Pentavalent symmetric graphs admitting transitive non-abelian characteristically simple groups

Jia-Li Du, Yan-Quan Feng*

Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China

Abstract

Let Γ be a graph and let G be a group of automorphisms of Γ . The graph Γ is called G-normal if G is normal in the automorphism group of Γ . Let T be a finite non-abelian simple group and let $G = T^l$ with $l \geq 1$. In this paper we prove that if every connected pentavalent symmetric T-vertex-transitive graph is T-normal, then every connected pentavalent symmetric G-vertex-transitive graph is G-normal. This result, among others, implies that every connected pentavalent symmetric G-vertex-transitive graph is G-normal except T is one of 57 simple groups. Furthermore, every connected pentavalent symmetric G-regular graph is G-normal except T is one of 20 simple groups, and every connected pentavalent G-symmetric graph is G-normal except T is one of 17 simple groups.

Keywords: Vertex-transitive graph, symmetric graph, Cayley graph, regular permutation group, simple group.

2010 Mathematics Subject Classification: 05C25, 20B25.

1 Introduction

Throughout this paper, all groups and graphs are finite, and all graphs are simple and undirected. Denote by \mathbb{Z}_n , D_n , A_n and S_n the cyclic group of order n, the dihedral group of order 2n, the alternating group and the symmetric group of degree n, respectively. Let G be a permutation group on a set Ω and let $\alpha \in \Omega$. Denote by G_{α} the stabilizer of α in G, that is, the subgroup of G fixing the point α . We say that G is semiregular on Ω if $G_{\alpha} = 1$ for every $\alpha \in \Omega$, and regular if it is semiregular and transitive. For a graph Γ , we denote its vertex set and automorphism group by $V(\Gamma)$ and $\operatorname{Aut}(\Gamma)$, respectively. The graph Γ is said to be G-vertex-transitive or G-regular for $G \leq \operatorname{Aut}(\Gamma)$ if G acts transitively or regularly on $V(\Gamma)$ respectively, and G-symmetric if G acts transitively on the arc set of Γ (an arc is an ordered pair of adjacent vertices). In particular, Γ is vertex-transitive or symmetric if it is $\operatorname{Aut}(\Gamma)$ -vertex-transitive or $\operatorname{Aut}(\Gamma)$ -symmetric, respectively. A graph Γ is said to be G-normal for $G \leq \operatorname{Aut}(\Gamma)$ if G is normal in $\operatorname{Aut}(\Gamma)$.

^{*}Corresponding author. E-mails: JiaLiDu@bjtu.edu.cn, yqfeng@bjtu.edu.cn

For a non-abelian simple group T, T-vertex-transitive graphs have received wide attentions, specially for the two extreme cases: T-symmetric graphs and T-regular graphs. It was shown in [2] that a connected pentavalent symmetric T-vertex-transitive graph Γ is either T-normal or $\operatorname{Aut}(\Gamma)$ contains a non-abelian simple normal subgroup L such that $T \leq L$ and (T, L) is one of 58 possible pairs of non-abelian simple groups.

A T-regular graph is also called a $Cayley\ graph$ over T, and the Cayley graph is called normal if it is T-normal. Investigation of Cayley graphs over a non-abelian simple group is currently a hot topic in algebraic graph theory. One of the most remarkable achievements is the complete classification of connected trivalent symmetric non-normal Cayley graphs over non-abelian simple groups. This work was began in 1996 by Li [12], and he proved that a connected trivalent symmetric Cayley graph Γ over a non-abelian simple group T is either normal or $T = A_5$, A_7 , PSL(2, 11), M_{11} , A_{11} , A_{15} , M_{23} , A_{23} or A_{47} . In 2005, Xu $et\ al\ [16]$ proved that either Γ is normal or $T = A_{47}$, and two years later, Xu $et\ al\ [17]$ further showed that if $T = A_{47}$ and Γ is not normal, then Γ must be 5-arc-transitive and up to isomorphism there are exactly two such graphs. Du $et\ al\ [2]$ showed that a connected pentavalent symmetric Cayley graph Γ over T is either normal, or $Aut(\Gamma)$ contains a non-abelian simple normal subgroup L such that $T \leq L$ and (T, L) is one of 13 possible pairs of non-abelian simple groups.

For T-symmetric graphs, Fang and Praeger [4, 5] classified such graphs when T is a Suzuki or Ree simple group acting transitively on the set of 2-arcs of the graphs. For a connected cubic T-symmetric graph Γ , it was proved by Li [12] that either Γ is T-normal or $(T, \operatorname{Aut}(\Gamma)) = (A_7, A_8)$, (A_7, S_8) , $(A_7, 2.A_8)$, (A_{15}, A_{16}) or $(\operatorname{GL}(4, 2), \operatorname{AGL}(4, 2))$. Fang et al [3] proved that none of the above five pairs can happen, that is, T is always normal in $\operatorname{Aut}(\Gamma)$. Du et al [2] showed that a connected pentavalent T-symmetric graph Γ is either T-normal or $\operatorname{Aut}(\Gamma)$ contains a non-abelian simple normal subgroup L such that $T \leq L$ and (T, L) is one of 17 possible pairs of non-abelian simple groups.

Let G be the characteristically simple group T^l with $l \geq 1$. In this paper, we extend the above results on connected pentavalent T-vertex graphs to G-vertex graphs.

Theorem 1.1 Let T be a non-abelian simple group and let $G = T^l$ with $l \ge 1$. Assume that every connected pentavalent symmetric T-vertex-transitive graph is T-normal. Then every connected pentavalent symmetric G-vertex-transitive graph is G-normal.

In 2011, Hua *et al* [10] proved that if every connected cubic symmetric T-vertex-transitive graph is T-normal, then every connected cubic symmetric G-vertex-transitive graph is G-normal. By Theorem 1.1 and [2, Theorem 1.1], we have the following corollaries.

Corollary 1.2 Let T be a non-abelian simple group and let $G = T^l$ with $l \ge 1$. Then every connected pentavalent symmetric G-vertex-transitive graph is G-normal except for $T = \mathrm{PSL}(2,8), \ \Omega_8^-(2)$ or A_{n-1} with $n \ge 6$ and $n \mid 2^9 \cdot 3^2 \cdot 5$.

