
ar
X

iv
:1

80
1.

02
37

0v
1

 [
m

at
h.

C
O

]
 8

 J
an

 2
01

8

Approximately locating an invisible agent

in a graph with relative distance queries

Dennis Dayanikli Dieter Rautenbach

Institut für Optimierung und Operations Research, Universität Ulm, Ulm, Germany,

{dennis.dayanikli,dieter.rautenbach}@uni-ulm.de

Abstract

In a pursuit evasion game on a finite, simple, undirected, and connected graph G, a

first player visits verticesm1,m2, . . . of G, where mi+1 is in the closed neighborhood of

mi for every i, and a second player probes arbitrary vertices c1, c2, . . . of G, and learns

whether or not the distance between ci+1 and mi+1 is at most the distance between

ci and mi. Up to what distance d can the second player determine the position of the

first? For trees of bounded maximum degree and grids, we show that d is bounded by

a constant. We conjecture that d = O(log n) for every graph G of order n, and show

that d = 0 if mi+1 may differ from mi only if i is a multiple of some sufficiently large

integer.

Keywords: pursuit and evasion game

1 Introduction

We study a variant of pursuit and evasion games formalized and studied by Britnell and

Wildon [2], Komarov and Winkler [6], Haslegrave [4], Seager [8], and Rautenbach and

Schneider [7]. In these games, further studied in [1, 3, 5, 9], one player tries to catch or

locate a second player moving along the edges of a graph, using information concerning

the current position of the second player. Our game is also played by two players on a

finite, simple, undirected, and connected graph G known to both of them, and proceeds

in discrete time steps numbered by positive integers. One player, called the mouse, moves

along the edges of G. At time i, the mouse occupies some vertex mi of G, and, if i is at

least 2, then mi is either mi−1 or a neighbor of mi−1, that is, mi belongs to the closed

neighborhood NG[mi−1] of mi−1 in G, and the mouse can be considered to move with unit

speed. The second player, called the cat, probes vertices of G one by one in the same

discrete time steps. At time i, the cat probes some vertex ci of G, where ci can be chosen

without any restriction within the vertex set V (G) of G.

The essential difference of our game, as compared to those mentioned above, consists

in the information provided to the cat. If i is at least 2, then, after mi and ci have been

decided by the two players, the cat learns whether

1

http://arxiv.org/abs/1801.02370v1

• di ≤ di−1 or

• di > di−1,

where di denotes the distance distG(ci,mi) in G between ci and mi. The goal of the cat is

to locate the mouse as precisely as possible, while the goal of the mouse is to hinder being

well located. To make this more precise, we introduce some further terminology.

A game g on G is a pair of sequences ((mi)i∈N, (ci)i∈N) of possible moves mi for the

mouse, and ci for the cat. For such a game g, and an integer i at least 2, let

bi =

1 , if di ≤ di−1, and

0 , if di > di−1,

that is, the information available to the cat for its choice of ci+1 consists of G and the

i − 1 bits b2, . . . , bi. Note that the cat chooses c1 and c2 without any information about

the whereabouts of the mouse. Based on the available information, the cat knows that

mi belongs to the set Mi, where Mi is the set of all vertices u of G such that there are

vertices m̃1, . . . , m̃i of G with

• m̃i = u,

• m̃j ∈ NG[m̃j−1] for every j ∈ [i] \ {1}, and

• distG(cj , m̃j) ≤ distG(cj−1, m̃j−1) if and only if bj = 1 for every j ∈ [i] \ {1},

where [i] denotes the set of positive integers at most i.

If the radius radG(M) of a set M of vertices of G is defined as

min
{

max
{

distG(u,m) : m ∈M
}

: u ∈ V (G)
}

,

then the cat wants to minimize the radius of Mi. Note that the vertex u in this definition

may not belong to M .

We say that the cat follows a strategy (c1, c2; f) in the game ((mi)i∈N, (ci)i∈N) on G if

c1 and c2 are vertices of G, and

f :
⋃

i∈N

{0, 1}i → V (G)

is a function such that c1 and c2 are the two first vertices probed by the cat, and ci+1 =

f(b2, . . . , bi) for every integer i at least 2. Furthermore, we say that the cat can localize

the mouse up to distance d within time t on G if there is some strategy σ such that for

every game ((mi)i∈N, (ci)i∈N) on G in which the cat follows the strategy σ, there is some

positive integer i at most t with radG(Mi) ≤ d.

While the cat only knows G and the bi, and therefore also the set Mi, we may assume

that the mouse knows G and also any strategy followed by the cat. Note that we consider

2

a game to be infinite, and that we did not specify any winning conditions. A reasonable

way to do so is to fix a distance threshold d, and to declare the cat to be the winner on

the pair (G, d) if it can locate the mouse up to distance d within finite time.

