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Abstract

We investigate preference profiles for a set V of voters, where each voter i has a preference
order ≻i on a finite set A of alternatives (that is, a linear order on A) such that for each two
alternatives a, b ∈ A, voter i prefers a to b if a ≻i b. Such a profile is narcissistic if each
alternative a is preferred the most by at least one voter. It is single-peaked if there is a linear
order ⊲sp on the alternatives such that each voter’s preferences on the alternatives along the
order ⊲sp are either strictly increasing, or strictly decreasing, or first strictly increasing and then
strictly decreasing. It is single-crossing if there is a linear order ⊲sc on the voters such that each
pair of alternatives divides the order ⊲sc into at most two suborders, where in each suborder, all
voters have the same linear order on this pair. We show that for n voters and n alternatives, the
number of single-peaked narcissistic profiles is

∏

n−1

i=2

(

n−1

i−1

)

while the number of single-crossing

narcissistic profiles is 2(
n−1

2 ).

Keywords: Narcissistic preferences, single-peaked preferences, single-crossing preferences,
semi-standard Young tableaux.

1 Introduction

We deal with permutations of an n-element set A := {1, 2, . . . , n} that satisfy some specific proper-
ties. These properties arise from social choice theory, where each permutation is interpreted as the
preference order of an individual on the set A. The elements of A are called alternatives. In the
following, we will first use terminology established in social choice, and then introduce notions that
are more commonly used in discrete mathematics.

Social choice theory, and voting theory in particular, deals with voters and their preferences on
a set of alternatives. There, each voter i from a voter set V has a preference order ≻i on the set A
(which is a linear order on A), such that for each two alternatives a, b ∈ A, voter i prefers a to b if
a ≻i b holds.
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When forming coalitions [14, 8], building teams [5, 11], or playing games, the individuals, who
we jointly denote as voters, may have preferences over who is better than another as a potential
coalition partner, a team member, or a player. In such situations, the voters and alternatives are
identical, that is, A = V. Deriving from a simple psychological model, it seems natural to assume
that each voter is narcissistic [5], meaning that she is her own ideal and, thus, most preferred
alternative, that is, for each voter i ∈ V and each alternative b ∈ V \ {i}, it holds that i ≻i b.

Another well-studied property of voters preference orders on the set A of alternatives, the single-
peaked property, is characterized by a linear order ⊲sp of the alternatives, where for each voter i, her
preferences along the order ⊲sp strictly increase until they reach the peak which is her most preferred
alternative, and then strictly decrease, that is, for each alternative b ∈ A, the set {b}∪{a ∈ A | a ≻i

b} forms an interval in ⊲sp. Black [6] introduced the concept of single-peakedness. He observed that
voters’ political interests over the parties are single-peaked, meaning that there is a left-to-right
political spectrum of the parties such that each voter has a political ideal on this spectrum and the
further away a party is from her ideal, the less she will like this party. Single-peaked preferences
are also studied in psychology under the name unimodal orders [13, 15].

A third property, the single-crossing property, requires that there is a linear order of the voters
such that the preference orders of the voters on each pair of alternatives along this order change
at most once, that is, there is a linear order ⊲sc of the voters where for each two distinct alterna-
tives a, b ∈ A and for each three distinct voters i, j, k ∈ V with i ⊲sc j ⊲sc k, if a ≻i b and a ≻k b,
then a ≻j b. Mirrlees [23] and Roberts [24] introduced this concept in the field of economics. They
observed that voters’ preferences on income taxation display a pattern that accords to their incomes,
and are thus single-crossing: When asked about the preferences over two tax rates x and y with
x > y, if a voter v (the “crossing” spot) with medium income already changes from preferring x

over y to preferring y over x, then all voters with higher income than v will also prefer y over x.
Single-crossingness goes back to the work of Karlin [21] and is closely related to the partial ordered
set on the set of all n-permutations, known as the weak Bruhat order. We refer to the papers
of Abello [1], Galambos and Reiner [20], Bredereck et al. [9] for more information. See Sections 2.2
to 2.4 for a formal definition of the three properties we just introduced.

Research on restricted domains such as single-peaked or single-crossing preferences has been
popular in political science, in psychology, in social choice, and quite recently in computational
social choice. We refer to the papers of Bredereck et al. [10], Elkind et al. [17] for ample references
to research on the two properties. Single-crossing preferences are not necessarily single-peaked,
but Saporiti and Tohmé [25] and Barberà and Moreno [4] observed that single-crossing narcissistic
preferences are single-peaked. However, not all single-peaked narcissistic preferences are single-
crossing. For a simple illustration, the preferences of the following four voters are narcissistic.

voter v1 : v1 ≻1 v2 ≻1 v3 ≻1 v4,
voter v2 : v2 ≻2 v3 ≻2 v4 ≻2 v1,
voter v3 : v3 ≻3 v2 ≻3 v4 ≻3 v1,
voter v4 : v4 ≻4 v3 ≻4 v2 ≻4 v1.

For instance, voter v1 is her most preferred alternative, and v2, v3, and v4 are voter v1’s second most
preferred, third most preferred, and least preferred alternative, respectively. These voter preferences
are single-crossing, and also single-peaked, with respect to the order v1 ⊲ v2 ⊲ v3 ⊲ v4. See Example 2
for more information.
However, if we just swap the positions of v4 and v1 in the preference order of voter v3 to obtain
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voter v3 : v3 ≻3 v2 ≻3 v1 ≻3 v4,

then the resulting voter preferences, together with voters v1, v2, and v4, are still single-peaked (with
respect to the order ⊲) and narcissistic, but not single-crossing anymore. See Example 2 for further
discussion.

