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Abstract

We say that a diagonal in an array is λ-balanced if each entry occurs λ times. Let
L be a frequency square of type F (n;λm); that is, an n× n array in which each entry
from {1, 2, . . . ,m} occurs λ times per row and λ times per column. We show that if
m 6 3, L contains a λ-balanced diagonal, with only one exception up to equivalence
when m = 2. We give partial results for m > 4 and suggest a generalization of Ryser’s
conjecture, that every latin square of odd order has a transversal. Our method relies
on first identifying a small substructure with the frequency square that facilitates the
task of locating a balanced diagonal in the entire array.
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1 Introduction

In what follows, rows and columns of an n × n array L are each indexed by N(n) =
{1, 2, . . . , n}, with Li,j denoting the entry in cell (i, j). We sometimes consider an array L
to be a set of ordered triples L = {(i, j;Li,j)} so that the notion of a subset of an array is
precise. A subarray of L is any array induced by subsets of the rows and columns of L; thus
the rows and columns in a subarray need not be adjacent.

A frequency square or F -square L of type F (n;λ1, λ2, . . . , λm) is an n×n array such that
for each i ∈ N(m), i occurs λi times in each row and λi times in each column; necessarily
∑m

i=1 λi = n. In the case where λ1 = λ2 = · · · = λm = λ we say that L is of type F (n;λm),
where n = λm. Clearly a frequency square of type F (n; 1n) is a Latin square of order n.

We define a diagonal in any square array to be a subset that uses each row and each
column exactly once. We say that a diagonal is λ-balanced if each entry occurs λ times, for
some λ. Thus, a 1-balanced diagonal in a Latin square is precisely a transversal.

In this paper we restrict ourselves to frequency squares of type F (n;λm); in this context
we refer to a λ-balanced diagonal as simply being balanced; here each element of N(m)
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appears exactly λ times. For our purposes, two frequency squares of type F (n;λm) are
equivalent if and only if one can be obtained from the other by rearranging rows or columns,
relabelling symbols or taking the transpose.

Trivially, any diagonal of a frequency square of type F (λ;λ) is balanced. In Section
2 we show, with one exception up to equivalence, that each frequency square of type
F (2λ;λ, λ) has a balanced diagonal. In Section 3 we show that every frequency square
of type F (3λ;λ, λ, λ) has a balanced diagonal. We then make some observations and conjec-
tures about the existence of balanced diagonals in F (mλ;λm) for m > 3 in Section 4.

The existence of transversals in arrays (diagonals in which each entry appears at most
once) or, equivalently, rainbow matchings in coloured bipartite graphs, has been well-studied
[1, 13]. However there appears to be scarce results on the existence of diagonals in which each
entry has a fixed number of multiple occurrences. Nevertheless, the existence of transversals
(and other regular structures called plexes) in Latin squares imply the existence of balanced
diagonals in certain frequency squares, as shown in Section 4. Conversely, the results in this
paper suggest a certain generalization of Ryser’s conjecture, that each Latin square of odd
order has a transversal; see Conjecture 9.

Research into frequency squares focuses mainly on constructing sets of pairwise orthogo-
nal frequency squares, where each ordered pair occurs a constant number of times [7, 8, 9, 6].
Here, in general, the existence of a balanced diagonal is not necessary. ELABORATE? GIVE
EXAMPLE?

Instead of starting with any diagonal and trying to permute rows and columns to make it
balanced, we obtain our main results in Sections 2 and 3 by first identifying a subarray that
allows us to construct a diagonal within the rest of the square that is close to being balanced.
The properties of the subarray then allow us to find a balanced diagonal in the entire square.
This approach makes the proof of Theorem 2 in particular delightfully terse (compared to
an originally drafted much longer proof) and the proof of Theorem 3 manageable. This idea
may be of use towards the solution of related combinatorial problems.

2 Balanced diagonals in frequency squares with 2 sym-

bols

Let A2λ be the frequency square of type F (2λ;λ, λ) with only 1’s in the top-left and bottom-
right quadrants, formally defined as follows:

A2λ = {(i, j; 1), (i+ λ, j + λ; 1), (i, j + λ; 2), (i+ λ, j; 2) | i, j ∈ N(λ)}.
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1 1 1 2 2 2
1 1 1 2 2 2
1 1 1 2 2 2
2 2 2 1 1 1
2 2 2 1 1 1
2 2 2 1 1 1

A6

Lemma 1. The frequency array A2λ possesses a balanced diagonal if and only if λ is even.

Proof. It is easy to find a balanced diagonal if λ is even. If λ is odd, suppose that A2λ

possesses a balanced diagonal M with x elements in cells (i, j) where i, j ∈ N(λ). Then M
has λ− x elements in cells (i, j) where i, j − λ ∈ N(λ) and in turn, x elements in cells (i, j)
where i− λ, j − λ ∈ N(λ). Thus, 2x elements of M contain entry 1, contradicting the fact
that λ is odd.