A natural question concerning our game is how precisely the cat can localize the mouse

on a given graph. Our first result provides an answer for trees of bounded maximum degree.

Theorem 1.1. The cat can localize the mouse up to distance 4∆− 6 within time O(h∆)

on every tree T of maximum degree ∆ at least 2 and radius h.

Another natural type of graphs to consider are grids, that is, the Cartesian product

Pn�Pm of paths. For these we show the following.

Theorem 1.2. The cat can localize the mouse up to distance 8 within time O(log n) on

the grid Pn�Pn.

Both our results concern graphs of bounded maximum degree, and we pose the follow-

ing general conjecture.

Conjecture 1.3. The cat can localize the mouse up to distance O(log n) on a connected

graph G of order n.

The reason for the O(log n) term in this conjecture is that this many bits suffice to

identify each vertex, while the mouse may move this many units of distance in the time

needed to acquire this many bits.

Our final result establishes a weak version of Conjecture 1.3. In order to facilitate the

task for the cat, we slow down the mouse as follows. For some positive integer k, a game

((mi)i∈N, (ci)i∈N) on a graph G is k-slow if mi = mi−1 for every integer i at least 2 such

that (i − 1) 6≡ 0 mod k, that is, the mouse can be considered to move with speed 1/k.

We say that the cat can localize a k-slow mouse up to distance d on G if there is some

strategy σ such that for every k-slow game ((mi)i∈N, (ci)i∈N) on G in which the cat follows

the strategy σ, there is some positive integer i with radG(Mi) ≤ d.

Theorem 1.4. If ∆ is an integer at least 2, then the cat can localize a 4∆-slow mouse up

to distance 0 on every connected graph G of maximum degree at most ∆.

In Section 2 we prove our results, and in Section 3 we present some open problems.

2 Proofs

For all three of our results, we give simple proofs capturing essential observations. For

Theorems 1.1 and 1.2, minor improvements are possible at the cost of tedious case analysis.

Proof of Theorem 1.1. Let T , ∆, and h be as in the statement. In order to express infor-

mation gathered by the cat, we introduce the notation u
i
→ v, where uv is an edge of T ,

3

and i ∈ N, meaning that mi belongs to the component of T − uv that contains v.

Input: The relative distance information “di ≤ di−1” or “di > di−1” after

specifying ci for some integer i at least 2.

Output: A statement of the form “distG(r,mi) ≤ 4∆ − 6” at the end of some

round i.

1 begin

2 r ← r0; I ← ∅; i← 1;

3 while Tr has depth more than 4∆ − 6 do

4 Let X be the set of children of r;

5 while |X| ≥ 2 do

6 Let u and v be distinct vertices in X; ci ← u; ci+1 ← v;

7 if di+1 ≤ di then

8 X ← X \ {u}; I ← I ∪
{

u
i+1
→ r

}

;

9 else

10 X ← X \ {v}; I ← I ∪
{

v
i+1
→ r

}

;

11 end

12 i← i+ 2;

13 end

14 Let r+ be the unique element in X;

15 Let Y be the set of children of r+;

16 replace← false;

17 while replace=false and Y 6= ∅ do

18 Let u be in Y ; ci ← u; ci+1 ← r;

19 if di+1 ≤ di then

20 Y ← Y \ {u}; I ← I ∪
{

u
i+1
→ r+

}

;

21 else

22 replace← true; I ← I ∪
{

r
i+1
→ r+

}

;

23 end

24 i← i+ 2;

25 end

26 if replace=true then

27 r ← r+;

28 else

29 return “distG(r,mi) ≤ 4∆− 6”; break;

30 end

31 end

32 return “distG(r,mi) ≤ 4∆ − 6”;

33 end

Algorithm 1: Cat on a Tree

4

A key ingredient for the cat’s strategy is the following simple observation: If u and w

are two vertices of T with a common neighbor v, and the cat chooses ci equal to u and

ci+1 equal to w for some i ∈ N, then di+1 ≤ di implies u
i+1
→ v, while di+1 > di implies

w
i+1
→ v. In fact, if mi+1 does not belong to the component of T −uv that contains v, then

di+1 = distT (ci+1,mi+1) = distT (ci,mi+1) + 2 ≥ distT (ci,mi) + 1 > di, which proves the

first implication, and the proof of the second implication is similar.

The cat chooses a center vertex r0, and considers T to be rooted in r0. By the choice

of r0, the depth of T is h. For a vertex r of T , let Tr denote the subtree of T rooted in r

that contains r and all descendants of r.