In this work, we deal with preference profiles with n voters who each have a preference order on
all n voters. In general, there are n!n different preference profiles. But how likely is it that one of
these profiles will have some specific property? For instance, the number of narcissistic profiles is
(n− 1)!n. So, one out of nn profiles is narcissistic. Lackner and Lackner [22] studied the likelihood
of single-peaked preferences under some distribution assumption on the preference orders of the
voters. However, we are interested in narcissistic profiles that are also single-peaked, and that are
also single-crossing. More precisely, we investigate the numbers of narcissistic profiles that are also
single-peaked (SPN), and of narcissistic profiles that are also single-crossing (SCN), respectively.
While it is quite straightforward to derive the number of SPN profiles, this is not the case for
SCN profiles. Nonetheless, we are able to determine the number of SCN profiles with the help of
semi-standard Young tableaux (SSYT), by establishing a bijective relation between SSYTs and SCN
profiles.

Our results are that for n voters and n alternatives, the number of single-peaked narcissistic

profiles is
∏n−1

i=2

(

n−1
i−1

)

while the number of single-crossing narcissistic profiles is 2(
n−1

2 ).

2 Basic Definitions and Fundamentals

In this section, we introduce basic terms from social choice [2, Chapter 4], combinatorics of permu-
tations [7], and Young tableaux [26, 19, 27].

2.1 Voters, alternatives, and preference orders

Let V := {1, 2, . . . , n} be a set of voters. Since we are concerned with voters that have preferences
over themselves, V also plays the role of the set of alternatives. A preference order ≻ on V is a
strict linear order on V, that is, a binary relation on V which is total, antisymmetric, and transitive.
Sometimes, we use the letters a, b, c, . . . instead of the numbers 1, 2, . . . to emphasize that we are
considering the alternatives instead of the voters. Given two disjoint subsets of alternatives A and
B, we use the notation A ≻ B to express that a voter has a preference order ≻ such that for each
a ∈ A and for each b ∈ B it holds that a ≻ b. We simplify A ≻ B to a ≻ B if A = {a} and A ≻ B

to A ≻ b if B = {b}.
A preference profile P(V) of voter set V is an n-tuple of preference orders for V, that is, P(V) :=

(≻1,≻2, . . . ,≻n), where each ≻i represents the preference order of voter i.

Example 1. If we rename the voters vi 7→ i for all i ∈ {1, 2, 3, 4} in the introductory example, then
we obtain the following preference profile for the voter set {1, 2, 3, 4}:

voter 1: 1 ≻1 2 ≻1 3 ≻1 4,

voter 2: 2 ≻2 3 ≻2 4 ≻2 1,

voter 3: 3 ≻3 2 ≻3 4 ≻3 1,

voter 4: 4 ≻4 3 ≻4 2 ≻4 1.
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To describe the properties of preference profiles, for each preference order ≻ and each subset of
alternatives V ′ ⊆ V, we introduce the concept of top alternatives i from V that are preferred over V ′.
For each preference order ≻ and for each subset V ′ ⊆ V of alternatives, we define top(≻,V ′) :=
{i ∈ V | ∀j ∈ V ′ \ {i} it holds that i ≻ j}.

For example, the top alternatives of preference order ≻2 with respect to {3, 4} are 2 and 3.
Thus, top(≻2, {3, 4}) = {2, 3}.

We use peak(≻) to denote the most preferred alternative in ≻, that is, {peak(≻)} := top(≻,V).
We define the position of an alternative j in a preference order ≻ in a common way, that is, it is
one plus the number of alternatives that are preferred to her: pos(≻, j) := |top(≻, {j})|.

2.2 Narcissistic profiles

We call a preference profile P(V) with voter set V a narcissistic profile if for each voter i ∈ V it holds
that she is her most preferred alternative, that is, for each voter i ∈ V it holds that peak(≻i) = i.

2.3 Single-peaked profiles

Let P(V) be a preference profile with voter set V, and let ⊲ be a linear order on the set V. We call
a preference order ≻∈ P(V) single-peaked with respect to ⊲ if for each two alternatives a, b ∈ V it
holds that

if a ⊲ b ⊲ peak(≻) or peak(≻) ⊲ b ⊲ a, then b ≻ a.

Accordingly, we call P(V) single-peaked with respect to ⊲ if each preference order from P(V) is
single-peaked with respect to the order ⊲, and we call this order ⊲ a single-peaked order (for P(V)).
As already mentioned in the introduction, Example 1 is narcissistic and single-peaked with respect
to the linear order 1 ⊲ 2 ⊲ 3 ⊲ 4.

There are many equivalent definitions of the single-peaked property. One of them is due to
Doignon and Falmagne [15].

Proposition 1 ([15]). Given a preference profile P(V) = (≻1,≻2, . . . ,≻n) and a linear order ⊲ on
V, the following statements are equivalent:

1. P(V) is single-peaked with respect to ⊲.
2. For each voter i ∈ V, and for each alternative j ∈ V, the top alternatives top(≻i, {j}) form

an interval in ⊲.

Doignon and Falmagne [15], Escoffier et al. [18] provided polynomial-time algorithms to deter-
mine whether a profile is single-peaked. Ballester and Haeringer [3] characterized single-peaked
profiles by two forbidden subprofiles:

Proposition 2 ([3]). A profile is single-peaked if and only if it contains neither a worst-subprofile
of three alternatives a, b, c and three voters i, j, k such that

voter i : {b, c} ≻i a, voter j : {a, c} ≻j b, voter k : {a, b} ≻k c,

nor an α-subprofile of four alternatives a, b, c, d and two voters i, j such that

voter i : {a, b} ≻i c ≻i d, voter j : {b, d} ≻j c ≻j a.
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2.4 Single-crossing profiles

Let P(V) be a preference profile with voter set V, and let ⊲ be a linear order on the set V. We call
P(V) single-crossing with respect to ⊲ if for each pair {a, b} ⊆ V of alternatives and for each three
voters i, j, k ∈ V with i ⊲ j ⊲ k, it holds that

if a ≻i b and a ≻k b, then a ≻j b.

Accordingly, we call P(V) a single-crossing profile if there is a linear order ⊲ on the voter set V with
respect to which P(V) is single-crossing, and we call this order ⊲ a single-crossing order (for P(V)).