Corollary 1.3 Let T be a non-abelian simple group and let $G = T^l$ with $l \ge 1$. Then every connected pentavalent G-symmetric graph is G-normal except for $T = A_{n-1}$ with $n = 2 \cdot 3, \ 2^2 \cdot 3, \ 2^4, \ 2^3 \cdot 3, \ 2^5, \ 2^2 \cdot 3^2, \ 2^4 \cdot 3, \ 2^3 \cdot 3^2, \ 2^5 \cdot 3, \ 2^4 \cdot 3^2, \ 2^6 \cdot 3, \ 2^5 \cdot 3^2, \ 2^7 \cdot 3, \ 2^6 \cdot 3^2, \ 2^7 \cdot 3^2, \ 2^8 \cdot 3^2 \text{ or } 2^9 \cdot 3^2.$

Corollary 1.4 Let T be a non-abelian simple group and let $G = T^l$ with $l \ge 1$. Then every connected pentavalent symmetric G-regular graph is G-normal except for T = PSL(2, 8), $\Omega_8^-(2)$ or A_{n-1} with $n = 2 \cdot 3, 2^3, 3^2, 2 \cdot 5, 2^2 \cdot 3, 2^2 \cdot 5, 2^3 \cdot 3, 2^3 \cdot 5, 2 \cdot 3 \cdot 5, 2^4 \cdot 5, 2^3 \cdot 3 \cdot 5, 2^4 \cdot 3^2 \cdot 5, 2^6 \cdot 3 \cdot 5, 2^5 \cdot 3^2 \cdot 5, 2^7 \cdot 3 \cdot 5, 2^6 \cdot 3^2 \cdot 5, 2^7 \cdot 3^2 \cdot 5$ or $2^9 \cdot 3^2 \cdot 5$.

2 Preliminaries

In this section, we describe some preliminary results which will be used later. The first one is the vertex stabilizers of connected pentavalent symmetric graphs. By [7, Theorem 1.1], we have the following proposition.

Proposition 2.1 Let Γ be a connected pentavalent G-symmetric graph with $v \in V(\Gamma)$. Then $G_v \cong \mathbb{Z}_5$, D_5 , D_{10} , $F_{20} \times \mathbb{Z}_2$, $F_{20} \times \mathbb{Z}_4$, A_5 , S_5 , $A_4 \times A_5$, $S_4 \times S_5$, $(A_4 \times A_5) \rtimes \mathbb{Z}_2$, ASL(2,4), AGL(2,4), AΓL(2,4) or $\mathbb{Z}_2^6 \rtimes \Gamma L(2,4)$, where F_{20} is the Frobenius group of order 20, $A_4 \rtimes \mathbb{Z}_2 = S_4$ and $A_5 \rtimes \mathbb{Z}_2 = S_5$. In particular, $|G_v| = 5$, $2 \cdot 5$, $2^2 \cdot 5$, $2^3 \cdot 5$, $2^4 \cdot 5$, $2^2 \cdot 3 \cdot 5$, $2^3 \cdot 3 \cdot 5$, $2^4 \cdot 3^2 \cdot 5$, $2^6 \cdot 3^2 \cdot 5$, $2^5 \cdot 3^2 \cdot 5$, $2^6 \cdot 3 \cdot 5$, $2^6 \cdot 3^2 \cdot 5$, $2^7 \cdot 3 \cdot 5$, $2^7 \cdot 3^2 \cdot 5$ or $2^9 \cdot 3^2 \cdot 5 \cdot 5$, respectively.

Connected pentavalent symmetric graphs admitting vertex-transitive non-abelian simple groups were classified in [2].

Proposition 2.2 [2, Theorem 1.1] Let T be a non-abelian simple group and Γ a connected pentavalent symmetric T-vertex-transitive graph. Then either $T \subseteq \operatorname{Aut}(\Gamma)$, or $T = \Omega_8^-(2)$, $\operatorname{PSL}(2,8)$ or A_{n-1} with $n \ge 6$ and $n \mid 2^9 \cdot 3^2 \cdot 5$.

The following is straightforward (also see the short proof of [2, Lemma 3.2]).

Proposition 2.3 Let Γ be a connected pentavalent symmetric G-vertex-transitive graph with $v \in V(\Gamma)$ and let $A = \operatorname{Aut}(\Gamma)$. If $H \leq A$ and $GH \leq A$, then $|H|/|H \cap G| = |(GH)_v|/|G_v| \mid 2^9 \cdot 3^2 \cdot 5$, and if Γ is further G-symmetric then $|H|/|H \cap G| \mid 2^9 \cdot 3^2$.

The following proposition follows the classification of three-factor simple groups.

Proposition 2.4 [11, Theorem I] Let G be a non-abelian simple $\{2,3,5\}$ -group. Then $G = A_5$, A_6 or PSU(4,2).

By Guralnick [8, Theorem 1], we have the following proposition.

Proposition 2.5 Let G be a non-abelian simple group with a subgroup H such that $|G:H| = p^a$ with p a prime and $a \ge 1$. Then

- (1) $G = A_n \text{ and } H = A_{n-1} \text{ with } n = p^a;$
- (2) G = PSL(2, 11) and $H = A_5$ with |G: H| = 11;

- (3) $G = M_{23}$ and $H = M_{22}$ with |G: H| = 23, or $G = M_{11}$ and $H = M_{10}$ with |G: H| = 11;
- (4) $G = PSU(4, 2) \cong PSp(4, 3)$ and H is the parabolic subgroup of index 27;
- (5) G = PSL(n,q) and H is the stabilizer of a line or hyperplane with $|G:H| = (q^n 1)/(q 1) = p^a$.

By [13, Theorem 1] and Proposition 2.5, we have the following proposition.

Proposition 2.6 Let G be a non-abelian simple group and H a maximal subgroup of G such that $|G:H|=2^a\cdot 3^b\geq 6$ with $0\leq a\leq 9$ and $0\leq b\leq 2$. Then G, H and |G:H| are listed in Table 1.