Theorem 2. Let L be a frequency square of type F (2λ;λ, λ). Then L has a balanced diagonal,
unless L is equivalent to A2λ where λ is odd.

Proof. Let L be a frequency square of type F (2λ;λ, λ). Observe that if L does not possess
the following subarray, it must be equivalent to A2λ and the previous lemma applies.

1 1
1 2

Otherwise, we assume without loss of generality that L1,1 = L1,2 = L2,1 = 1 and L2,2 = 2.
Let M be the main diagonal and let x be the number of 1’s in M . Rearrange the rows and
columns (except for the first two rows and columns) so that |x−λ| is minimized. If x−λ = 0
the main diagonal is balanced and we are done. If x − λ = −1, we can swap rows 1 and 2
and the main diagonal becomes a balanced diagonal.

Suppose that x−λ < −1. Then there must exist r, r′ > 2 such that cells (r, r) and (r′, r′)
each contain 2 and (r, r′) contains 1. Swapping rows r and r′ reduces |x − λ| by either 1
or 2, a contradiction. If x− λ > 1, then there must exist r, r′ > 2 such that cells (r, r) and
(r′, r′), each containing 1, with (r, r′) containing 2; if not, there is a λ×λ subarray containing
only 1’s and our array is equivalent to A2λ, a contradiction. Swapping rows r and r′ reduces
|x − λ| by at least one unless x − λ = 1 and (r′, r) contains 2. In that case we can further
swap rows 1 and 2 to create a balanced main diagonal.

3 Balanced diagonals in frequency squares with 3 sym-

bols

In this section we prove the following theorem.
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Theorem 3. Let L be a frequency square of type F (3λ;λ, λ, λ). Then L has a balanced
diagonal.

Throughout this section, L is a frequency square of type F (3λ;λ, λ, λ).

Lemma 4. Let λ > 2 and let e ∈ {1, 2, 3}. Suppose that for each f ∈ {1, 2, 3} \ {e}, L does
not contain the following subarray:

e e
e f

.

Then L contains a balanced diagonal.

Proof. Without loss of generality, let e = 1. It can quickly be shown that the rows and
columns of L can be partitioned into sets R1, R2, R3 and C1, C2, C3, respectively, where each
set is of size λ and the cells in Ri × Ci contain only symbol 1, for each 1 6 i 6 3. Let Bij

be the subarray formed by the intersection of the rows in Ri and the columns in Cj; we call
such subarrays blocks.

We know that B11, B22, B33 each contain only the symbol 1. Suppose that one of the
remaining blocks contains only the symbol 2; it quickly follows that each block contains
only one type of symbol. In this case diagonals from each of B13, B22 and B31 together
form a balanced diagonal. Otherwise, without loss of generality, each block not on the main
diagonal contains at least one 2 and at least one 3.

Let X be the main diagonal from B12 (i.e. on the cells {(i, λ+ i) | i ∈ N(λ)}), and let Y
be the main diagonal from B21. Let x and y be the number of 3’s in diagonals X and Y ,
respectively. If x+ y = λ, we can construct a balanced diagonal by adding a diagonal from
block B33. Otherwise, without loss of generality, x+y > λ. We call a rearrangement of rows
and columns that preserves the block structure good if it reduces x+ y by at most x+ y−λ.

Partition C2 into sets of columns D1 and D2 and R1 into sets of rows S1 and S2, so that
Si−1 × Di−1 contains the i’s from X , where i ∈ {2, 3}. Similarly, partition R2 into sets of
rows T1 and T2 and C1 into sets of columns E1 and E2, so that Ti−1 × Ei−1 contains the i’s
from Y , where i ∈ {2, 3}.

Suppose that x+y > λ+2 and there are no good swaps. Then there exists no 2 in S2×D2;
otherwise we can swap rows within S2 and columns within D2 to reduce x + y by either 1
or 2. Similarly, T2×E2 contains only 3’s. If both (r, c) ∈ S1×D2 and (c−λ, r+λ)) ∈ S2×D1

contain a 2, then swapping row r with row c− λ is a good swap; a contradiction. Thus, at
most one of (r, c) ∈ S1 × D2 and (c − λ, r + λ) ∈ S2 × D1 contains a 2. Similarly, at most
one of (r, c) ∈ T1 × E2 and (c + λ, r − λ) ∈ T2 × E1 contains a 2. Hence, the number of 3’s
in B12 ∪B21 is at least x2 + y2 + x(λ− x) + y(λ− y) = λ(x+ y) > λ2.

However, since each column contains λ 3’s, if there are α 3’s in B12, there are λ2 − α 3’s
in B32. In turn, there are α 3’s in B31 and λ2 − α 3’s in B21. Therefore, the total number
of 3’s in B12 ∪B21 is equal to λ2, a contradiction.