Just as with single-peaked profiles, there are many equivalent definitions of the single-crossing
property [15, 9, 10]. To introduce these alternative definitions, let diff-pairs(≻,≻′) denote the set of
all pairs of alternatives that are ordered differently by ≻ and ≻′:

diff-pairs(≻,≻′) := {{i, j} ⊆ V | i ≻ j and j ≻′ i}.

Proposition 3. [15, 9, 10] Given a preference profile P(V) = (≻1,≻2, . . . ,≻n) and a linear order ⊲

on V, the following statements are equivalent:
1. P(V) is single-crossing with respect to ⊲.
2. For each pair of alternatives {a, b} ⊆ V and for each two voters i, j ∈ V with i ⊲ j, it holds

that diff-pairs(≻∗,≻i) ⊆ diff-pairs(≻∗,≻j), where ≻∗ denotes the preference order of the first
voter in ⊲.

3. For each pair {a, b} ⊆ V of alternatives, the voters that prefer a to b form an interval in ⊲ ,
and the voters that prefer b to a also form an interval in ⊲, respectively.

Doignon and Falmagne [15], Elkind et al. [16], and Bredereck et al. [9] provided polynomial-
time algorithms to determine whether a profile is single-crossing. Bredereck et al. [9] characterized
single-crossing profiles by two forbidden subprofiles:

Proposition 4 ([9]). A profile is single-crossing if and only if it contains neither a γ-subprofile of
three (not necessarily disjoint) pairs of alternatives {a, b}, {c, d}, {e, f} and three voters i, j, k such
that

voter i : a ≻i b and c ≻i d and e ≻i f ,

voter j : b ≻j a and d ≻j c and e ≻j f ,

voter k : a ≻k b and d ≻k c and f ≻k e,

nor a δ-subprofile of two (not necessarily disjoint) pairs of alternatives, {a, b} and {c, d}, and four
voters i, j, k, ℓ such that

voter i : a ≻i b and c ≻i d,

voter j : b ≻j a and c ≻j d,

voter k : a ≻k b and d ≻k c,

voter ℓ : b ≻ℓ a and d ≻ℓ c.
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1: 1 ≻ 2 ≻ 3 ≻ 4
2: 2 ≻ 3 ≻ 4 ≻ 1
3: 3 ≻ 2 ≻ 4 ≻ 1
4: 4 ≻ 3 ≻ 2 ≻ 1

1: 1 ≻ 2 ≻ 3 ≻ 4

2: 2 ≻ 3 ≻ 4 ≻ 1

3: 3 ≻ 2 ≻ 4 ≻ 1

4: 4 ≻ 3 ≻ 2 ≻ 1

Figure 1: Visualization of the single-peaked property (left) and the single-crossing property (right).
Left: The left-to-right order of the alternatives on the x-axis is a single-peaked order. The y-axis
denotes the positions in a preference order. For each voter’s preference order, we draw a colored
line through the positions of all alternatives. In this way, we obtain a curve such that going from
left to right on the x-axis, the value (the position in the respective preference order) increases until
it reaches its peak and then decreases. Right: For each alternative, we draw a colored line, which
passes through the same alternative in each voter’s preference order. It is easy to verify that each
two colored lines cross at most once. This implies that the corresponding top-down order of the
voters is a single-crossing order.

2.5 Fundamental observations

As mentioned in the introduction, Saporiti and Tohmé [25, Lemma 4] showed that for narcissistic
profiles, single-crossingnes implies single-peakedness (see Bredereck et al. [11, Proposition 1] for
another proof, which uses our terminology).

Proposition 5 ([25, 11]). Each narcissistic profile that is single-crossing with respect to some linear
order ⊲ is also single-peaked with respect to the same order ⊲.

However, not all single-peaked narcissistic profiles are single-crossing, as the following example
shows.

Example 2. The profile given in Example 1 is narcissistic, single-peaked, and single-crossing with
1 ⊲ 2 ⊲ 3 ⊲ 4 being the desired order for the single-peaked property and the single-crossing property.
See Figure 1 for an visualization of both properties. However, if we change the preference order of
voter 3 in Example 1 to obtain the following

voter 1: 1 ≻1 2 ≻1 3 ≻1 4,

voter 2: 2 ≻2 3 ≻2 4 ≻2 1,

voter 3: 3 ≻3 2 ≻3 1 ≻3 4,

voter 4: 4 ≻4 3 ≻4 2 ≻4 1,

then the resulting profile is still narcissistic and single-peaked but not single-crossing anymore. The
reason is that the new profile contains subprofiles that are not single-crossing. For instance, it
contains a δ-subprofile with respect to the pairs {1, 4} and {2, 3}, and the voters 1, 2, 3, 4.
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The above example and Proposition 5 show that single-crossing narcissistic profiles form a strict
subset of single-peaked narcissistic profiles.

2.6 Semi-standard Young tableaux

For a positive integer n, a semi-standard Young tableau (SSYT) of order n [26] consists of n rows
of positive integers that satisfy the following.

i) For each i ∈ {1, 2, . . . , n}, the ith row contains n− i+1 entries with integers between 1 and n.

ii) When aligned in the upper-left corner (to obtain an isosceles right triangle), the entries weakly
increase along each row and strictly increase down each column.

Example 3 illustrates how an SSYT looks like and shows all eight possible SSYTs of order three.

Example 3. There are eight different SSYTs of order 3:

1 1 1

2 2

3

1 1 1

2 3

3

1 1 2

2 2

3

1 1 2

2 3

3

1 1 3

2 2

3

1 1 3

2 3

3

1 2 2

2 3

3

1 2 3

2 3

3

Remark Young tableaux [28] were originally defined on a Ferrers diagram which can be of an
arbitrary staircase-like shape, that is, a Young tableau may contain n rows of non-increasing lengths.
The numbers in a tableau can be from an arbitrary integer range. For our purpose, it is sufficient
to focus on SSYTs for isosceles right triangles and for integer range [1, n]. The second condition
described above defines the “semi-standard” property. We refer to the work of Stanley [26], Fulton
[19], Yong [27] for further reading.