G	Н	G:H	G	H	G:H
M_{11}	PSL(2,11)	$2^2 \cdot 3$	M_{12}	M_{11}	$2^2 \cdot 3$
M_{24}	M_{23}	$2^3 \cdot 3$	PSU(3,3)	PSL(2,7)	$2^2 \cdot 3^2$
A_9	S_7	$2^2 \cdot 3^2$	PSU(4,2)	S_6	$2^2 \cdot 3^2$
PSp(6,2)	S_8	$2^2 \cdot 3^2$	M_{12}	PSL(2,11)	$2^4 \cdot 3^2$
PSL(2,8)	D_7	$2^2 \cdot 3^2$	PSL(3,3)	$\mathbb{Z}_{13} \rtimes \mathbb{Z}_3$	$2^4 \cdot 3^2$
PSL(2,9)	A_5	$2 \cdot 3$	PSL(2, p)	$\mathbb{Z}_p \rtimes \mathbb{Z}_{\frac{p-1}{2}}$	$p+1=2^a\cdot 3^b$
PSL(2,8)	$\mathbb{Z}_2^3 \rtimes \mathbb{Z}_7$	3^{2}	A_n	A_{n-1}	$n = 2^a \cdot 3^b$

Table 1: Non-abelian simple group pairs of index $2^a \cdot 3^b$

Let G be a group. The *inner automorphism group* Inn(G) of G is the group of automorphisms of G induced by conjugate action of elements in G, which is a normal subgroup in the automorphism group Aut(G) of G. The quotient group Aut(G)/Inn(G) is called the *outer automorphism group* of G. By the classification of finite simple groups, we have the following proposition, which is the famous Schreier conjecture.

Proposition 2.7 [6, Theorem 1.64] Every finite simple group has a solvable outer automorphism group.

Baddeley and Praeger [1] considered almost simple groups containing a direct product of at least two isomorphic non-abelian simple groups.

Proposition 2.8 [1, Theorem 1.4] Let H be an almost simple group, that is, $S \leq H \leq \operatorname{Aut}(S)$ for a non-abelian simple group S, and suppose that H = AB, where A is a proper subgroup of H not containing S, and $B \cong T^r$ for a non-abelian simple group T and integer $k \geq 2$. Then $S = A_n$ and $A \cap S = A_{n-1}$, where $n = |H : A| = |S : A \cap S| \geq 10$.

Let Γ be a graph and $N \leq \operatorname{Aut}(\Gamma)$. The quotient graph Γ_N of Γ relative to N is defined as the graph with vertices the orbits of N on $V(\Gamma)$ and with two orbits adjacent if there is an edge in Γ between these two orbits.

Proposition 2.9 [14, Theorem 9] Let Γ be a connected G-symmetric graph of prime valency, and let $N \subseteq G$ have at least three orbits on $V(\Gamma)$. Then N is the kernel of G on $V(\Gamma_N)$, and semiregular on $V(\Gamma)$. Furthermore, Γ_N is G/N-symmetric with $G/N \le \operatorname{Aut}(\Gamma_N)$.

3 Proof of Theorem 1.1

Let T be a non-abelian simple group and let $G = T^l$ with $l \ge 1$. Let Γ be a connected pentavalent symmetric G-vertex-transitive graph with $v \in V(\Gamma)$ and let $A = \operatorname{Aut}(\Gamma)$. We make the following assumption throughout this section.

Assumption: Every connected pentavalent symmetric T-vertex-transitive graph is T-normal.

Since the complete graph K_6 of order 6 has automorphism group S_6 and is A_5 -symmetric, we have $T \neq A_5$ by Assumption. Since G is vertex-transitive and has no subgroup of index 2, Γ is not bipartite.

To prove Theorem 1.1, we apply induction on l. It suffices to show that G contains a minimal normal subgroup of A, and this is done in Lemmas 3.1 and 3.2 when rad(A) = 1, where rad(A) is the largest solvable normal subgroup of A. For $rad(A) \neq 1$, we need the fact $rad(A)G = rad(A) \times G$, which is proved in Lemmas 3.3 and 3.4.

Lemma 3.1 Let Γ be X-symmetric with $G \leq X$, and let X have a minimal normal subgroup that is a direct product of T. Then G contains a minimal normal subgroup of X.

Proof: By Assumption, if l=1 then $G \subseteq A$ and the lemma is true. Assume $l \ge 2$.

Let N be a minimal normal subgroup of X such that $N = T^m$ for a positive integer m. Since $N \cap G \subseteq G$, we have $N \cap G = T^n$ with $n \le m$ and $n \le l$. Set D = NG. By Proposition 2.3, $|N|/|N \cap G| = |T|^{m-n} = |D|/|G| = |D_v|/|G_v| \mid 2^9 \cdot 3^2 \cdot 5$. Since T is non-abelian simple, we have either m - n = 1 or m = n.

Suppose m-n=1. Then $|T| \mid 2^9 \cdot 3^2 \cdot 5$, and by Proposition 2.4, $T=A_6$ as $T \neq A_5$. Thus, $|G| = |A_6|^l$, $|D| = |A_6|^{l+1}$ and $|D_v|/|G_v| = |A_6|$, implying $5 \mid |D_v|$ and $5 \nmid |G_v|$. It follows that Γ is D-symmetric, but not G-symmetric.

Let $\bar{D} = D/G_D$, $\bar{G} = G/G_D$ and $\bar{N} = NG_D/G_D$, where G_D is the largest normal subgroup of D contained in G. Then $\bar{D} = \bar{G}\bar{N}$. Since Γ is D-symmetric, D_v is primitive on the set of 5 neighbours of v in Γ , and since $G_D \subseteq D$, we have either $(G_D)_v = 1$ or $5 \mid |(G_D)_v|$. Thus, $(G_D)_v = 1$ because Γ is not G-symmetric. If $G = G_D$, then $G_v = 1$ and $|D_v| = |T| = 2^3 \cdot 3^2 \cdot 5$, contrary to Proposition 2.1. Thus, $G/G_D = T^{l'}$ with $l' \ge 1$.

If G_D is transitive on $V(\Gamma)$, then $|G_v| = |G_v|/|(G_D)_v| = |G|/|G_D| = |T|^{l'}$. Since $T = A_6$, we have $5 \mid |G_v|$, a contradiction. If G_D has two orbits on $V(\Gamma)$, then Γ is bipartite, which is impossible. Thus, G_D has at least three orbits on $V(\Gamma)$. By Proposition 2.9, Γ_{G_D} is a connected pentavalent G/G_D -vertex-transitive and D/G_D -symmetric graph. If l' = 1, by Proposition 2.2, $G/G_D \leq D/G_D$, that is, $G \leq D$, which is also impossible as otherwise $G_v = 1$ and $|D_v| = |T| = 2^3 \cdot 3^2 \cdot 5$. Thus, $\bar{G} = G/G_D = T^{l'}$ with $l' \geq 2$ and $|\bar{D}| = |T|^{l'+1}$ as $|\bar{D}:\bar{G}| = |D:G| = |T|$.