The algorithm Cat on a Tree, cf. Algorithm 1, specifies the strategy for the cat.

Note that the game progresses one round whenever the cat specifies some ci. Throughout

the game, the cat maintains a local root r initially equal to r0. The set I contains the

information of the form “u
i
→ v” already gathered by the cat, and it is initially empty.

In each iteration of the outer while-loop in line 3, the cat either replaces r with one of

its children r+ in line 27 or returns the statement “distG(r,mi) ≤ 4∆− 6” in line 29 and

terminates. At the beginning of each iteration of the outer while-loop, we have

either i = 1 or
(

i > 1 and mi−1 belongs to Tr

)

. (1)

The second case is expressed by the element r−
i−1
→ r of I added in line 22, where r− is

the parent of r. For the first iteration, (1) is trivial, and for later iterations, we will show

it by an inductive argument. The outer while-loop is no longer performed if the depth of

Tr is at most 4∆ − 6, which, by (1), implies that the output in line 32 is correct.

Now, we consider an iteration of the outer while-loop, and assume that (1) holds at

its beginning. Let i0+1 be the value of i at the beginning of that iteration, that is, i0 = 0

for the very first iteration. The first inner while-loop in line 5 exploits the key observation

made above. It follows that there is an ordering u1, . . . , ux of the children of r in T such

that, at the end of the first inner while-loop,

uj
i0+2j
→ r ∈ I for every j in [x− 1], (2)

and the vertex r+ in line 14 equals ux. Within the second inner while-loop in line 17,

the cat may replace r with r+ in line 27, in which case it concludes the current iteration

of the outer while-loop. Note that this happens exactly if replace is set to true, and

r
i+1
→ r+ is added to I in line 22, that is, (1) holds at the end of the considered iteration

of the outer while-loop, which concludes the inductive proof of (1).

If replace is never set to true during the second inner while-loop, then, similarly as

for the first inner while-loop, it follows that there is an ordering v1, . . . , vy of the children

of r+ in T such that at the end of the second inner while-loop, the set I contains

vj
i0+2(x−1)+2j

→ r+ for every j in [y]. (3)

5

In this case, the cat returns the statement “distG(r,mi) ≤ 4∆ − 6” in line 29, where

i = i0 +2x+2y− 2, and terminates the computation. To show the correctness of Cat on

a Tree, we need to argue that this statement is correct. Indeed, if mi belongs to Tuj
for

some j in [x− 1], then, by (2), uj
i0+2j
→ r ∈ I, which implies that

distT (r,mi) ≤ i− (i0 + 2j)

= (i0 + 2x+ 2y − 2)− (i0 + 2j)
j≥1
≤ (i0 + 2x+ 2y − 2)− (i0 + 2)

= 2x+ 2y − 4

≤ 2∆ + 2(∆ − 1)− 4

= 4∆− 6,

where we used x ≤ ∆ and y ≤ ∆− 1.

If mi belongs to Tvj for some j in [y], then, by (3), vj
i0+2(x−1)+2j

→ r+ ∈ I, which implies

that

distT (r,mi) ≤ distT (r, r
+) + i− (i0 + 2x+ 2j − 2)

= 1 + (i0 + 2x+ 2y − 2)− (i0 + 2x+ 2j − 2)
j≥1
≤ 1 + (i0 + 2x+ 2y − 2)− (i0 + 2x)

= 2y − 1

≤ 2∆ − 3

≤ 4∆ − 6,

where we used y ≤ ∆− 1.

If mi ∈ {r, r
+}, then distT (r,mi) ≤ 1 ≤ 4∆ − 6, where we used ∆ ≥ 2.

Finally, if mi does not belong to Tr, then, by (1), r−
i0→ r ∈ I, which implies that

distT (r,mi) ≤ i− i0

= (i0 + 2x+ 2y − 2)− i0

= 2x+ 2y − 2

≤ 2(∆ − 1) + 2(∆ − 1)− 2

= 4∆ − 6,

where we used x ≤ ∆− 1 and y ≤ ∆− 1. Note that the existence of r− implies that r has

at most ∆ − 1 children. Altogether, the correctness of Cat on a Tree follows, and we

consider its running time.

The outer while-loop is executed at most max{0, h − (4∆ − 6)} times. If, in some

execution of the outer while-loop, r has x children, and r+ has y children, then the first

inner while-loop is executed x − 1 ≤ ∆ − 1 times, while the second inner while-loop is

6

executed at most y ≤ ∆ − 1 times. Since in each of these executions of the inner while-

loops, the discrete time proceeds exactly two units, Cat on a Tree terminates in some

round i with i ≤ 2max{0, h − (4∆ − 6)}((∆ − 1) + (∆ − 1)) = O(h∆), which completes

the proof.