So if x + y > λ + 1 a good swap always exists; recursively we can always apply a series
of good swaps until x + y ∈ {λ, λ + 1}. So we are left with the case when x + y = λ + 1.
Since λ > 2, either x > 2 or y > 2. By symmetry we may assume that x > 2. Then, since
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2 6 x 6 λ, we have that 1 6 y 6 λ − 1. Thus, X has distinct cells (r1, c1), (r2, c2) each
containing 3 and Y has a cell (r3, c3) containing 2 and a cell (r4, c4) containing 3.

Since cell (r4, c4) contains 3, there exists a row r5 ∈ R3 such that (r5, c4) contains 2.
Suppose that there exists a column c5 ∈ C3 such that (r2, c5) contains 3. Let Z be a diagonal
from B3,3 which includes (r5, c5). We can construct a balanced diagonal by including X
(except for cell (r2, c2)), Y (except for cell (r4, c4)), Z (except for cell (r5, c5)) and the cells
(r4, c2), (r2, c5) and (r5, c4).

Otherwise, row r2 contains only 2’s within B13. Similarly, column c4 contains only 2’s
within B31. Therefore cell (r3, c4) contains 3. Thus, there exists a column c6 ∈ C3 such that
(r3, c6) contains 2. Next, there exists a row r6 ∈ R3 such that (r6, c1) contains 2. Let Z be
a diagonal from B3,3 which includes (r6, c6).

Finally, we can construct a balanced diagonal by including X (except for cell (r1, c1)), Y
(except for cell (r3, c3)), Z (except for cell (r6, c6) and the cells (r6, c1), (r3, c6) and (r1, c3).

We next do the case λ = 2.

Theorem 5. Any frequency square of type F (6; 2, 2, 2) contains a balanced diagonal.

Proof. Let L be a frequency square of type F (6; 2, 2, 2). From Lemma 4, we may assume
without loss of generality that L1,1 = L1,2 = L2,1 = 1 and L2,2 = 2. Since there are four 3’s
in rows 1 and 2 and another four 3’s in columns 1 and 2, there are four 3’s in the block
{3, 4, 5, 6} × {3, 4, 5, 6} and without loss of generality we can assume L3,3 = L4,4 = 3.

Suppose that there are no 3’s in the block {5, 6} × {5, 6}. If there exists at least one 2
in this block, we can find a balanced diagonal. But if there are only 1’s in this block the
resultant partial structure does not complete to a frequency square of type F (6; 2, 2, 2).

Thus, without loss of generality, L5,5 = 3. If {L3,6, L6,3} = {1, 2} or {2, 2} we can
construct a balanced diagonal. Similarly, if {L4,6, L6,4} or {L5,6, L6,5} is equal to {1, 2}
or {2, 2} we are done. Therefore, without loss of generality, we may assume that L3,6 =
L4,6 = L6,3 = L6,4 = 1, L6,5 = 3 and L5,6 = 2. Hence, there are no more 3’s in the block
{3, 4, 5, 6} × {3, 4, 5, 6} and we are forced to have L6,6 = 2, L1,6 = L2,6 = 3 and L1,5 = 2.

If L5,4 = 2 there is a balanced diagonal on cells (1, 1), (2, 2), (3, 3), (4, 6), (5, 4) and (6, 5).
Similarly we are done if L5,3 = 2. Otherwise L5,4 = L5,3 = 1 and in turn, considering where
a 1 can be placed in row 2, L2,5 = 1. If L5,2 = 2, there is a balanced diagonal on cells
(1, 1), (2, 5), (3, 3), (4, 4), (5, 2) and (6, 6). Otherwise L5,2 = 3. Thus, L5,1 = 2; a balanced
diagonal is shown underlined below.

1 1 2 3
1 2 1 3

3 1
3 1

2 3 1 1 3 2
1 1 3 2
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Lemma 6. Let λ > 3. Suppose that L contains the following subarray:

e e
e f

,

for some e, f ∈ {1, 2, 3} such that e 6= f .
Let {g} = {1, 2, 3} \ {e, f}. Then either L contains one of the following subarrays (on

rows and columns disjoint to the above) or L contains a balanced diagonal.

g g
g e

g g
g f

.

Proof. Let e = 1, f = 2, g = 3, L1,1 = L1,2 = L2,1 = 1 and L2,2 = 2. We assume that
whenever Lr,c = Lr,c′ = Lr′,c = 3, where r, r′, c, c′ > 3, then Lr′,c′ = 3. If we can show that
such an L always contains a balanced diagonal, we are done.