Let \bar{M} be a maximal subgroup of \bar{D} containing \bar{G} . Then $\bar{G} \leq \bar{M}$ and $|T|^{l'} \leq |\bar{M}| < |T|^{l'+1}$. Consider the right multiplication of \bar{D} on $[\bar{D}:\bar{M}]$, the set of right cosets of \bar{M} in \bar{D} . Then $\bar{D}/\bar{M}_{\bar{D}}$ is a primitive permutation group on $[\bar{D}:\bar{M}]$ and $\bar{D}/\bar{M}_{\bar{D}} \leq S_{|T|}$, where $\bar{M}_{\bar{D}}$ is the largest normal subgroup of \bar{D} contained in \bar{M} . Since $|\bar{D}:\bar{M}| \mid |T| = |A_6|$, the primitive group $\bar{D}/\bar{M}_{\bar{D}}$ has degree dividing 360.

Let \bar{L} be a minimal normal subgroup of \bar{D} . Then $\bar{L} \cap \bar{N} = \bar{L}$ or 1. For the former, $\bar{L} \leq \bar{N}$, and for the latter, $\bar{L} = \bar{L}/\bar{L} \cap \bar{N} \cong \bar{N}\bar{L}/\bar{N} \leq \bar{D}/\bar{N} \cong \bar{G}/\bar{G} \cap \bar{N}$. In both cases, \bar{L} is a direct product of T, and hence $\operatorname{soc}(\bar{D}) = T^k$ for a positive integer k, where $\operatorname{soc}(\bar{D})$ is the product of all minimal normal subgroups of \bar{D} , that is, the socle of \bar{D} .

Assume $\bar{M}_{\bar{D}} \neq 1$. Then \bar{D} has a minimal normal subgroup contained in $\bar{M}_{\bar{D}}$, say \bar{K} . Then $\bar{K} \unlhd \operatorname{soc}(\bar{D}) = T^k$. If $\bar{K} \nleq \bar{G}$, then $|T|^{l'+1} = |\bar{D}| > |\bar{M}| \geq |\bar{G}\bar{K}| = |\bar{G}|(|\bar{K}|/|\bar{K} \cap \bar{G}|) \geq |\bar{G}||T| = |T|^{l'+1}$, a contradiction. Thus, $\bar{K} \leq \bar{G}$, and we may assume $\bar{K} = K/G_D$, where $G_D \leq K \leq G$. Since $\bar{K} \unlhd \bar{D}$, we have $K \unlhd D$, and hence $K \leq G_D$. It follows that $K = G_D$ and $\bar{K} = 1$, a contradiction.

Thus, $\bar{M}_{\bar{D}} = 1$ and so \bar{D} is a primitive group on $[\bar{D}:\bar{M}]$ of degree dividing |T| = 360. Since $\mathrm{soc}(\bar{D}) = T^k = A_6^k$, we have $k \leq 2$ by [15, Section 7], and the primitivity implies that $|\bar{D}| \leq |\mathrm{Aut}(\mathrm{soc}(\bar{D}))| \leq 32|T|^2$, which is impossible because $|\bar{D}| = |T|^{l'+1} \geq |T|^3$.

It follows that m-n=0 and hence $N \leq G$, as required.

Remark: It is easy to check that Lemma 3.1 is also true if Assumption is replaced by the conditions that $l \ge 2$ and $T \ne A_5$.

Lemma 3.2 Let $G \leq X$ such that rad(X) = 1 and Γ is X-symmetric. Then X has a minimal normal subgroup that is a direct product of T.

Proof: Suppose to the contrary that every minimal normal subgroup of X is not a direct product of T. Then $G = T^l \not \subseteq X$, and by Assumption, $l \ge 2$.

Let L be the socle of X, the product of all minimal normal subgroups of X. Since $\mathrm{rad}(X)=1$, we have $L=S_1\times\cdots\times S_t$ with t a positive integer, and $S_i\ncong T$ is a non-abelian simple group for each $1\le i\le t$. Furthermore, $L\cap G=T^r$ with $0\le r\le l$ as $L\cap G\le G$. By Proposition 2.3, $|L|/|L\cap G|=|(GL)_v|/|G_v|$ $|2^9\cdot 3^2\cdot 5$.

For convenience, write $L \cap G = T^r = T_1 \times \cdots \times T_r$. Let P_i be the projection from $L \cap G$ to S_i for a given $1 \leq i \leq t$, that is, $P_i(x) = x_i$ for any $x = x_1 \cdots x_t \in L \cap G$ with $x_i \in S_i$ $(1 \leq i \leq t)$. Then P_i is a homomorphism from $L \cap G$ to S_i and hence $(L \cap G)/K_i \cong I_i$, where K_i is the kernel of P_i and $I_i \leq S_i$ is the image of $L \cap G$ under P_i . Since $K_i \subseteq L \cap G$, we have $(L \cap G)/K_i \cong T^{r_i} = I_i$. Clearly, $K_1 \leq S_2 \times \cdots \times S_t$ and $K_1 \cap \cdots \cap K_t = 1$. It follows $T^r = L \cap G = (L \cap G)/(K_1 \cap \cdots \cap K_t) \lesssim (L \cap G)/(K_1 \times \cdots \times (L \cap G)/K_t \cong T^{r_1} \times \cdots \times T^{r_t} = I_1 \times \cdots \times I_t$, and hence $(|S_1:I_1| \cdots |S_t:I_t|) \mid |L:(L \cap G)| \mid 2^9 \cdot 3^2 \cdot 5$.

Assume $t \geq 5$. Then at least four $|S_i: I_i|$ are divisors of $2^9 \cdot 3^2$, say $|S_i: I_i| = 2^{a_i} \cdot 3^{b_i}$ with $2 \leq i \leq 5$. Since $T \neq A_5$, Proposition 2.6 implies $2^{a_i} \cdot 3^{b_i} \geq 2^3$ and $|S_2: I_2| \cdots |S_t: I_t| \geq 2^{12}$. If $5 \nmid |S_1: I_1|$, then $|S_1: I_1| \geq 2^3$ and $|S_1: I_1| \cdots |S_t: I_t| \geq 2^{15}$. Since $(|S_1: I_1| \cdots |S_t: I_t|) \mid 2^9 \cdot 3^2 \cdot 5$, we have $2^{15} \leq 2^9 \cdot 3^2 \cdot 5$, a contradiction. Thus, $5 \mid |S_1: I_1|$. If $|S_1: I_1| \neq 5$ then $|S_1: I_1| \geq 2 \cdot 5$ and hence $2^{13} \cdot 5 \leq 2^9 \cdot 3^2 \cdot 5$, a contradiction. It follows $|S_1: I_1| = 5$, which is also impossible by Proposition 2.5. This yields $t \leq 4$.