For ∆ ≥ 3, with some more case analysis, it is possible to improve 4∆ − 6 to 4∆ − 7.

For ∆ = 2, that is, on a path, say of order n, the cat can localize the mouse up to distance

2 within time O(log n). The corresponding strategy is similar to the strategy used in the

following proof.

For integers i and j, let [i, j] equal {k ∈ Z : i ≤ k ≤ j}.

Proof of Theorem 1.2. Let [n] × [n] denote the vertex set of Pn�Pn, where two vertices

(x, y) and (x′, y′) are adjacent if and only if |x− x′|+ |y − y′| = 1.

Suppose that

Mi ⊆
[

xi, xi + ∂xi

]

×
[

yi, yi + ∂yi

]

⊆
[

n
]

×
[

n
]

(4)

for some positive integers i, xi, ∂xi, yi, and ∂yi. For i = 1, for instance, M1 ⊆ [1, 1+ (n−

1)] × [1, 1 + (n − 1)] = [n] × [n]. If ∂xi is even, then let px = ∂xi

2 − 1, and if ∂xi is odd,

then let px = ∂xi

2 −
1
2 . Let py be defined similarly using ∂yi. Now, the cat chooses

ci+1 = (xi + px, yi + py),

ci+2 = (xi + px + 2, yi + py), and

ci+3 = (xi + px + 2, yi + py + 2).

Arguing similarly as for the key observation exploited in the proof of Theorem 1.1, it

follows that

Mi+3 ⊆
[

xi+3, xi+3 + ∂xi+3

]

×
[

yi+3, yi+3 + ∂yi+3

]

⊆
[

n
]

×
[

n
]

, where (5)

∂xi+3 ≤

⌈

∂xi
2

⌉

+ 4, (6)

∂yi+3 ≤

⌈

∂yi
2

⌉

+ 3, and (7)

xi+3, ∂xi+3, yi+3, and ∂yi+3 are positive integers. Indeed, suppose that ∂xi is even, ∂yi is

odd, di+2 ≤ di+1, and di+3 > di+2. In this case, it follows that

mi ∈
[

xi, xi + ∂xi

]

×
[

yi, yi + ∂yi

]

,

mi+1 ∈
[

xi − 1, xi + ∂xi + 1
]

×
[

yi − 1, yi + ∂yi + 1
]

,

mi+2 ∈
[

xi +
∂xi
2

, xi + ∂xi + 2
]

×
[

yi − 2, yi + ∂yi + 2
]

, and

mi+3 ∈
[

xi +
∂xi
2
− 1, xi + ∂xi + 3

]

×
[

yi − 3, yi +
∂yi
2

+
1

2

]

.

7

See Figure 1 for an illustration.

r r

r

✲ mi+2

❄

mi+3

1 2

3

Figure 1: An illustration for the case ∂xi = 10, ∂yi = 7, di+2 ≤ di+1, and di+3 > di+2.

We obtain

∂xi+3 =
(

xi + ∂xi + 3
)

−

(

xi +
∂xi
2
− 1

)

=
∂xi
2

+ 4 and

∂yi+3 =

(

yi +
∂yi
2

+
1

2

)

−
(

yi − 3
)

=

⌈

∂yi
2

⌉

+ 3,

and (5), (6), and (7) follow. All remaining cases are similar; we leave the details to the

reader.

Note that
⌈

x
2

⌉

+ 4 < x for x ≥ 10, and that
⌈

y
2

⌉

+ 3 < y for y ≥ 8. Therefore,

iteratively choosing the vertices as above, the cat can ensure that (4) holds with ∂xi ≤ 9

and ∂yi ≤ 7 for some i = O(log n). If either ∂xi < 9 or ∂yi < 7, then we obtain

radG(Mi) ≤ 8. If ∂xi = 9 and ∂yi = 7, then choosing ci+1, ci+2, and ci+3 with the roles

of the x- and y-coordinates exchanged, we obtain, using (6) and (7), that (5) holds with

∂xi+3 ≤
⌈

9
2

⌉

+ 3 = 8 and ∂yi+3 ≤
⌈

7
2

⌉

+ 4 = 8, which implies radG(Mi+3) ≤ 8. This

completes the proof.

Proof of Theorem 1.4. We show that until the cat has not identified the position of the

mouse in some round, for every positive integer i with i ≡ 1 mod 4∆, the cat can choose

a vertex ri such that it can

• either identify the vertex mi+4∆−1 in round i+ 4∆ − 1

• or choose a vertex ri+4∆ with distG(ri+4∆,mi+4∆) < distG(ri,mi),

which clearly implies the desired result.