By Stanley [26, Corollary 7.21.4]’s hook content lemma, we can deduce that the number of

SSYTs of order n, denoted as #SSYT(n), equals 2(
n

2). Before we show this result, we need two more
notions.

Definition 1 (Hook lengths and hook contents). Let n be an arbitrary positive integer. For each
two values i, j with 1 ≤ i ≤ n and 1 ≤ j ≤ n+ 1− i, we define the following two notions.

1. The hook length of (i, j) for the order n, denoted as hn(i, j), is one plus the number of entries
directly below or to the right of T (i, j) in the ith row and jth column, where T is an arbitrary
SSYT of order n: hn(i, j) := 2 · (n− i− j) + 3.

2. The hook content of (i, j) for the order n is defined as cn(i, j) := n− i+ j.

Note that the hook length and the hook content do not depend on the values of any SSYT but
on its order. Moreover, the original notion of (hook) content for (i, j) as introduced by Stanley
[26, § 7.21] equals j − i instead of n− i+ j. We use our definition of the hook content to simplify
some of our equations below and the equation given in the hook content lemma by Stanley [26,
Corollary 7.21.4].

The following example shows the hook length and the hook content of all SSYTs shown in
Example 3.
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Example 4. The hook lengths and hook contents of SSYTs of order 3 are:

5 3 1
Hook lengths 3 1

1

3 4 5
Hook contents 2 3

1

Now, we are ready to derive the number #SSYT(n) SSYTs of order n.

Theorem 1. For each positive integer n, the number #SSYT(n) of semi-standard Young tableaux of

order n equals 2(
n

2).

Proof. Stanley [26, Corollary 7.21.4]’s hook content formula states that the number #SSYT(n) of
SSYTs of order n equals

∏

1≤i≤n
1≤j≤n+1−i

cn(i, j)

hn(i, j)
. (1)

Note that the product (1) is essentially the same as the one given in Stanley [26, Corollary 7.21.4]
since we defined the hook content for (i, j) to be n− i+ j instead of j − i.

We need to show that the product (1) equals 2(
n

2). To accomplish this, we show the following:

i) #SSYT(1) = 1 and

ii) for each n ≥ 2 it holds that #SSYT(n+ 1) = 2n ·#SSYT(n).

For the first equation, we can easily check that there is only one SSYT of order one, implying that

#SSYT(1) = 1 = 2(
1

2) (note that the definition of binomial coefficients implies that
(1
2

)

= 0).
Now, consider SSYTs of order n + 1. The definitions of hook lengths and hook contents imply

the following equations:

∀i ∈ {2, 3, . . . , n+ 1},∀j ∈ {1, 2, . . . , n + 2− i} :

hn+1(i, j) = 2 · (n+ 1− i− j) + 3 = hn(i− 1, j), (2)

cn+1(i, j) = n+ 1− i+ j = cn(i− 1, j). (3)

∀j ∈ {2, . . . , n+ 1} :

hn+1(1, j) = 2 · (n+ 1− 1− j) + 3 = hn(1, j − 1), (4)

∀j ∈ {1, . . . , n− 1} :

cn+1(1, j) = n+ 1− 1 + j = cn(1, j + 1). (5)

By the hook content formula, we can derive the number #SSYT(n + 1) from the hook lengths
and hook contents of SSYTs of order n:

#SSYT(n+ 1) =
∏

1≤i≤n+1
1≤j≤n+2−i

cn+1(i, j)

hn+1(i, j)

8



=
∏

1≤j≤n+1

cn+1(1, j)

hn+1(1, j)
·

∏

2≤i≤n+1
1≤j≤n+2−i

cn+1(i, j)

hn+1(i, j)
. (6)

If we can show that the second factor and the first factor of the product on the right-hand side
of equation (6) equal #SSYT(n) and 2n, respectively, then by (6), we can derive that #SSYT(n+1) =
2n ·#SSYT(n). Thus, it remains to show the following:

∏

2≤i≤n+1
1≤j≤n+2−i

cn+1(i, j)

hn+1(i, j)
= #SSYT(n), and (7)

∏

1≤j≤n+1

cn+1(1, j)

hn+1(1, j)
= 2n. (8)

To show the correctness of equation (7), we use equations (2) and (3):

∏

2≤i≤n+1
1≤j≤n+2−i

cn+1(i, j)

hn+1(i, j)
=

∏

2≤i≤n+1
1≤j≤n+2−i

cn(i− 1, j)

hn(i− 1, j)

=
∏

1≤i′≤n
1≤j≤n+1−i′

cn(i
′, j)

hn(i′, j)
= #SSYT(n).

The last equality holds by the hook content formula, as mentioned in the beginning of the proof.
We show equation (8) by induction on n.
First of all, for n = 1, we have that

∏

1≤j≤n+1
cn+1(1,j)
hn+1(1,j)

= c2(1,1)
h2(1,1)

· c2(1,2)
h2(1,2)

= 2·3
3·1 = 2 = 21. Now,

suppose that equation (8) holds for n := ℓ− 1, implying that
∏

1≤j≤ℓ
cℓ(1,j)
hℓ(1,j)

= 2ℓ−1. We show that
the equality also holds for n := ℓ:

∏

1≤j≤n+1

cn+1(1, j)

hn+1(1, j)
=

∏

1≤j≤ℓ+1

cℓ+1(1, j)

hℓ+1(1, j)

=
cℓ+1(1, ℓ + 1) · cℓ+1(1, ℓ)

hℓ+1(1, 1)
·

∏

1≤j≤ℓ−1 cℓ+1(1, j)
∏

2≤j≤ℓ+1 hℓ+1(1, j)

def.
=

2 · ℓ+ 1

2 · ℓ+ 1
· cℓ+1(1, ℓ) ·

∏

1≤j≤ℓ−1 cℓ+1(1, j)
∏

2≤j≤ℓ+1 hℓ+1(1, j)