Let $C = C_X(L)$ be the centralizer of L in X. Then $C \cap L = 1$ and hence C = 1 because L contains every minimal normal subgroup of X. Thus, $X = X/C \leq \operatorname{Aut}(L)$ and $G/G \cap L \cong GL/L \leq X/L \leq \operatorname{Out}(L)$. Since $t \leq 4$, Proposition 2.7 implies that $\operatorname{Out}(L)$ is solvable, and hence $G/G \cap L = 1$ and $G \leq L$. Since $G \nleq X$, we have G < L, that is, G is a proper subgroup of L. It follows that $L_v \neq 1$ and since $L \subseteq X$, we have $5 \mid |L_v|$ and so L is symmetric.

If t=1, the Frattini argument implies that $L=GL_v$, and by Proposition 2.8, $L_v=A_n$ with $n\geq 9$, which is impossible. Thus, $2\leq t\leq 4$. Since $(|S_1:I_1|\cdots|S_t:I_t|)\mid 2^9\cdot 3^2\cdot 5$, there is at least one $|S_i:I_i|$ that is a divisor of $2^9\cdot 3^2$, say $|S_1:I_1|\mid 2^9\cdot 3^2$. Since $I_1=T^{r_1}$, Proposition 2.6 implies $I_1=T$, and since $I_1\cong G/K_1$, we have $K_1=T^{l-1}$. Set $\bar{S}_1=\bar{S}_2\times\cdots\times S_t$. Then $L=S_1\times\bar{S}_1$ and $K_1=G\cap\bar{S}_1$ as $K_1\leq\bar{S}_1$ and $G=T^l\neq K_1$.

If \bar{S}_1 is transitive on $V(\Gamma)$, then $|L_v|/|(\bar{S}_1)_v| = |L|/|\bar{S}_1| = |S_1| | 2^9 \cdot 3^2 \cdot 5$ and so $S_1 = A_5$ or A_6 , forcing $I_1 = T = A_5$, a contradiction. If \bar{S}_1 has two orbits, then Γ is bipartite, which is also impossible. Thus, \bar{S}_1 has at least three orbits on $V(\Gamma)$ and Proposition 2.9 implies that $\Gamma_{\bar{S}_1}$ is a connected pentavalent $G\bar{S}_1/\bar{S}_1$ -vertex-transitive and L/\bar{S}_1 -symmetric graph. Since $G\bar{S}_1/\bar{S}_1 \cong G/G \cap \bar{S}_1 = T$, by Assumption, $T \cong G\bar{S}_1/\bar{S}_1 \trianglelefteq L/\bar{S}_1 \cong S_1$, which is impossible because S_1 is a non-abelian simple group. This completes the proof. \square

Remark: Let

$$\begin{array}{lll} \Delta = & \{ \mathrm{PSL}(2,8), \ \Omega_8^-(2), \ A_{n-1} \mid n \geq 6, \ n \mid 2^9 \cdot 3^2 \cdot 5 \} \\ \Delta_1 = & \{ \mathrm{PSL}(2,8), \ \Omega_8^-(2), \ A_{n-1} \mid n = 2 \cdot 3, 2^3, 3^2, 2^2 \cdot 3, 2 \cdot 5, 2^2 \cdot 5, 2^3 \cdot 3, \\ & 2^3 \cdot 5, 2 \cdot 3 \cdot 5, 2^5 \cdot 3^2 \cdot 5, 2^7 \cdot 3 \cdot 5, 2^6 \cdot 3^2 \cdot 5, 2^7 \cdot 3^2 \cdot 5, 2^9 \cdot 3^2 \cdot 5 \}. \end{array}$$

Then Lemma 3.2 is true if Assumption is replaced by the conditions that $l \geq 2$ and $T = A_{n-1} \in \Delta - \Delta_1$. To prove it, we only need to change the last paragraph in the proof of Lemma 3.2 as following.

Since $|S_1:I_1| | 2^9 \cdot 3^2$, Proposition 2.6 implies that $I_1 = T$, and since $T \in \Delta - \Delta_1$, we have $(S_1, I_1) = (A_n, A_{n-1})$ with $n = 2^i, 2^j \cdot 3$ or $2^k \cdot 3^2$, where $4 \le i, j \le 9$ and $1 \le k \le 9$. Recall that $(|S_1:I_1| \cdots |S_t:I_t|) | 2^9 \cdot 3^2 \cdot 5$ and $2 \le t \le 4$. Then for each $2 \le i \le t$, we have $|S_i:I_i| | 2^5 \cdot 3^2 \cdot 5$ or $2^8 \cdot 5$ and hence S_i is a primitive permutation group of degree dividing 1440 or 1280. By [15, Section 7], $(S_i:I_i) = (A_n, A_{n-1})$, which implies that t = 2 and $(S_2, S_1, T) = (A_n, A_n, A_{n-1})$ with $n = 2^4$ or $2^4 \cdot 3$. Thus, $G = T^2 < L = S_1 \times S_2$, $G \cap S_2 = T$ (note that $\overline{S_1} = S_2$), $|L_v|/|G_v| = |L|/|G| = n^2$ and $2^8 \mid |L_v|$. By Proposition 2.1, $|L_v| = 2^9 \cdot 3^2 \cdot 5$ and so $|G_v| = 2 \cdot 3^2 \cdot 5$ or $2 \cdot 5$. The former is impossible by Proposition 2.1. For the latter, $|(GS_2)_v|/|G_v| = |GS_2|/|G| = |S_2|/|S_2 \cap G| = |S_2|/|T| = 2^4 \cdot 3$ and $|(GS_2)_v| = 2^5 \cdot 3 \cdot 5$, which is also impossible by Proposition 2.1.

Lemma 3.3 Assume $5 \mid |\operatorname{rad}(A)|$. Then $\operatorname{rad}(A)G = \operatorname{rad}(A) \times G$.

Proof: Since $\operatorname{rad}(A)$ is solvable, $\operatorname{rad}(A) \cap G = 1$. If l = 1 then by Assumption, $G \subseteq A$, and hence $\operatorname{rad}(A)G = \operatorname{rad}(A) \times G$. Thus, we may assume $l \geq 2$.