Let r1 be any vertex of G. Now, suppose that the positive integer i is such that i ≡ 1

mod 4∆, and that ri has been chosen. Note that mi = mi+1 = . . . = mi+4∆−1. The cat

chooses

(ci, ci+1, . . . , ci+2d) = (ri, u1, ri, u2, ri, . . . , ri, ud, ri) ,

where NG(ri) = {u1, . . . , ud} for some d ≤ ∆.

If distG(uj ,mi) = distG(ci+2j−1,mi) > distG(ci+2j−2,mi) = distG(ri,mi) for every j ∈

[d], then mi+4∆−1 = mi = ri, that is, the cat identifies mi+4∆−1 in round i+4∆−1. Hence,

8

we may assume that distG(ri,mi) = distG(ci+2j ,mi) > distG(ci+2j−1,mi) = distG(uj ,mi)

for some j ∈ [d]. In this case, the cat chooses

(ci+2d+1, ci+2d+2, . . . , ci+2d+2d′+1) = (uj , v1, uj , v2, uj , . . . , uj , vd′ , uj) ,

where NG(uj) = {ri, v1, . . . , vd′} for some d′ ≤ ∆− 1.

If distG(vℓ,mi) = distG(ci+2d+2ℓ,mi) > distG(ci+2d+2ℓ−1,mi) = distG(uj ,mi) for ev-

ery ℓ ∈ [d′], then mi+4∆−1 = mi = uj . Hence, we may assume that distG(uj ,mi) =

distG(ci+2d+2ℓ+1,mi) > distG(ci+2d+2ℓ,mi) = distG(vℓ,mi) for some ℓ ∈ [d], which implies

distG(vℓ,mi) = distG(uj ,mi) − 1 = distG(ri,mi) − 2. In this case, the cat chooses ri+4∆

equal to vℓ. Since mi+4∆ ∈ NG[mi+4∆−1] = NG[mi], we obtain distG(ri+4∆,mi+4∆) ≤

distG(ri+4∆,mi+4∆−1) + 1 = distG(vℓ,mi) + 1 = distG(ri,mi) − 1, which completes the

proof.

3 Conclusion

We collect some problems for further research. It would be interesting to obtain tight

bounds for the problems considered in Theorem 1.1 and Theorem 1.2. In this context,

lower bounds on the minimum distance up to which the mouse can be located would

be useful. An interesting special graph, and possible counterexample to Conjecture 1.3,

seems to be the tree that arises by subdividing each edge of the star K1,k exactly k − 1

times. One may consider different slowness conditions such as, for instance, “(mi 6=

mi−1) ∧ (mj 6= mj−1) ∧ (j > i) ⇒ j − i ≥ k” for some integer k corresponding to the

inverse maximum speed of the mouse. For a proof of Conjecture 1.3, it might be useful

that, for every graph G of maximum degree at most ∆, and every set M of vertices of G,

there is an edge uv of G for which the two sets {m ∈M : distG(u,m) > distG(v,m)} and

{m ∈M : distG(u,m) < distG(v,m)} both contain at least |M |−1
∆ vertices.

References

[1] A. Brandt, J. Diemunsch, C. Erbes, J. LeGrand, C. Moffatt, A robber locating strat-

egy for trees, Discrete Applied Mathematics 232 (2017) 99-106.

[2] J.R. Britnell, M. Wildon, Finding a princess in a palace: A pursuit-evasion problem,

The Electronic Journal of Combinatorics 20 (2013) #P25.

[3] J. Carraher, I. Choi, M. Delcourt, L.H. Erickson, D.B. West, Locating a robber on a

graph via distance queries, Theoretical Computer Science 463 (2012) 54-61.

[4] J. Haslegrave, An evasion game on a graph, Discrete Mathematics 314 (2014) 1-5.

[5] J. Haslegrave, R.A.B. Johnson, S. Koch, The Robber Locating game, Discrete Math-

ematics 339 (2016) 109-117.

9

[6] N. Komarov, P. Winkler, Hunter & Mole, arXiv:1311.0211.

[7] D. Rautenbach, M. Schneider, The Cat and the Noisy Mouse, to appear in Discrete

Mathematics.

[8] S. Seager, Locating a robber on a graph, Discrete Mathematics 312 (2012) 3265-3269.

[9] S. Seager, Locating a backtracking robber on a tree, Theoretical Computer Science

539 (2014) 28-37.

10

http://arxiv.org/abs/1311.0211

	1 Introduction
	2 Proofs
	3 Conclusion