(4)(5)
= cℓ+1(1, ℓ) ·

∏

1≤j≤ℓ−1 cℓ(1, j + 1)
∏

2≤j≤ℓ+1 hℓ(1, j − 1)

=
cℓ+1(1, ℓ)

cℓ(1, 1)
·

∏

0≤j≤ℓ−1 cℓ(1, j + 1)
∏

2≤j≤ℓ+1 hℓ(1, j − 1)

def.
=

ℓ+ 1− 1 + ℓ

ℓ− 1 + 1
·

∏

1≤j′≤ℓ cℓ(1, j
′)

∏

1≤j′≤ℓ hℓ(1, j
′)

= 2ℓ = 2n.

The last equality holds by our induction assumption.
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Remarks The proof of Theorem 1 is rather crude and lengthy, but straightforward. Nevertheless,
there is another, shorter and more elegant proof, pointed out by one of the reviewers of the journal
Discrete Mathematics, for deriving the desired number #SSYT(n) by applying the Schur function on
the integer partition (n, n−1, . . . , 1) [26, § 7.15.1] and using the Vandermonde determinant identity.

3 Counting Single-Peaked Narcissistic Profiles

In this section, we study the number of single-peaked narcissistic (SPN) preference profiles for the
voter set V = {1, 2, . . . , n}. Recall that a voter is narcissistic if she ranks herself at the first position.
Thus,

for each i, voter i has preference order of the form i ≻i . . . . (9)

In the following, for SPN preference profiles with at least two voters, there are always two voters
whose preference orders are the reverse of each other.

Lemma 1. For each single-peaked narcissistic profile P = (≻1,≻2, . . . ,≻n), there are two voters i, j

such that |diff-pairs(≻i,≻j)| =
(

n
2

)

.

Proof. Let a1 ⊲ a2 ⊲ · · · ⊲ an be a single-peaked order for the profile P. Then, by the narcissistic
property (9), peak(≻a1) = a1 and peak(≻an) = an. Following the single-peaked order ⊲, we obtain
that the preference orders of a1 and an are a1 ≻a1 a2 ≻a1 . . . ≻a1 an and an ≻an an−1 ≻an . . . ≻an

a1. This implies that |diff-pairs(≻a1 ,≻an)| =
(

n
2

)

.

Example 5. Consider the following three voters 1, 2, 3 with preference orders:

voter 1: 1 ≻1 3 ≻1 2, voter 2: 2 ≻2 1 ≻2 3, and voter 3: 3 ≻3 1 ≻3 2.

The profile (≻1,≻2,≻3) is narcissistic, and single-peaked with respect to the orders 2 ⊲ 1 ⊲ 3 and
3⊲ 1⊲ 2. The preference orders of voters 2 and 3 are reverse to each other.

By the proof of Lemma 1, we can rename the voters such that the preference orders of voter 1
and n are the following.

voter 1: 1 ≻1 2 ≻1 . . . ≻1 n,
voter n : n ≻n n− 1 ≻n . . . ≻n 1.

(10)

It is easy to show that the only linear orders of alternatives with respect to which voters 1 and n

(and thus the whole profile) are single-peaked must be the preference orders of either voter 1 or
voter n (also see Lemma 5.1 of the work of Chen et al. [12] for more details).

Corollary 1. Each single-peaked narcissistic profile with at least two voters admits exactly two
single-peaked orders.

Summarizing, by Statement (10) and by Corollary 1, we can rename the voters such that

each SPN profile has exactly two SP orders : 1 ⊲ 2 ⊲ . . . ⊲ n and its reverse. (11)

For SPN profiles that obey (11), we observe the following.
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Proposition 6. Let P(V) be a single-peaked narcissistic preference profile with n voters, and let
a1 ⊲ a2 ⊲ · · · ⊲ an be a single-peaked order for P(V). Then, for each voter ai ∈ V, the following holds:

1. the preference order of ai restricted to the set {a1, a2, . . . , ai} is decreasing, that is, ai ≻ai

ai−1 ≻ai . . . ≻ai a1, and

2. the preference order of i restricted to the set {ai, ai+1, . . . , an} is increasing, that is, ai ≻ai

ai+1 ≻ai . . . ≻ai an.

Proof. Since P(V) is narcissistic, each alternative ai is the peak peak(≻ai) of her own preference
order, that is, ∀aj ∈ V \ {ai} : ai ≻ai aj . By the definition of single-peakedness, the two statements
follow.

Example 6. The profile given in Example 5 does not obey (10), but it has exactly two single-
peaked orders: 2⊲ 1⊲ 3 and its reverse. If we rename the voters in the profile given in Example 5
to 1 7→ 2, 2 7→ 1 and 3 7→ 3, then we obtain the lower-right profile, which obeys (10). In this case,
we consider both profiles as the same SCN profile.

voter 1: 1 ≻1 2 ≻1 3,

voter 2: 2 ≻2 1 ≻2 3,

voter 3: 3 ≻3 2 ≻3 1.

voter 1: 1 ≻1 2 ≻1 3,

voter 2: 2 ≻2 3 ≻2 1,

voter 3: 3 ≻3 2 ≻3 1.

Indeed, for three voters, we have two different SPN profiles (see above) obeying (10). Both
profiles are single-peaked with respect to the orders of voters 1 and 3. However, we consider both
profiles as different although we can obtain the upper-right profile from the upper-left profile by
renaming 1 7→ 3, 2 7→ 2 and 3 7→ 1.

We are interested in SPN profiles that obey (10), that is, SPN profiles that are single-peaked
with respect to the order 1 ⊲ 2 ⊲ · · · ⊲ n and its reverse. In the following, we show our main result
for the number of SPN preference profiles.