Set $B = \operatorname{rad}(A)G$. Then $|B| = |\operatorname{rad}(A)||G|$, and by Proposition 2.3, $|\operatorname{rad}(A)| = |B|/|G| = |B_v|/|G_v| \mid 2^9 \cdot 3^2 \cdot 5$. Since $5 \mid |\operatorname{rad}(A)|$, we have $5 \mid |B_v|$ and $5 \nmid |G_v|$, that is, Γ is B-symmetric, but not G-symmetric. In particular, G_v is a $\{2,3\}$ -group and $\{2,3\}$ -group and $\{3,4\}$ -group and $\{4,4\}$ -g

Since rad(A) is a solvable $\{2,3,5\}$ -group, rad(A) has a Hall $\{2,3\}$ -subgroup, say H. Set $\Omega = \{H^r \mid r \in \text{rad}(A)\}$. By [9], all Hall $\{2,3\}$ -subgroups of rad(A) are conjugate and so the conjugate action of B on Ω is transitive. Let K be the kernel of the action of G on Ω . Since $5^2 \nmid \text{rad}(A)$, we have $|\Omega| = 1$ or 5, and hence $G/K = T^r \leq S_5$. Since $T \neq A_5$, we have G = K and so G fixes H. It follows $H \subseteq GH \subseteq B$ and $G \cap H = 1$.

Set Y = GH and $\Delta = \{Yb \mid b \in B\}$. Then $|\Delta| = |B:Y| = 5$. Let Y_B be the kernel of the right multiplication action of B on Δ . Then Y_B is the largest normal subgroup of B

contained in Y. It follows $B/Y_B \leq S_5$. Suppose $G \nleq Y_B$. Then $G/G \cap Y_B \cong GY_B/Y_B \leq B/Y_B \leq S_5$, and so $G/G \cap Y_B = T = A_5$, a contradiction. Thus, $G \leq Y_B$.

Since $|Y_v|/|G_v| = |Y|/|G| = |H|$ and G_v is a $\{2,3\}$ -group, Y_v is a $\{2,3\}$ -group. Since Γ is B-symmetric, B_v is primitive on the set of the 5 neighbors of v in Γ , and since $Y_B \leq B$, we have either $(Y_B)_v = 1$ or $5 \mid |(Y_B)_v|$. The latter cannot happen as Y_v is a $\{2,3\}$ -group. Thus, $(Y_B)_v = 1$, and the Frattini argument implies $Y_B = G(Y_B)_v = G$. Thus, $G \leq B$ and $B = \operatorname{rad}(A) \times G$.

Lemma 3.4 Let $G \leq X \leq A$ and let Γ be G-symmetric. Then $\operatorname{rad}(X)G = \operatorname{rad}(X) \times G$.

Proof: The lemma is true for $|\operatorname{rad}(X)| = 1$. In what follows we assume that $|\operatorname{rad}(X)| \neq 1$. Recall that $G = T^l$ with $l \geq 1$. Since Γ is G-symmetric, $5 \mid |G_v|$ and hence $5 \mid |T|$. Set $B = \operatorname{rad}(X)G$. Then $G \cap \operatorname{rad}(X) = 1$ as $\operatorname{rad}(X)$ is solvable, and so $|B| = |\operatorname{rad}(X)||G|$. By Proposition 2.3, $|\operatorname{rad}(X)| = |B_v|/|G_v| \mid 2^9 \cdot 3^2$.

Let N be a minimal normal subgroup of X contained in rad(X). Then $N \cong \mathbb{Z}_2^s$ or $N = \mathbb{Z}_3^t$ for some $1 \leq s \leq 9$ or $1 \leq t \leq 2$, and hence $\operatorname{Aut}(N) \leq \operatorname{GL}(s,2)$ or $\operatorname{GL}(t,3)$.

First we claim $D := GN = G \times N$. Consider the conjugate action of G on N and let K be the kernel of G in this action. Then $K = T^r \subseteq G$ for some $r \subseteq I$, and $G/K \subseteq \operatorname{Aut}(N)$. It is easy to see that $D = G \times N$ if and only if G = K.

Suppose $G \neq K$. Then r < l and $G/K = T^{l-r}$ is insolvable. In particular, $\operatorname{Aut}(N)$ is insolvable. Recall that $\operatorname{Aut}(N) \leq \operatorname{GL}(s,2)$ or $\operatorname{GL}(t,3)$. It follows that $N \cong \mathbb{Z}_2^s$ with $3 \leq s \leq 9$ as both $\operatorname{GL}(2,2)$ and $\operatorname{GL}(2,3)$ are solvable.

Note that $G \cap N = 1$. By Proposition 2.3, $|N| = |D|/|G| = |D_v|/|G_v|$, and so $|D_v|/|G_v|$ is a 2-power. If $G_v \cong \mathbb{Z}_5$ then Proposition 2.1 implies that $D_v \cong D_5$, D_{10} , F_{20} , F_{20} , \mathbb{Z}_2 or $F_{20} \times \mathbb{Z}_4$. It follows that $|N| \mid 2^5$, and this is always true by checking all other possible cases for G_v in Proposition 2.1. This means that $N \cong \mathbb{Z}_2^s$ with $3 \leq s \leq 5$ and hence $G/K \leq \operatorname{Aut}(N) \leq \operatorname{PSL}(5,2)$. Since $5^2 \nmid |\operatorname{PSL}(5,2)|$, we have l-r=1 and G/K=T.

If K has at least three orbits, Proposition 2.9 implies that Γ_K is a connected pentavalent G/K-symmetric graph, and by Assumption, $G/K \subseteq D/K$. It follows that $G \subseteq D$ and hence G = K, a contradiction. Thus, K has one or two orbits. If K has two orbits, then Γ is bipartite, a contradiction. This yields that K is transitive. Then $|G_v|/|K_v| = |G|/|K| = |T|$, and since $K \subseteq G$ and Γ is G-symmetric, we have either $K_v = 1$ or $5 \mid |K_v|$. If $5 \mid |K_v|$, then $5 \nmid |T|$ because $|G_v|/|K_v| = |T|$, a contradiction. It follows $K_v = 1$. Let L = KN. Then $L \subseteq D$ and so $L_v = 1$ or $5 \mid |L_v|$. On the other hand, $|L_v| = |L_v|/|K_v| = |L|/|K| = |N| = 2^s$ ($3 \le s \le 5$), a contradiction. Therefore, $D = G \times N$, as claimed.