Since λ > 3, we can assume, without loss of generality, that the set of rows is {1, 2} ∪
⋃α

i=1Ri and the set of columns is {1, 2} ∪
⋃α

i=1Ci where the cells in Ri ×Ci each contain 3,
1 6 i 6 α.

Let |Ri| = ai and |Ci| = bi where 1 6 i 6 α. Then clearly ai, bi ∈ {λ, λ − 1, λ − 2} for
each 1 6 i 6 α and

α
∑

i=1

ai =
α
∑

i=1

bi = 3λ− 2. (1)

(Note that since λ > 2, this implies that α > 3.) For each 1 6 i 6 α, the number of 3’s in
{1, 2} × Ci is equal to (λ− ai)bi; thus since there are no 3’s in the subarray {1, 2} × {1, 2},

0 = 2λ−
α
∑

i=1

(λ− ai)bi =
α

∑

i=1

a′ib
′

i − (α− 3)λ2, (2)

where a′i = λ − ai ∈ {0, 1, 2} and b′i = λ − bi ∈ {0, 1, 2}, for each i ∈ N(α). Thus
0 6 4α− (α− 3)λ2.

Suppose α > 3. Then 12/(α − 3) + 4 > λ2, so by inspection we must have (λ, α) ∈
{(3, 4), (3, 5), (4, 4)}. In the case (λ, α) = (4, 4), observe that the system of equations:

4
∑

i=1

a′i =
4

∑

i=1

b′i = 6,
4

∑

i=1

a′ib
′

i = 16

under the constraint a′i, b
′

i ∈ {0, 1, 2} for 1 6 i 6 α has no solution. By a similar observation,
the case when (λ, α) = (3, 5) is also impossible and, without loss of generality, the only
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possibility is when (λ, α) = (3, 4) and a1 = a2 = b1 = b2 = 1, a3 = b3 = 2 and a4 = b4 = 3:

1 1
1 2

3
3

3 3
3 3

3 3 3
3 3 3
3 3 3

,

with no other 3’s outside rows 1, 2 and columns 1, 2. Then clearly the entries in {1, 2}×{3, 4}
and {3, 4}×{1, 2} are each 3. Observe that column 9 has no 3’s in rows 1 and 2. If L1,9 = L2,9,
then we are done by considering cells {1, 2} × {2, 9} and cells {3, 4} × {1, 4}. Otherwise
L1,9 6= L2,9; again we are done by considering cells {1, 2} × {1, 9} and cells {3, 4} × {2, 3}.

Thus α = 3. Then, as above,

3
∑

i=1

a′i =
3

∑

i=1

b′i = 2,
3

∑

i=1

a′ib
′

i = 0.

If {a′i, a
′

2, a
′

3} = {b′1, b
′

2, b
′

3} = {0, 0, 2}, then {a1, a2, a3} = {b1, b2, b3} = {λ, λ, λ − 2} and
without loss of generality a1 = a2 = b1 = b3 = λ and a3 = b2 = λ − 2. It follows
that whenever 3 is in cells (r, c), (r, c′) and (r′, c), it is also in cell (r′, c′). So a balanced
diagonal exists by Lemma 4. Thus, without loss of generality, we may otherwise assume that
a1 = λ − 2, b2 = b3 = λ − 1 and a2 = a3 = b1 = λ. Clearly {1, 2} × C1 contains only 3. It
follows there exists a column c′ ∈ C2 ∪ C3 such that (2, c′) contains 1 and (1, c′) contains 2.
Thus we have a subarray of the form

1 2
1 1

within rows 1 and 2, using column 1 and one column from C2 ∪ C3.
Next, consider R2×{1, 2}. If all the 3’s are in one column in this subarray, then, similarly

to before, we are done by Lemma 4. Otherwise, there exists a subarray of the form

e 3
3 3

where e ∈ {1, 2}, the rows are in R2, column 2 and one column from C2 can be used. Since
λ > 3, this can be made to avoid the previous subarray, and we are done.

Lemma 7. Let λ > 3. If L does not contain a balanced diagonal, then L contains a 4 × 4
subarray with (possibly non-disjoint) diagonals D1, D2, D3 and D4, where:

• D1 contains symbol 1 twice and each other symbol once;
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• D2 contains symbol 2 twice and each other symbol once;

• D3 contains symbol 3 twice and each other symbol once; and

• D4 contains two symbols twice each, with the remaining symbol not included.

Proof. If L contains row- and column- disjoint subarrays equivalent to:

1 1
1 2

3 3
3 2

observe that we are done. Moreover, if L contains row and column disjoint subarrays equiv-
alent to:

1 2
1 3

2 3
2 1

observe that we are done. We call these Cases 1 and 2, respectively and refer to them later
in the proof. In Case 2, the transpose of either 2× 2 subarray is also allowed.