Theorem 2. The number of narcissistic profiles for n voters (n ≥ 2) that are single-peaked with
respect to the order 1 ⊲ 2 ⊲ · · · ⊲ n is

∏

2≤i≤n−1

(

n−1
i−1

)

.

Proof. By Proposition 6, for each voter i, 2 ≤ i ≤ n− 1, her preference order must satisfy

voter i : i ≻i i− 1 ≻i · · · ≻i 1 and i ≻i i+ 1 ≻i · · · ≻i n.

Thus, if it is clear which positions the alternatives 1, 2, . . . , i− 1 will occupy in the preference order
of voter i, then the positions of i + 1, i + 2, . . . , n are also clear. Then, the preference order of i

is also fixed. There are
(

n−1
i−1

)

possible ways to give i − 1 positions to alternatives 1, 2, . . . , i − 1.
Altogether, we obtain the desired result for the number of all different SPN profiles.

4 Counting Single-Crossing Narcissistic Profiles

In this section, we study the number of single-crossing narcissistic (SCN) preference profiles for
the voter set V = {1, 2, . . . , n}. Just as in Section 3, we are interested in the SCN profiles that
are single-crossing with respect to the linear order 1 ⊲ 2 ⊲ · · · ⊲ n. Since SCN profiles are also
SPN (Proposition 5), we obtain the following result.

11



Proposition 7. For each narcissistic profile with the voter set V = {1, 2, . . . , n} that is single-
crossing with respect to the order 1 ⊲ 2 ⊲ · · · ⊲ n, the following holds.

i) The profile is only single-peaked with respect to ⊲ and its reverse.

ii) For each i ∈ {1, 2, . . . , n}, the preference orders of voter i restricted to {1, 2, . . . , i} and to
{i, i + 1, . . . , n} are i ≻i i− 1 ≻i . . . ≻i 1 and i ≻i i+ 1 ≻i . . . ≻i n, respectively.

iii) The positions of each alternative a, 1 ≤ a ≤ n − 1 in the preference orders of the voters
a+ 1, a+ 2, . . . , n along the order a+ 1 ⊲ a+ 2 ⊲ · · · ⊲ n are non-decreasing.

Proof. Since the reverse of ⊲ is also a single-crossing order, by Proposition 5, the first statement fol-
lows. The second statement follows from Proposition 5 and from the definition of single-peakedness.

It remains to show the correctness of the last statement. Towards a contradiction, suppose
that the positions of an alternative a in the preference orders of voters a + 1, a + 2, . . . , n are not
non-decreasing. Then, there must be another alternative b and two voters i, j, a + 1 ≤ i < j ≤ n,
with preferences b ≻i a and a ≻j b. But since voter a prefers a ≻a b, we obtain that ⊲ is not a
single-crossing order because of the pair {a, b}—a contradiction.

The profile given in Example 2 is evidence that the number of SCN profiles is strictly less than
the number of SPN profiles. But how many SCN profiles are there exactly? To answer this question,
we first construct a function from SCN profiles with n voters to SSYTs of order n− 1. To this end,
let Pn be the set of all SCN profiles with n voters that are single-crossing with respect to the linear
order 1 ⊲ 2 ⊲ · · · ⊲ n, and let Sn−1 be the set of all SSYTs of order n− 1.

Definition 2 (A function from SCN profiles to SSYTs). Define a function f : Pn → Sn−1 that maps
each SCN profile (≻1,≻2, . . . ,≻n) ∈ Pn for the voter set V = {1, 2, . . . , n} to an SSYT f((≻1,≻2

, . . . ,≻n)) = T of order n− 1 as follows.
For each alternative i except n (that is, i ∈ V \ {n}), we construct the ith row of T with n − i

entries. Their values depend on the positions of alternative i in the preference orders of voters
n, n− 1, . . . , i+ 1:

∀j ∈ {1, 2, . . . , n− i} : T (i, j) := n+ 1− pos(≻n+1−j, i).

Briefly put, the value of T at the ith row and jth column equals the “reverted” position of
alternative i in the preference order of voter n+1− j. The values of each column j are determined
by the preference order of voter n+1− j. Table 1 gives an illustration of how to build an SSYT T

from a given preference profile.
Note that we do not address the positions of alternative n (in any preference order) since the

positions of 1, 2, . . . , n − 1 determine the position of n. Moreover, the positions of all alternatives
in the preference order of voter 1 are also fixed. We use Example 1 to illustrate our function given
in Definition 2.

Example 7. Let P denote the profile from Example 1. By Definition 2, the SSYT obtained for P
is depicted in the figure below.

1 1 1

T : 2 3

3
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n+ 1− pos(·) voter n voter n− 1 · · · voter 2

alternative 1

T : alternative 2

· · · · · · · · ·

alternative n− 1

Table 1: An illustration of constructing an SSYT T according to Definition 2.

The positions of alternative 2 in the preference orders of voters 3 and 4 are 2 and 3, respectively.
Thus, the second row of T = f(P) has two entries: T (2, 1) = 4+1−3 = 2 and T (2, 2) = 4+1−2 = 3.

Note that the preference order of the last voter is always fixed to n ≻n n−1 ≻n · · · ≻n 1. Indeed,
the values of the first column in every SSYT are also fixed, namely (1, 2, . . . , n − 1)T . For order 3,
there are eight such SCN profiles. Our function f will map each of these profiles to a unique SSYT
of order 3 given in Example 3.

In the following, we show that function f is well-defined and bijective.

Lemma 2. Function f from Definition 2 is well-defined.

Proof. To show that f is well-defined, we need to show that for each given SCN profile P = (≻1,≻2

, . . . ,≻n) with n voters, f(P ) is an SSYT of order n− 1. That is, we have to show that T := f(P )
fulfills the two conditions given in the beginning of Section 2.6.