Now we finish the proof by induction on $|\operatorname{rad}(X)|$. Since $5 \nmid |N|$, we have $N_v = 1$. Assume that N has one or two orbits on $V(\Gamma)$. Then $5 \nmid |V(\Gamma)|$, and so $5^2 \nmid |G|$, which implies that G is a simple group. By Assumption, $G \subseteq X$ and hence $\operatorname{rad}(X)G = G \times \operatorname{rad}(X)$. Assume that N has at least three orbits. By Proposition 2.9, Γ_N is a connected pentavalent GN/N-symmetric graph. Note that $GN/N \cong T^l$ and $GN/N \leq X/N$. Since $\operatorname{rad}(X/N) = \operatorname{rad}(X)/N$, we have $|\operatorname{rad}(X/N)| < |\operatorname{rad}(X)|$ and the inductive hypothesis implies that $\operatorname{rad}(X)G/N = \operatorname{rad}(X/N) \cdot GN/N = \operatorname{rad}(X)/N \times GN/N$. Thus, $GN \subseteq \operatorname{rad}(X)G$. Since $GN = G \times N$, G is characteristic in GN and hence G is normal in $\operatorname{rad}(X)G$. It follows $\operatorname{rad}(X)G = \operatorname{rad}(X) \times G$.

Now, we are ready to prove Theorem 1.1.

The proof of Theorem 1.1: Recall that $G = T^l$ and Γ is a connected pentavalent symmetric G-vertex-transitive graph with $A = \operatorname{Aut}(\Gamma)$. We apply induction on l. If l = 1, Theorem 1.1 is true by Assumption. Assume $l \geq 2$. Let R be the radical of A, and set B = RG. Then $G \cap R = 1$ and $|R| = |B|/|G| = |B_v|/|G_v|$.

If R is transitive on $V(\Gamma)$, Proposition 2.3 implies $|G| = |GR|/|R| = |(GR)_v|/|R_v| \mid 2^9 \cdot 3^2 \cdot 5$, which is impossible because $l \geq 2$. Furthermore, R cannot have two orbits as Γ is not bipartite. Thus, R has at least three orbits. By Proposition 2.9, Γ_R is a connected pentavalent $B/R \cong G = T^l$ -vertex-transitive and A/R-symmetric graph. Since R is the largest solvable normal subgroup of A, we have $\operatorname{rad}(A/R) = 1$. By Lemmas 3.2 and 3.1, A/R has a minimal normal subgroup $M/R = T^r$ contained in B/R with $1 \leq r \leq l$. It follows that $R \leq M \leq B$ and $M \leq A$. In particular, $R \neq M$.

Assume $B = R \times G$. Then $M = M \cap RG = R(M \cap G) = R \times (M \cap G)$ and $M \cap G$ is characteristic in M. It follows $M \cap G \subseteq A$ and $|M \cap G| = |T|^r$. If $M \cap G$ is transitive, then $|G_v|/|(M \cap G)_v| = |G|/|M \cap G| = |T|^{l-r} \mid 2^9 \cdot 3^2 \cdot 5$. It follows l-r=0 or l-r=1. The former implies $G = M \cap G \subseteq A$ and we are done. For the latter, $T = A_6$ as $T \ne A_5$ and hence $5 \mid |G_v|$ and $5 \nmid |(M \cap G)_v|$, that is, Γ is G-symmetric, but not $(M \cap G)$ -symmetric. Since $M \cap G \subseteq G$, we have $(M \cap G)_v = 1$ and $|G_v| = |T| = 2^3 \cdot 3^2 \cdot 5$, which is impossible by Proposition 2.1. If $M \cap G$ has two orbits on $V(\Gamma)$, then Γ is bipartite, which is also impossible. Thus, $M \cap G$ has at least three orbits on $V(\Gamma)$ and Proposition 2.9 implies that $\Gamma_{M \cap G}$ is a connected pentavalent $G/(M \cap G)$ -vertex-transitive and $A/(M \cap G)$ -symmetric graph. By inductive hypothesis, $G/(M \cap G) \subseteq A/(M \cap G)$ and so $G \subseteq A$.

By the above paragraph, to finish the proof we only need to show $B = R \times G$, and to do this, we now claim $B \subseteq A$. If M is transitive, then $|B_v|/|M_v| = |B|/|M| = |B/R|/|M/R| = |T|^{l-r} \mid 2^9 \cdot 3^2 \cdot 5$ and so l-r=0 or l-r=1. For the former, $B=M \subseteq A$, as claimed. For the latter, $T=A_6$ as $T \neq A_5$, and so $|B_v|/|M_v| = |A_6|$. It follows $M_v=1$ and $|B_v| = |T| = 2^3 \cdot 3^2 \cdot 5$, which is impossible by Proposition 2.1. If M has two orbits, then Γ is bipartite, which is also impossible. Thus, M has at least three orbits, and by Proposition 2.9, Γ_M is a connected pentavalent B/M-vertex-transitive and A/M-symmetric graph. Since $B/M \cong (B/R)/(M/R) = T^{l-r}$ with l-r < l, the inductive hypothesis implies that $B/M \subseteq A/M$ and so $B \subseteq A$, as claimed.

Since $G \leq B \leq A$ and A is symmetric, we have $B_v = 1$ or $5 \mid |B_v|$. If $B_v = 1$, the Frattini argument implies $B = GB_v = G$, and hence R = 1 and $B = R \times G$. If $5 \mid |B_v|$, then $5 \mid |R|$ or $5 \mid |G_v|$ as $|B_v| = |G_v||R|$. By Lemmas 3.3 and 3.4, $B = R \times G$.

The proof of Corollary 1.2: This follows from Theorem 1.1 and [2, Theorem 1.1]. \square

The proof of Corollary 1.3: It is easy to check that Lemmas 3.1-3.4 are true if Assumption is replaced by the following assumption:

Assumption 1: Every connected pentavalent T-symmetric graph is T-normal.

Then a similar proof to the proof of Theorem 1.1 implies that under Assumption 1, every connected pentavalent G-symmetric graph is G-normal, and by [2, Corollary 1.2], we have Corollary 1.3.

