A lower bound on the acyclic matching number of subcubic graphs

M. Fürst D. Rautenbach
Institute of Optimization and Operations Research, Ulm University, Ulm, Germany, maximilian.fuerst, dieter.rautenbach@uni-ulm.de

Abstract

The acyclic matching number of a graph G is the largest size of an acyclic matching in G, that is, a matching M in G such that the subgraph of G induced by the vertices incident to an edge in M is a forest. We show that the acyclic matching number of a connected subcubic graph G with m edges is at least $m / 6$ except for two small exceptions.

Keywords: Acyclic matching; subcubic graph

1 Introduction

We consider finite, simple, and undirected graphs, and use standard terminology and notation. A matching M in a graph G is acyclic [7] if the subgraph of G induced by the set of vertices that are incident to some edge in M is a forest, and the acyclic matching number $\nu_{a c}(G)$ of G is the maximum size of an acyclic matching in G. While the ordinary matching number $\nu(G)$ of G is tractable [4], it has been known for some time that the acyclic matching number is NP-hard for graphs of maximum degree 5 [7,15]. Recently, we [6] showed that just deciding the equality of $\nu(G)$ and $\nu_{a c}(G)$ is already NP-complete when restricted to bipartite graphs G of maximum degree 4 . The complexity of the acyclic matching number for cubic graphs is unknown.

In the present paper we establish a tight lower bound on the acyclic matching number of subcubic graphs. Similar results were obtained for the matching number [2, 8, ,9, 14], and also for the induced matching number [11-13]. Baste and Rautenbach [1] studied acyclic edge colorings, and showed that the acyclic chromatic index $\chi_{a c}^{\prime}(G)$ of a graph G, that is, the minimum number of acyclic matchings in G into which the edge set of G can be partitioned, is at most $\Delta(G)^{2}$, where $\Delta(G)$ denotes the maximum degree of G. This implies $\nu_{a c}(G) \geq m(G) / \Delta(G)^{2}$, where $m(G)$ denotes the size of G, which, for subcubic graphs, simplifies to $\nu_{a c}(G) \geq m(G) / 9$. This latter bound also follows from a lower bound [12] on the induced matching number, which is always at most the acyclic matching number. While the bound is tight for $K_{3,3}$, excluding some small graphs allows a considerable improvement. Let K_{4}^{+}be the graph that arises by subdividing one edge of K_{4} once.

We prove the following.
Theorem 1 If G is a connected subcubic graph that is not isomorphic to K_{4}^{+}or $K_{3,3}$, then $\nu_{a c}(G) \geq m(G) / 6$.

Since every subcubic graph G of order $n(G)$ satisfies $m(G) \leq 3 n(G) / 2$, Theorem 1 is an immediate consequence of the following stronger result. For two graphs G and H, let $\kappa_{G}(H)$ denote the number of components of G that are isomorphic to H.

Theorem 2 If G is a subcubic graph without isolated vertices, then

$$
\nu_{a c}(G) \geq \frac{1}{4}\left(n(G)-\kappa_{G}\left(K_{2,3}\right)-\kappa_{G}\left(K_{4}^{+}\right)-2 \kappa_{G}\left(K_{3,3}\right)\right) .
$$

Note that Theorem 2 is tight; examples are $K_{4}, K_{2,2}, K_{1,3}$, or the graph obtained from $K_{1,3}$ by replacing each endvertex with an endblock isomorphic to $K_{2,3}$. The proof of Theorem 2 is postponed to the second section. The reduction arguments within that proof easily lead to a polynomial time algorithm computing acyclic matchings of the guaranteed size.

In a third section, we conclude with some open problems.

2 Proof of Theorem 2

The proof is by contradiction. Therefore, suppose that G is a counterexample to Theorem 22 that is of minimum order n. A graph is special if it is isomorphic to $K_{2,3}, K_{4}^{+}$, or $K_{3,3}$. Clearly, G is connected, not special, and n is at least 5 . Note that $\nu_{a c}(G)<n / 4$.