From Lemmas 4 and 6, we are left, without loss of generality, with the case when there
is a substructure as follows:

1 1
1 2

2 2
2 3

,

on rows 1, 2, 3 and 4 and columns 1, 2, 3 and 4. Note that if a diagonal of the form D3 exists
in this subarray we are done.

Let the remaining sets of rows and columns be R′ and C ′ respectively. If there is a column
c ∈ C ′ such that (3, c) and (4, c) each contain 3, we obtain Case 1 by swapping columns 3
and c and we are done. Similarly, if there is a row r ∈ R′ such that (3, r) and (4, r) each
contain 3, we are done.

Claim: Either there exists a column c′ ∈ C ′ such that the set of entries in (3, c′) and
(4, c′) is {1, 3}; or there exists a row r′ ∈ R′ such that the set of entries in (r′, 3) and (r′, 4)
is {1, 3}. If not, for each occurrence of entry 3 in a cell (3, c′) where c′ ∈ C ′, entry 2 must
occur in (4, c′). Also, for each occurrence of entry 3 in a cell (4, c′) where c′ ∈ C ′, entry 2
must occur in (3, c′). Since cells (3, 3), (3, 4) and (4, 3) each contain 2, there are at most
λ − 1 columns in C ′ containing 3 in row 3 and at most λ − 2 columns in C ′ containing 3
in row 4. Thus, there exists at least one 3 in cells (3, 1) or (3, 2) and at least one 3 in cells
(4, 1) or (4, 2). By symmetry, there exists at least one 3 in cells (1, 3) or (2, 3) and at least
one three in cells (1, 4) or (2, 4).

If 3 is in cell (4, 2), then D3 exists either on the set of cells {(1, 1), (2, 3), (3, 4), (4, 2)}
or on the set of cells {(1, 3), (2, 1), (3, 4), (4, 2)}. Thus, 3 is not in cell (4, 2) and 3 is in cell
(4, 1). Similarly, 3 is in cell (1, 4) (and not in cell (2, 4)). If 3 is in cell (3, 2) then D3 exists
on cells {(1, 4), (2, 1), (3, 2), (4, 3)}. Thus, 3 is in cell (3, 1) (and not in cell (3, 2)).
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By further inspection, the only possible scenario that does not allow diagonal D3 to exist
in the first four rows and columns is:

1 1 3 3
1 2 1 1
3 1 2 2
3 1 2 3

.

But then we are done (as in Case 1), considering the entries in cells {1, 2} × {1, 4} and
{3, 4} × {3, c′}, since there exists c′ such that (3, c′) and (4, c′) contain entries 3 and 2,
respectively.

Hence, our claim is true. Without loss of generality, there exists a column c′ ∈ C ′ such
that the set of entries in (3, c′) and (4, c′) is {1, 3}. If there exists a column c′′ ∈ C ′ such that
c′′ 6= c′ and cells (1, c′′) and (2, c′′) each contain 3 we are done, since we have Case 2 on cells
{1, 2} × {2, c′′} and cells {3, 4} × {3, c′}. If there exists a column c′′ ∈ C ′ such that c′′ 6= c′

and the set of entries in (1, c′′) and (2, c′′) is {2, 3} we are also done, since we have Case 2
on cells {1, 2} × {1, c′′} and cells {3, 4} × {3, c′}.

Since cells (1, 1) and (1, 2) each contain 1, there are at most λ − 2 columns in C ′ \ {c′}
containing 3 in row 2. It follows that 3 either exists in cell (2, 3) or cell (2, 4).

If there is a 3 in cell (4, 2), then we can find diagonal D3 and we are done. Therefore, 3
occurs as an entry at least λ− 1 > 1 times in column c2 (within rows R′).

Let r′ ∈ R′ be such that (r′, 2) contains 3. Suppose that (r′, 1) contains 1. Then we are
back to Case 1 on cells {1, r′} × {1, 2} and {3, 4} × {3, 4}. If (r′, 1) contains 2, we are back
to Case 2 on cells {1, r′} × {1, 2} and {3, 4} × {3, c′}. Thus, (r′, 1) contains 3. But then we
have Case 2 on cells {2, r′} × {1, 2} and {3, 4} × {3, c′}.

In our proof of Theorem 3, we also need the following lemma.

Lemma 8. Let L be a frequency square of type F (3λ;λ, λ, λ) and suppose that there is a
k × k subarray missing a particular entry. Then k 6 3λ/2.

Proof. Let R and C be subsets of the rows and columns, respectively, such that |R| = |C| = k
and the cells R × C are missing entry 1 (say). Let R′ = N(3λ) \ R and C ′ = N(3λ) \ C.
Then there are kλ 1’s in R′ × C and in turn, (3λ− 2k)λ 1’s in R′ × C ′. Thus 2k 6 3λ.