The proof of Corollary 1.4: By assumption of Corollary 1.4, Γ is a connected pentavalent symmetric G-regular graph with $G = T^l$, and hence it is G-vertex-transitive. Recall that

$$\Delta = \{ PSL(2,8), \ \Omega_8^-(2), \ A_{n-1} \mid n \ge 6, \ n \mid 2^9 \cdot 3^2 \cdot 5 \},
\Delta_1 = \{ PSL(2,8), \ \Omega_8^-(2), \ A_{n-1} \mid n = 2 \cdot 3, 2^3, 3^2, 2^2 \cdot 3, 2 \cdot 5, 2^2 \cdot 5, 2^3 \cdot 3, 2^3 \cdot 5, 2 \cdot 5, 2^5 \cdot 3^2 \cdot 5, 2^7 \cdot 3 \cdot 5, 2^6 \cdot 3^2 \cdot 5, 2^7 \cdot 3^2 \cdot 5, 2^9 \cdot 3^2 \cdot 5 \}.$$

By Corollary 1.2, Γ is G-normal except for $T \in \Delta$, and to prove Corollary 1.4, it suffices to show that Γ is G-normal for $T \in \Delta - \Delta_1$. In what follows we always assume $T \in \Delta - \Delta_1$.

Clearly, $T \neq A_5$. If l = 1, Corollary 1.4 is true by [2, Corollary 1.3]. Assume $l \geq 2$. Then Lemmas 3.1 and 3.2 are true by the Remarks of these two lemmas. Then a similar argument to the proof of Theorem 1.1 (the first three paragraphs) implies that Γ is G-normal if $RG = R \times G$, where R is the radical of $A = \operatorname{Aut}(\Gamma)$. Set B = RG. To finish the proof, we only need to show $B = R \times G$.

Since R is solvable, $G \cap R = 1$ and |B| = |G||R|, and by Proposition 2.3, $|R| = |R|/|R \cap G| \mid 2^9 \cdot 3^2 \cdot 5$. We may write $|R| = 2^m \cdot 3^h \cdot 5^k$, where $0 \le m \le 9$, $0 \le h \le 2$ and $0 \le k \le 1$. Since R is solvable, there exists a series of principle subgroups of B:

$$B > R = R_s > \cdots R_1 > R_0 = 1$$

such that $R_i \subseteq B$ and R_{i+1}/R_i is an elementary abelian r-group with $0 \le i \le s-1$, where r=2, 3 or 5. Clearly, G has a natural action on B_{i+1}/B_i by conjugation.

Suppose to the contrary that $B \neq R \times G$. Then there exists some $0 \leq j \leq s-1$ such that $GR_j = G \times R_j$, but $GR_{j+1} \neq G \times R_{j+1}$. If G acts trivially on R_{j+1}/R_j by conjugation, then $[GR_j/R_j, R_{j+1}/R_j] = 1$. Furthermore, since $GR_j/R_j \cong G = T^l$, we have $(GR_j/R_j) \cap (R_{j+1}/R_j) = 1$, and since $|GR_{j+1}/R_j| = |GR_{j+1}/R_{j+1}||R_{j+1}/R_j| = |G||R_{j+1}/R_j| = |GR_j/R_j||R_{j+1}/R_j|$, we have $GR_{j+1}/R_j = GR_j/R_j \times R_{j+1}/R_j$. In particular, $GR_j \leq GR_{j+1}$ and so $G \leq GR_{j+1}$ because $GR_j = G \times R_j$ implies that G is characteristic in GR_j . It follows that $GR_{j+1} = G \times R_{j+1}$, a contradiction. Thus, G acts non-trivially on R_{j+1}/R_j . Let K be the kernel of this action. Then $G/K = T^{l'}$ with $I' \geq 1$.

Since $|R| = 2^m \cdot 3^h \cdot 5^k$ with $0 \le m \le 9$, $0 \le h \le 2$ and $0 \le k \le 1$, R_{j+1}/R_j is an elementary abelian group of order r^ℓ , where $\ell \le m \le 9$ for r = 2, $\ell \le 2$ for r = 3 and $\ell \le 1$ for $\ell = 5$. Then $\ell = 6$ for ℓ

Acknowledgements: This work was supported by the National Natural Science Foundation of China (11571035) and by the 111 Project of China (B16002).

References

[1] R. W. Baddeley and C. E. Praeger, On primitive overgroups of quasiprimitive permutation groups, J. Alg. 263 (2003) 294-344.

- [2] J.-L. Du, Y.-Q. Feng, J.-X. Zhou, Pentavalent symmetric graphs admitting vertex-transitive non-abelian simple groups, Europ. J. Combin. 63 (2017) 132-145.
- [3] X.G. Fang, L.J. Jia, J. Wang, On the automorphism groups of symmetric graphs admitting an almost simple group, Europ. J. Combin. 29 (2008) 1467-1472.
- [4] X.G. Fang, C.E. Praeger, Finite two-arc transitive graphs admitting a Suzuki simple group, J. Algebraic Combin. 27 (1999) 3727-3754.
- [5] X.G. Fang and C.E. Praeger, Finite two-arc-transitive graphs admitting a Ree simple group, Comm. Algebra 27 (1999) 3755-3769.
- [6] D. Gorenstein, Finite simple groups (Plenum Press, New York, 1982).
- [7] S.-T. Guo, Y.-Q. Feng, A note on pentavalent s-transitive graphs, Discrete Math. 312 (2012) 2214-2216.
- [8] R.M. Guralnick, Subgroups of prime power index in a simple group, J Algebra. 81 (1983) 304-311.
- [9] P. Hall, A note on soluble groups, J. London Math. Soc. 3 (1928) 98-105.
- [10] X.-H. Hua, Y.-Q. Feng, Cubic graphs admitting transitive non-abelian characterically simple groups, Proceedings of the Edinburgh Mathematical Soc. 54 (2011) 113-123.
- [11] B. Huppert, W. Lempken, Simple groups of order divisible by at most four primes, Proc. of the F. Scorina Gemel State University 16 (2000) 64-75.
- [12] C.H. Li, Isomorphisms of finite Cayley graphs, Ph.D. Thesis, The University of Western Australia, 1996.
- [13] X.H. Li, M.Y. Xu, The primitive permutation groups of degree $2^a \cdot 3^b$, Arch Math, 86 (2006) 385-391.
- [14] P. Lorimer, Vertex-transitive graphs: symmetric graphs of prime valency, J. Graph Theory 8 (1984) 55-68.
- [15] C. M. Roney-Dougal, The primitive permutation groups of degree less than 2500, J. Alg. 292 (2005) 154-183.
- [16] S.J. Xu, X.G. Fang, J. Wang, M.Y. Xu, On cubic s-arc transitive Cayley graphs of finite simple groups, Europ. J. Combin. 26 (2005) 133-143.
- [17] S.J. Xu, X.G. Fang, J. Wang, M.Y. Xu, 5-arc transitive cubic Cayley graphs on finite simple groups, Europ. J. Combin. 28 (2007) 1023-1036.