By Definition 2, f(P ) has n − 1 rows such that for each value i, 1 ≤ i ≤ n − 1, the ith row
has (n − 1) + 1− i entries. Moreover, for each alternative i ∈ {1, 2, . . . , n − 1} and each voter j ∈
{1, 2, . . . , n − i}, the value n + 1 − j ranges from n to i + 1. Thus, the position pos(≻n+1−j , i) of
alternative i in the preference order of voter n+1−j is defined and, by the narcissistic property, has a
value between 2 and n. This means that the value of T (i, j), which is defined as n+1−pos(≻n+1−j , i),
is between n− 1 and 1.

Second, by the last statement in Proposition 7, the positions of the alternative i ∈ {1, 2, . . . , n−
1} in the preference orders of the voters are non-decreasing along the voter order i+1⊲i+2⊲ · · · ⊲n.
By the double negation in the definition of T (i, j), this implies that the values along the ith row in
T do not decrease.

It remains to show that the values down each column in T strictly increase. The entries in each
column j reflect the positions of the alternatives 1 to n− j in the preference order of voter n+1− j.
By the second statement in Proposition 7, it follows that the positions of the alternatives 1 to n− j

strictly decrease and by the negation in the definition of T (i, j), we have that the values down each
column in T indeed strictly increase.

Lemma 3. Function f from Definition 2 is bijective.

Proof. To show that f is injective, consider two arbitrary SCN preference profiles P = (≻1,≻2

, . . . ,≻n) and P ′ = (≻′
1,≻

′
2, . . . ,≻

′
n) ∈ Pn that are single-crossing with respect to the linear order 1⊲

2 ⊲ · · · ⊲ n such that f(P) = f(P ′). This means that for each column j ∈ {1, 2, . . . , n− 1} and each
row i ∈ {1, 2, . . . , n−j}, we have that f(P)(i, j) = f(P ′)(i, j), meaning that the position pos(≻n+1−j

, i) of each alternative i in the preference order ≻n+1−j is the same as that pos(≻′
n+1−j, i) in the
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preference order ≻′
n+1−j. By the single-peaked and narcissistic property, the preference order of

each voter n+1−j is determined by the positions of the alternatives 1 to n−j. Thus, the preference
orders ≻n+1−j are the same as the preference order ≻′

n+1−j. Since the first voter always has the
preference order 1 ≻ 2 ≻ . . . ≻ n in all profiles of Pn, we obtain that P = P ′.

It remains to show that f is surjective. For each SSYT T of order n − 1, there is an SCN
preference profile P = (≻1,≻2, . . . ,≻n) with the following form:

voter 1: 1 ≻1 2 ≻1 · · · ≻1 n,

voter 2: 2 ≻2 · · · ,

· · ·

voter n : n ≻n n− 1 ≻n · · · ≻n 1.

Formally, the first voter has preference order 1 ≻1 2 ≻1 · · · ≻1 n, and for each voter i ∈ {2, . . . , n},
we first let pos(≻i, i) = 1 and then define her preference order ≻i by defining the positions of the
alternative j ∈ {i − 1, i − 2, . . . , 1}: pos(≻i, j) := n + 1 − T (j, n + 1 − i), which is at least two;
observe that by the definition of SSYT, we have that i ≻i i−1 ≻i · · · ≻i 1. The remaining positions
in the preference order ≻i are assigned to the remaining alternatives i + 1, i + 2, . . . , n such that
i+ 1 ≻i i+ 2 ≻i . . . ≻i n. Note that no two positions pos(≻i, j) and pos(≻i, j

′) with 1 ≤ j < j′ ≤ i

are the same as no two entries in a column in T have the same values, which means that we indeed
obtain a preference order.

Now, we show by contradiction that the constructed profile P is single-crossing with respect to
the order 1 ⊲ 2 ⊲ · · · ⊲ n. Suppose, for the sake of contradiction, that there are two alternatives i

and j and three voters a, b, and c with a < b < c such that

voter a : i ≻a j, (12)

voter b : j ≻b i, and (13)

voter c : i ≻c j. (14)

First of all, we show the following three auxiliary statements which will be used many times in our
proof:

Claim 1. Let x and y be two distinct alternatives from {1, 2, . . . , n} such that x < y, and let p be a
voter from {1, 2, . . . , n} with preference order ≻p from the constructed preference profile P. Then,
the following holds.

(i) If y ≤ p, then pos(≻p, x) > pos(≻p, y).

(ii) If x ≥ p, then pos(≻p, x) < pos(≻p, y).

Proof of Claim 1. Assume that y < p. Then, from the definition of P, we know that T (x, n+1−p)
and T (y, n+1−p) are defined and the property of SSYT implies that T (x, n+1−p) < T (y, n+1−p)
since x < y. By the definition of the positions pos, we immediately have that pos(≻p, x) > pos(≻p

, y). If y = p, then pos(≻p, y) = 1 < 2 ≤ pos(≻p, x) . Together, we showed the first statement.
If x ≥ p, then by the definition of the positions of all j with j ≥ p in ≻p, we have pos(≻p, x) <

pos(≻p, y). (of Claim 1) ⋄

Claim 2. Let x and y be two distinct alternatives from {1, 2, . . . , n} such that x < y, and let p be
a voter from {1, 2, . . . , n} with preference order ≻p from the constructed preference profile P, such
that x ≤ p < y. The following holds.
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(i) If y ≻p x, then pos(≻p, x) > y − x.

(ii) If x ≻p y, then pos(≻p, x) ≤ y − x.

Proof of Claim 2. Both statements obviously hold for p = x (this includes the case of p = 1), since
x = p ≻p y (each voter is narcissistic), implying that pos(≻p, x) = 1 ≤ y − x.