Finally, we are ready to prove Theorem 3:

Proof. The case λ = 1 is trivial and the case λ = 2 is done by Theorem 5. Otherwise suppose,
for the sake of contradiction, that there exists a frequency square L of type F (3λ;λ, λ, λ) with
no balanced diagonal, where λ > 3. From Lemma 7, there is a 4×4 subarray in L as described
in the statement of that lemma. Let this subarray be on the set of rows R0 = {1, 2, 3, 4} and
the set of columns C0 = {1, 2, 3, 4}, with R′ and C ′ the remaining sets of rows and columns.
Observe that each entry occurs in at least two cells of R0 × C0.

At any stage in the following, M is the main diagonal on the subarray R′ × C ′ and α, β
and γ are the number of 1’s, 2’s and 3’s, respectively, within M . Thus α + β + γ = 3λ− 4.
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Let ∆ = γ−α. Let R1 and C1 be the sets of rows and columns, respectively, which contain 1
on the main diagonal (within M), with R2, C2, R3 and C3 similarly defined. For 0 6 i, j 6 3
let Bi,j be the block of cells Ri ×Cj. At certain steps we will perform a permutation of rows
in R′ or columns of C ′, changing the entries in M ; we recalculate α, β, γ, ∆ (and in turn
R1, R2, R3, C1, C2 and C3) accordingly, assuming always (by relabelling if necessary) that
α 6 β 6 γ.

If ∆ = 1 then α = λ− 2, β = γ = λ− 1 and we are done by Lemma 7. Otherwise ∆ > 2.
We call a permutation of R′ or C ′ good if it decreases the value of ∆ or creates a balanced
diagonal on M together with D4 (in the case ∆ = 2). We are done if we can show that there
always exists a good permutation, so we assume no such permutation exists for the sake of
contradiction.

Case 1: α + 3 6 β. If there is a 1 in cell (r, c) in block B2,3, then the permutation (rc)
(applied to the rows) is good. Similarly, there is no 1 in block B3,2. If there is a 1 in cell
(r, c) in block B3,3, then the permutation (rc) (applied to the rows) is good, unless β = γ
and cell (c, r) contains 2. In this latter case, if there is a 1 in cell (r′, c′) of block B2,2, then
the permutation (r′c′)(rc) applied to the rows is always good. If there are no 1’s in block
B2,2, then we globally swap entry 2 with entry 3 within L, noting that β = γ still holds. In
any case we may assume that 1 is neither in block B2,3 nor block B3,3.

Thus, the 1’s in the columns of C3 are in rows R0 ∪ R1. Therefore, α > λ − 4. If
α = λ− 4, every entry in block B0,3 must be 1; hence γ 6 λ. If γ < λ, α+ β + γ < 3λ− 4, a
contradiction. Hence, γ = λ. However, then there are no 1’s in B0,0, a contradiction. Thus,
α > λ− 3. But then β, γ > λ, which gives α + β + γ > 3λ− 4, again a contradiction.

Case 2: α + 2 = β. Note that γ > β; otherwise α + β + γ 6≡ 2 (mod 3). Therefore, if
there is a 1 in block B3,3 or B2,3, a good permutation exists, similarly to the previous case.
Furthermore, the 1’s in the columns C3 are in rows R0 ∪R1. Thus, α > λ− 4. If α = λ− 4,
then the first row must contain γ = λ + 2 > λ 1’s. If α > λ− 2, then α + β + γ > 3λ− 4.
Hence α = λ− 3, β = λ− 1 and γ = λ.

For each 1 in a cell (r, c) of block B1,3, if there is also a 1 in cell (c, r) (of block B3,1),
the permutation (rc) applied to the rows is good. A similar result holds for each 1 in block
B3,1. Therefore, without loss of generality, we may assume there are at most λ(λ− 3)/2 1’s
in block B1,3. But the number of 1’s in B0,3 is at most 4λ − 2 (since B0,0 has at least two
1’s). But the total number of 1’s in columns C3 is λ2, so (4λ − 2) + λ(λ − 3)/2 > λ2. It
follows that λ < 5.

Suppose that λ = 4. Without loss of generality, suppose there are at most two 1’s in
block B1,3. Thus, there are at least 14 1’s in B0,3. But there are already at least two 1’s
in R0 × C0. We thus have that B0,2 has no 1’s. But B3,2 also has no 1’s, so each cell in
B1,2 ∪B2,2 contains 1, which is impossible as the main diagonal contains 2 within B2,2.

Otherwise λ = 3. Then R1 and C1 are empty and B0,3 contains nine 1’s. Since R0 × C0

contains at least two 1’s, B0,2 contains at most one 1. But there are no 1’s in B3,2 and at
most two 1’s in B2,2 (as this block has 4 cells), contradicting the fact that each column of C2
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must have three 1’s.