We derive a contradiction using a series of claims.
Claim 1 No subgraph of G is isomorphic to K_{4}^{+}.
Proof of Claim 11: Suppose that G has a subgraph H that is isomorphic to K_{4}^{+}. Let v_{1}, v_{2}, v_{3}, and v_{4} be the vertices of degree 3 in H, and let u the vertex of degree 2 in H. Let $G^{\prime}=G-\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Since G is connected, the graph G^{\prime} is connected. Since u has degree 1 in G^{\prime}, the graph G^{\prime} is not special. By the choice of G, the graph G^{\prime} is no counterexample to Theorem 2, and, hence, it has an acyclic matching M^{\prime} of size at least $n\left(G^{\prime}\right) / 4=n / 4-1$. Adding the edge $v_{1} v_{2}$ to M^{\prime} yields an acyclic matching in G of size at least $n / 4$, which is a contradiction.

Claim 2 No endblock of G is isomorphic to $K_{2,3}$.
Proof of Claim 园: Suppose that some endblock B of G is isomorphic to $K_{2,3}$. Let u be the unique cutvertex of G in B. Clearly, the vertex u has degree 2 in B. The graph $G^{\prime}=G-(V(B) \backslash\{u\})$ is connected, and, since u has degree 1 in G^{\prime}, it is not special. Therefore, by the choice of G, the graph G^{\prime} has an acyclic matching M^{\prime} of size at least $n\left(G^{\prime}\right) / 4=n / 4-1$. Adding an edge of B that is not incident to u to M^{\prime} yields an acyclic matching in G of size at least $n / 4$, which is a contradiction.

Claim 3 No two vertices of degree 1 have a common neighbor.
Proof of Claim [3: Suppose that u and v are two vertices of degree 1, and that w is their common neighbor. Let $G^{\prime}=G-\{u, v, w\}$. Since G^{\prime} is connected and not isomorphic to $K_{3,3}$, the choice of G implies that G^{\prime} has an acyclic matching M^{\prime} of size at least $\left(n\left(G^{\prime}\right)-1\right) / 4=$ $n / 4-1$. Since w does not lie on any cycle in G, adding the edge $u w$ to M^{\prime} yields an acyclic matching in G of size at least $n / 4$, which is a contradiction.

Claim 4 No vertex of degree 1 is adjacent to a vertex that does not lie on a cycle.
Proof of Claim 4: Suppose that u is a vertex of degree 1 that is adjacent to a vertex v that does not lie on a cycle. By Claim 3, the graph $G^{\prime}=G-\{u, v\}$ has no isolated vertex. Since G^{\prime} has at most two components, and no component of G^{\prime} is isomorphic to $K_{3,3}$, the choice of G implies that G^{\prime} has an acyclic matching M^{\prime} of size at least $\left(n\left(G^{\prime}\right)-2\right) / 4=n / 4-1$. Since v does not lie on a cycle, adding the edge $u v$ to M^{\prime} yields an acyclic matching in G of size at least $n / 4$, which is a contradiction.

Claim 5 The minimum degree of G is at least 2.
Proof of Claim 5: Suppose that u is a vertex of degree 1. By Claim 4, the neighbor v of u lies on a cycle C in G. Let x and w be the neighbors of v on C.

First, suppose that w has no neighbor of degree 1 .
If $G-\{u, v, w\}$ contains an isolated vertex, then this is necessarily the vertex x, and $N_{G}(x)=\{v, w\}$. In this case, let $G^{\prime}=G-\{u, v, w, x\}$. Clearly, the graph G^{\prime} is connected and not isomorphic to $K_{3,3}$. If isomorphic to K_{4}^{+}or $K_{2,3}$, then it follows easily that $\nu_{a c}(G) \geq$ $3>9 / 4=n / 4$, which is a contradiction. Hence, G^{\prime} is not special, which implies that G^{\prime} has an acyclic matching M^{\prime} of size at least $n\left(G^{\prime}\right) / 4=n / 4-1$. Adding the edge $u v$ to M^{\prime} yields an acyclic matching in G of size at least $n / 4$, which is a contradiction. Hence, we may assume that $G^{\prime}=G-\{u, v, w\}$ has no isolated vertex.

Since there are at most three edges between $\{u, v, w\}$ and $V\left(G^{\prime}\right)$ in G, Claim 2 implies that at most one component of G^{\prime} is isomorphic to $K_{2,3}$. By the choice of G, this implies that G^{\prime} has an acyclic matching M^{\prime} of size at least $\left(n\left(G^{\prime}\right)-1\right) / 4=n / 4-1$. Adding the edge $u v$ to M^{\prime} yields an acyclic matching in G of size at least $n / 4$, which is a contradiction. Hence, by symmetry, we may assume that x and w both have a neighbor of degree 1 .