In the remainder of the proof, we assume that p ∈ {2, 3, . . . , n} and x < p. First of all, the
relation x < p implies that for each integer x′ with x + 1 ≤ x′ ≤ p − 1, the entry T (x′, n + 1 − p)
is defined. To compute the value of pos(≻p, x), we partition the set {x + 1, x + 2, . . . , y} into two
disjoint subsets V1 ⊎ V2 with V1 := {x+ 1, . . . , p− 1} and V2 := {p, p+ 1, . . . , y}. We know that for
every alternative x′ with x′ ∈ V1, the value T (x′, n + 1 − p) is defined, and, by the property that
the entries of each column in T are strictly increasing, for each x′ ∈ V1, it holds that

T (x′, n+ 1− p) > T (x, n + 1− p), implying pos(≻p, x
′) < pos(≻p, x). (15)

To show the first statement, assume that y ≻p x. Then, by the definition of the preference order
of voter p, for each alternative y′ ∈ V2, it holds that pos(≻p, y

′) ≤ pos(≻p, y) < pos(≻p, x). Note
that pos(≻p, y) < pos(≻p, x) holds by our assumption that y ≻p x. Together with the positions of
all alternatives from V1 (see (15)), there are at least |V1|+ |V2| alternatives preferred to x by voter p;
therefore, we have pos(≻p, x) > |V1|+ |V2| = y − x.

To show the second statement, assume that x ≻p y. Then, by the definition of the preference
order of voter p, we have the following.

1. for each alternative x′ ∈ {1, 2, . . . , x− 1}, it holds that pos(≻p, x
′) > pos(≻p, x), and

2. for each alternative y′ ∈ {y, y + 1, . . . , n}, it holds that pos(≻p, y
′) ≥ pos(≻p, y) > pos(≻p, x)

(note that the second inequality holds by our assumption that x ≻p y).

This implies that at least x − 1 + n − y + 1 = n + x − y alternatives have a larger position than
alternative x, therefore pos(≻p, x) ≤ n− (n+ x− y) = y − x. (of Claim 2) ⋄

Claim 3. Let x be an alternative from {1, 2, . . . , n} and let p, q be two distinct voters
from {1, 2, . . . , n} such that x < p < q. Then, pos(≻p, x) ≤ pos(≻q, x).

Proof of Claim 3. Since x < p < q, the values T (x, n + 1 − p) and T (x, n + 1 − q) are defined.
By the weakly increasing property of each row in T , the relation p < q implies that pos(≻p, x) =
n+ 1− T (x, n+ 1− p) ≤ n+ 1− T (x, n + 1− q) = pos(≻q, x). (of Claim 3) ⋄

Now, we move on to our proof with case distinction on the relation between i and j.
Assume that i < j, and define x = i and y = j. Then, Claim 1(ii) and (13) imply i < b

(applying p = b), and Claim 1(i) and (14) imply j > c (applying p = c). This means that i < b < j

and i < c < j since i < b < c < j. If we use Claim 2(i) for the preference order given by
(13), then applying p = b, we have pos(≻b, i) > j − i. However, if we use Claim 2(ii) for the
preference order given by (14), then by applying p = c, we have pos(≻c, i) ≤ j − i. This implies
that pos(≻b, i) > pos(≻c, i)—a contradiction to Claim 3 since i < b < c.

Analogously, j < i yields a contradiction when we consider the preference orders (12) and
(13) instead. Define x = j and y = i. Claim 1(ii) and (12) imply j < a (applying p = a), and
Claim 1(i) and (13) imply i > b (applying p = b). This means that j < a < i and j < b < i since
j < a < b < i. If we use Claim 2(i) for the preference order given by (12), then by applying p = a,
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we have pos(≻a, j) > i − j. However, if we use Claim 2(ii) for the preference order given by (13),
then by applying p = b, we have pos(≻b, j) ≤ i − j. This implies that pos(≻a, j) > pos(≻b, j)—a
contradiction to Claim 3 since j < a < b.

Summarizing, we showed that 1⊲ 2⊲ · · ·⊲n is indeed a single-crossing order. This implies that
f is also surjective, and thus bijective.

Applying the inverse of function f given in Definition 2 on the SSYT produced in Example 7
and assigning the remaining positions to the other remaining alternatives according to the proof of
Lemma 3, we will obtain our original profile from Example 1. By Theorem 1 and Lemmas 2 and 3,
we obtain our second main result.

Theorem 3. The number of narcissistic profiles for n voters (n ≥ 2) that are single-crossing with

respect to the order 1 ⊲ 2 ⊲ · · · ⊲ n is 2(
n−1

2 ).

Proof. Let Pn be the set of all SCN profiles with n voters that are single-crossing with respect to
the order 1 ⊲ 2 ⊲ · · · ⊲ n, and let Sn−1 be the set of all SSYTs of order n− 1.

It is clear that both Pn and Sn−1 are finite. Since Definition 2 defines a function f : Pn → Sn−1

that is a bijection (see Lemmas 2 and 3), Pn and Sn−1 have the same cardinality. By Theorem 1,
we obtain the desired cardinality for Pn.

5 Conclusion

We studied the numbers of narcissistic profiles that are also single-peaked (SPN) or also single-
crossing (SCN), respectively. We established a bijective relation between semi-standard Young
tableaux and SCN profiles. By counting the number of semi-standard Young tableaux, we deter-
mined the number of SCN profiles. In this paper, we focused on profiles with the same number of
voters and alternatives . However, our analysis could be extended to the case where the number
of voters is greater than the number of alternatives since the last statement of Proposition 7 still
holds in this case and it corresponds to the essential property of an SSYT for an arbitrary Ferrers
diagram.

We focused on profiles that are single-peaked or single-crossing with respect to the linear or-
der ⊲ : 1 ⊲ 2 ⊲ · · · ⊲ n. An interesting question is to count the SPN (resp. SCN) profiles that are
different up to renaming. Herein, two profiles are said to be the same if one can be obtained from
the other by renaming the voters. It is clear that under such restriction, the number is significantly
smaller than the one we studied in the current paper. While it seems quite straightforward to obtain
the result for SPN profiles that are unique up to renaming, this is not the case for SCN profiles.
We consider the corresponding study to be a part of future research.
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