Case 3: α = β or α + 1 = β and α 6 λ − 3. Since α + β + γ = 3λ − 4, observe that
γ > β + 3. Since no good permutations exist, there are only 3’s in the block B3,3. But then
γ 6 λ and α + β + γ 6 3λ− 5, a contradiction.

Case 4: α = β = λ − 2 and γ = λ. Recall the existence of the diagonal D4 from the
statement of Lemma 7. If D4 contains no 3’s there exists a balanced diagonal. Hence, D4

contains entry 3 twice.
First suppose there are only 3’s in the block B3,3. Then, to avoid a good permutation,

there are only 1’s in blocks B2,3 and B3,2 and only 2’s in blocks B1,3 and B3,1. Since λ > 3,
R1, R2, C1 and C2 are each non-empty and |R3| = |C3| > 3. Let r1 ∈ R1, r2 ∈ R2 and r3, r4
distinct rows from R3. Then the permutation (r1r3)(r2r4) (applied to the rows) is good, a
contradiction.

Thus, without loss of generality, there is a cell (r, c) in B3,3 containing 2; the cell (c, r)
must also contain 2 otherwise (rc) is a good permutation. If D4 is missing 2 we are done;
therefore D4 has entry 2 twice and entry 3 twice. If there is also a cell (r, c) in B3,3 contain-
ing 1, then again cell (c, r) must contain 1. However, we are now done by the existence of
the diagonal D4. Therefore, B3,3 does not contain entry 1.

Next, suppose there is a row r1 of B3,3 with no 2’s. Then column r1 contains no 2’s
in B3,3. There exists a cell (r2, c3) of B3,3 containing 2. Then the permutation (r1r2c3) is
good when applied to the columns. Hence, every row and column of B3,3 contains a 2.

Next, suppose that there is a 1 in cell (r1, c2) of B2,2. Let (r3, c4) be a cell of B3,3

containing 2; from above, (c4, r3) also contains 2. Then the permutation (r1c2)(r3c4) is
always good, using D4 in the case when (c2, r1) contains 1. Thus, there are no 1’s in B2,2.

Suppose that there is a 1 in B2,3 in cell (r1, c2), say. Then there exists r3 ∈ R3 such that
(r3, c2) contains 2. Observe that cells (r1, r1) and (c2, r3) each contain 2 and cells (c2, c2) and
(r3, r3) each contain 3. However regardless of whether cell (r3, r1) contains a 1, 2 or a 3, the
permutation (r1c2r3) (applied to the columns) is always good (possibly using D4).

Thus, there are no 1’s in B2,3; similarly there are no 1’s in B3,2. Therefore, by Lemma 8,
λ+ (λ− 2) 6 3λ/2 and λ 6 4. If λ = 4 then there are 24 1’s in B1,2 ∪B1,3 ∪B0,2 ∪B0,3 and
thus there are no 1’s in B0,0, a contradiction.

So we are left with the case λ = 3. Observe there are at least two 1’s in B0,2 (since
B2,2 ∪ B3,2 contains no 1’s and |R1| = 1 = |C2|). Hence, there are at most eight 1’s in B0,3

and at least one 1 in B3,1. Similarly, there is at least one 1 in B1,3. If there is a 1 in cell (r, c)
of B1,3 and in cell (c, r) of B3,1, the permutation (rc) applied to the rows is good. Thus, there
exist rows r1 ∈ R1 and r2, r3 ∈ R3 such that (r1, r2) and (r3, r1) each contain 1 and r2 6= r3.
Observe that (r1, r1) contains 1, (r2, r2) and (r3, r3) each contain 3 and (r2, r3) contains
either 2 or 3. Therefore, the permutation (r1r2r3) (applied to the columns) is good.
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4 Frequency squares with m > 4

We conjecture the following.

Conjecture 9. Let L be a frequency square of type F (mλ;λm). If (m − 1)λ is even, L
contains a balanced diagonal.

We have shown in the previous sections this conjecture to be true for m ∈ 2, 3 (it is
trivially true for m = 1). In this section we make some observations and constructions that
support (or at least don’t contradict) this conjecture and show its connection with existing
conjectures and known results.

The following conjecture is commonly known (including in this paper) as Ryser’s conjec-
ture, though, as pointed out in [13], Ryser’s original conjecture was that each Latin square
of order n has an odd number of transversals [11]. It is known to be true for n 6 9 [10].

Conjecture 10. (Ryser’s conjecture) Each Latin square of odd order n has at least one
transversal.

Setting λ = 1 with m odd, observe that Conjecture 9 implies Ryser’s conjecture.
Next, we explore a method to construct a frequency square from a Latin square, and

explore how the existence or non-existence of transversals in the Latin square affects the
existence or non-existence of balanced diagonals in the resultant frequency square. To this
end, given a Latin square L of order m, let L(λ) be the frequency square of type F (mλ;λm)
created by replacing each cell in L containing entry e with a λ× λ block of e’s.