Let y be a neighbor w of degree 1 . If x and w are adjacent, then $\nu_{a c}(G)=2>6 / 4=n / 4$, which is a contradiction. Hence, x and w are not adjacent. In view of the cycle C, the graph $G^{\prime}=G-\{u, v, w, y\}$ is connected. Since G^{\prime} has a vertex of degree 1 , it is not special, which implies that G^{\prime} has an acyclic matching M^{\prime} of size at least $n\left(G^{\prime}\right) / 4=n / 4-1$. Adding the edge $u v$ to M^{\prime} yields an acyclic matching in G of size at least $n / 4$, which is a contradiction.

For a set X of vertices of G, let $N_{G}[X]=\bigcup_{u \in X} N_{G}[u]$.
Claim 6 No subgraph of G is isomorphic to $K_{2,3}$.
Proof of Claim 6: Suppose that G has a subgraph H that is isomorphic to $K_{2,3}$. Claim 1 implies that H is an induced subgraph of G. Let u_{1}, u_{2}, and u_{3} be the vertices of degree 2 in H, and let v_{1} and v_{2} be the vertices of degree 3 in H.

First, suppose that u_{1} has degree 2 in G. Since G is not special, we may assume that u_{2} has degree 3 in G. By Claim [5, the graph $G^{\prime}=\left(V(H) \backslash\left\{u_{2}\right\}\right)$ has no isolated vertex, and, since u_{2} has degree 1 in G^{\prime}, it is not special. It follows that G^{\prime} has an acyclic matching M^{\prime} of size at least $n\left(G^{\prime}\right) / 4=n / 4-1$. Adding the edge $u_{1} v_{1}$ to M^{\prime} yields an acyclic matching in G of size at least $n / 4$, which is a contradiction. Hence, by symmetry, we may assume that all vertices in $U=\left\{u_{1}, u_{2}, u_{3}\right\}$ have degree 3 in G.

Next, suppose that u_{1} and u_{2} have a common neighbor u that is distinct from v_{1} and v_{2}. Let $G^{\prime}=G-N_{G}[U]$. Note that there are at most 3 edges between $N_{G}[U]$ and $V\left(G^{\prime}\right)$ in G. By Claim 5, the graph G^{\prime} has at most one isolated vertex, and, by Claim [1, at most one component of G^{\prime} is isomorphic to $K_{2,3}$. Furthermore, the graph G^{\prime} does not have an isolated vertex as well as a component isomorphic to $K_{2,3}$. This implies that G^{\prime} has an acyclic matching M^{\prime} of size at least $\left(n\left(G^{\prime}\right)-1\right) / 4=n / 4-2$. Adding the two edges $u u_{1}$ and $u_{3} v_{1}$ to M^{\prime} yields an acyclic matching in G of size at least $n / 4$, which is a contradiction. Hence, by symmetry, no two vertices in U have a common neighbor that is distinct from v_{1} and v_{2}.

The graph G^{\prime} that arises by contracting all edges of H is simple and connected. If G^{\prime} is special, then G has order at most 11, and an acyclic matching consisting of the three edges between $N_{G}[U]$ and $V(G) \backslash N_{G}[U]$ in G, which is a contradiction. Hence, G^{\prime} is not special, which implies that G^{\prime} has an acyclic matching M^{\prime} of size at least $n\left(G^{\prime}\right) / 4=n / 4-1$. Let $M^{\prime \prime}$ be the acyclic matching in G corresponding to M^{\prime}. Since $M^{\prime \prime}$ covers at most one vertex
in U, say u_{1}, adding the edge $u_{2} v_{1}$ to $M^{\prime \prime}$ yields an acyclic matching in G of size at least $n / 4$, which is a contradiction.
Claim 1, Claim 6, and the choice of G imply that every proper induced subgraph G^{\prime} of G with $i\left(G^{\prime}\right)$ isolated vertices has an acyclic matching M^{\prime} such that

$$
\begin{equation*}
\left|M^{\prime}\right| \geq \frac{n\left(G^{\prime}\right)-i\left(G^{\prime}\right)}{4} \tag{1}
\end{equation*}
$$

Claim 7 No two vertices of degree 2 are adjacent.
Proof of Claim 7: Suppose that u and v are adjacent vertices of degree 2, and that w is the neighbor of u distinct from v. By Claim 5, the graph $G^{\prime}=G-\{u, v, w\}$ has at most one isolated vertex, and, hence, by (11), it has an acyclic matching M^{\prime} of size at least $\left(n\left(G^{\prime}\right)-1\right) / 4=n / 4-1$. Adding the edge $u v$ to M^{\prime} yields a contradiction.

