). Similarly,
Equation (5) and the induction hypothesis imply S(A2(m+1)) = q3(m+1). Thus for all positive

integers m we have S(J (q)
2m ) = S(A(q)

2m) = q3m. It follows that (i) holds. We can prove (ii)
and (iii) similarly.
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Lemma 3.2 makes it easy to calculate the excess of the QUH(qm, q)’s in Equation (2). To
compute the excess of these matrices, we consider separately the cases when m is odd and
even. First, use Lemma 3.2 to observe that

S

(

1√
q + 1

J (q)
2m + i

√

q

q + 1
A(q)

2m

)

=
1√
q + 1

S (J2m) + i

√

q

q + 1
S (A2m)

=
q3m√
q + 1

(1 + i
√
q) .

Therefore,
∣

∣

∣

∣

S

(

1√
q + 1

J (q)
2m + i

√

q

q + 1
A(q)

2m

)∣

∣

∣

∣

=

∣

∣

∣

∣

q3m√
q + 1

(1 + i
√
q)

∣

∣

∣

∣

= q
3(2m)

2 .

Using a similar computation one can show that
∣

∣

∣

∣

S

(

1√
q + 1

J (q)
2m+1 + i

√

q

q + 1
A(q)

2m+1

)∣

∣

∣

∣

= q
3(2m+1)

2 .

Therefore, for any m ≥ 0 we have
∣

∣

∣

∣

S

(

1√
q + 1

J (q)
m + i

√

q

q + 1
A(q)

m

)∣

∣

∣

∣

= q
3m
2 .

The excess meets Best’s upper bound [1], so the matrices are regular.
In summary, we have established the following theorem.

Theorem 3.3. Let q be the order of a skew symmetric core. Then for each positive integer
m, there is a regular QUH(qm, q) with excess q

3m
2 . Furthermore, if q is an odd prime power

q ≡ 3 (mod 4) the constructed regular quaternary unit Hadamard matrix is multicirculant.

4 Association schemes

There are many relationships between Hadamard matrices and association schemes; see [2,
Theorem 1.8.1], [6, 7] for Hadamard matrices and [3, 8] for unit Hadamard matrices. In
this section we show that the quaternary unit Hadamard matrices are contained in some
commutative association scheme.

A (commutative) association scheme of class d with vertex set X of size n is a set of non-
zero (0, 1)-matrices A0, . . . , Ad, which are called adjacency matrices, with rows and columns
indexed by X , such that:

(i) A0 = In.

(ii)
∑d

i=0Ai = Jn.

(iii) For any i ∈ {0, 1, . . . , d}, AT
i ∈ {A0, A1, . . . , Ad}.

(iv) For any i, j ∈ {0, 1, . . . , d}, AiAj =
∑d

k=0 p
k
ijAk for some pkij’s.
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(v) For any i, j ∈ {0, 1, . . . , d}, AiAj = AjAi.

The vector space spanned by the Ai’s forms a commutative algebra, denoted by A and
is called the Bose-Mesner algebra or adjacency algebra. There exists a basis of A consisting
of the primitive idempotents, say E0 = (1/n)Jn, E1, . . . , Ed. Since {A0, A1, . . . , Ad} and
{E0, E1, . . . , Ed} are two bases of A, there exist a change-of-bases matrix P = (Pij)

d
i,j=0 so

that

Aj =

d
∑

i=0

PijEi.

The matrix P is called to be the eigenmatrix.
Write Q = A1 −A2 for disjoint (0, 1)-matrices A1, A2, and let A0 = Iq. Note that A1, A2

are the adjacency matrices of the doubly regular tournaments on q vertices; see [12]. Let X(q)

be the association scheme with adjacency matrices A0, A1, A2. Then the association scheme
has the following eigenmatrix P :

P =







1 q−1
2

q−1
2

1 −1+
√
−q

2
−1−

√
−q

2

1 −1−
√
−q

2
−1+

√
−q

2






.

We define X
(q)
m as the association scheme obtained from the m-times tensor products of

the adjacency matrices X(q). The adjacency matrices of X
(q)
m are Ai1⊗· · ·⊗Aim , (i1, . . . , im) ∈

{0, 1, 2}m. Letting E0, E1, E2 be the primitive idempotents of X(q), the primitive idempotents

of X
(q)
m are Ei1 ⊗ · · · ⊗ Eim , (i1, . . . , im) ∈ {0, 1, 2}m. Note that for suitable ordering of the

indices of the adjacency matrices and the primitive idempotents, the eigenmatrix Pm of X
(q)
m

is

Pm = P ⊗ · · · ⊗ P (m factors).

Now we have the following proposition.

Proposition 4.1. The quaternary unit Hadamard matrix 1√
q+1

J (q)
m + i

√

q

q+1
A(q)

m is in the

Bose-Mesner algebra of X
(q)
m .

Proof. We prove by induction that J (q)
m and A(q)

m are in the Bose-Mesner algebra of X
(q)
m .

The cases for m = 1, 2 are clear.
Assume the cases m − 1, m − 2 to be true. The Bose-Mesner algebra of X

(q)
m contains

elements Jq⊗Ai2⊗· · ·⊗Aim where Ai2⊗· · ·⊗Aim is an adjacency matrix of X
(q)
m−1. Using the

induction hypothesis for m− 1, the Bose-Mesner algebra of X
(q)
m contains J (q)

m = Jq ⊗A(q)
m−1.

By

Iq ⊗ J (q)
m−1 = Iq ⊗ Jq ⊗A(q)

m−2,

Q⊗A(q)
m−1 = (A1 − A2)⊗A(q)

m−1,

and the induction hypothesis for m− 1 and m− 2, the Bose-Mesner algebra of X
(q)
m contains

A(q)
m = Iq ⊗ J (q)

m−1 +Q⊗A(q)
m−1. This completes the proof.
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