A k-plex in a Latin square of order n is a subset in which each row, column and entry
occurs exactly k times. Note that a 1-plex is a transversal.

Theorem 11. If a Latin square has a k-plex and k divides λ then L(λ) has a balanced
diagonal. In particular, if a Latin square L has a transversal, then L(λ) has a balanced
diagonal for any λ.

Proof. Let L be a Latin square with a k-plex K and let λ/k = α. It is well-known that
any regular bipartite graph partitions into perfect matchings; thus we may partition K into
diagonals D1, D2, . . . , Dk, noting, in general that these diagonals are not necessarily balanced
(i.e. there may be repeated entries within a particular diagonal).

For each cell (r, c) in diagonal Di, 1 6 i 6 k, choose the entries in cells

{(λ(r − 1) + j, λ(c− 1) + j) | i(α− 1) + 1 6 j 6 iα}

from L(λ). Overall we have constructed a balanced diagonal in L(λ).

Since any Latin square of order n is by definition an n-plex, we have the following
corollary.

Corollary 12. Let L be an n × n Latin square. If n divides λ, the frequency square L(λ)
contains a balanced diagonal.
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The following generalization of Ryser’s conjecture is implied by Conjecture 8.5 from [13],
originally given in [3] (and attributed to Rodney [2], p. 143); independently given also in [12].

Conjecture 13. If n is even, every Latin square of order n has a 2k-plex, for each k ∈
N(n/2). If n is odd, every Latin square of order n has a k-plex for each k ∈ N(n).

If true this conjecture, together with Theorem 11, would imply that if L is a Latin square
of order n, L(λ) has a balanced diagonal whenever (n−1)λ is even, supporting Conjecture 9
above.

Conversely, the existence of Latin squares without any odd plexes is known, for example
certain Cayley tables [12]:

Theorem 14. If G is a group of finite order n with a non-trivial cyclic Sylow 2-subgroup,
then the Cayley table of G contains no k-plex for any odd k.

For other results on the existence of Latin squares that do not contain plexes of certain
sizes, see [4, 13].

Next, we construct frequency squares that do not possess a balanced diagonal. Let Bn

be the Latin square of order n where cell (i, j) contains i + j (mod n); we further replace
each 0 with n to be consistent with definitions earlier in the paper, for our purposes this is a
cosmetic change. That is, Bn is the addition table for the integers modulo n. It is well-known
that Bn possesses a transversal if and only if n is odd. Note that B2(λ) is equivalent to A2λ

from Section 2. The following theorem is similar to the Delta lemma, first introduced in [4]
and [5].

Theorem 15. The frequency square Bn(λ) possesses a balanced diagonal if and only if
(n− 1)λ is even.

Proof. If n is odd, the main diagonal of Bn is a transversal. By Theorem 11, Bn(λ) has a
balanced diagonal for any λ. If n is even, a 2-plex of Bn is given by the main diagonal and
the diagonal of cells of the form (r, r + 1), r ∈ N(n) (where n + 1 is replaced by 1); then
apply Theorem 11. If λ is even, again apply Theorem 11 to obtain a balanced diagonal in
Bn(λ).

Otherwise suppose that n is even and λ is odd and (for the sake of contradiction) that
Bn(λ) has a balanced diagonal T . For each cell (r, c) in Bn(λ) containing entry e, let

∆(r, c) = ⌈r/λ⌉+ ⌈c/λ⌉ − e.

Observe that ∆(r, c) ≡ 0 (mod n) for each cell (r, c) in Bn(λ). However, since T is a balanced
diagonal, each column appears exactly once and each entry appear exactly λ times in T , so:

∑

(r,c)∈T

∆(r, c) =
∑

r∈N(nλ)

⌈r/λ⌉ = λ

(

n

2

)

≡
n

2
(mod n),

a contradiction.

13



Finally we show the existence of frequency squares not equivalent to L(λ) for some
Latin square L, which do not contain balanced diagonals. Let L be a frequency square
of type F (mλ;λm) and let α be a divisor of m. Let Lα be the frequency square of type
F (mλ; (λα)m/α) formed by replacing each entry e of L with ⌈e/α⌉. Observe the following.

Lemma 16. If there is a balanced diagonal in a frequency square L of type F (mλ;λm) and
α divides m, there is a balanced diagonal in the corresponding set of cells in Lα.

This lemma allows us to construct many classes of frequency squares without balanced
diagonals (without directly creating any counterexamples to Conjecture 9). For example,
if L is a frequency square of dimensions 2m× 2m, where m is odd, and all odd entries occur
in the top-left or bottom right quadrants (with even entries in the other quadrants), then Lm

is equivalent to A2m, which does not have a balanced diagonal by Lemma 1; hence L does
not have a balanced diagonal.
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