Claim 8 No vertex of degree 2 lies on a triangle.
Proof of Claim 8: Suppose that $u_{1} u_{2} u_{3} u_{1}$ is a triangle in G such that u_{1} has degree 2. By Claim 7, the vertices u_{2} and u_{3} have degree 3. Since $n \geq 5$, the graph $G^{\prime}=G-\left\{u_{1}, u_{2}, u_{3}\right\}$ has no isolated vertex, and, hence, by (1), it has an acyclic matching M^{\prime} of size at least $n\left(G^{\prime}\right) / 4>n / 4-1$. Adding the edge $u_{1} u_{2}$ to M^{\prime} yields a contradiction.

Claim 9 No vertex of degree 2 lies on a cycle of length 4.
Proof of Claim 9: Suppose that $u_{1} u_{2} u_{3} u_{4} u_{1}$ is a cycle in G such that u_{1} has degree 2. By Claims 7 and 8 , the vertices u_{2} and u_{4} have degree 3, and are not adjacent. By Claims 6 and 8, the graph $G^{\prime}=G-\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ has no isolated vertex, and, hence, by (11), it has an acyclic matching M^{\prime} of size at least $n\left(G^{\prime}\right) / 4=n / 4-1$. Adding the edge $u_{1} u_{2}$ to M^{\prime} yields a contradiction.

Claim 10 No cycle of length 5 contains two vertices of degree 2.
Proof of Claim 10: Suppose that the cycle $u_{1} u_{2} u_{3} u_{4} u_{5} u_{1}$ contains two vertices of degree 2. By Claim 7, we may assume that u_{1} and u_{4} have degree 2 , and that u_{2}, u_{3}, and u_{5} have degree 3. Let $G^{\prime}=G-\left(N_{G}\left[u_{5}\right] \cup\left\{u_{2}, u_{3}\right\}\right)$. Since there are at most 4 edges between $N_{G}\left[u_{5}\right] \cup\left\{u_{2}, u_{3}\right\}$ and $V\left(G^{\prime}\right)$ in G, the graph G^{\prime} has at most two isolated vertices, and, hence, by (1), it has an acyclic matching M^{\prime} of size at least $\left(n\left(G^{\prime}\right)-2\right) / 4=n / 4-2$. Adding the edges $u_{1} u_{2}$ and $u_{4} u_{5}$ to M^{\prime} yields a contradiction.

Claim $11 G$ is cubic.
Proof of Claim 11: Suppose that u is a vertex of degree 2. By Claims 7, 8, and 9, the neighbors of u, say v and w, have degree 3 , are not adjacent, and have no common neighbor except for u. Let x be a neighbor of v distinct from u. By Claims 8, 9, and 10, the graph $G^{\prime}=G-\{u, v, w, x\}$ has no isolated vertex, and, hence, by (1), it has an acyclic matching M^{\prime} of size at least $n\left(G^{\prime}\right) / 4=n / 4-1$. Adding the edge $u v$ to M^{\prime} yields a contradiction.

Claim $12 G$ is triangle-free.
Proof of Claim 12: Suppose that $u_{1} u_{2} u_{3} u_{1}$ is a triangle in G. By Claims 1 and 11, the graph $G^{\prime}=G-N_{G}\left[u_{1}\right]$ has no isolated vertex, and, hence, by (1), it has an acyclic matching M^{\prime} of size at least $n\left(G^{\prime}\right) / 4=n / 4-1$. Adding the edge $u_{1} u_{2}$ to M^{\prime} yields a contradiction.
Let $C: u_{1} u_{2} \ldots u_{g} u_{1}$ be a shortest cycle in G. For $i \in[g]$, let v_{i} be the neighbor of u_{i} not on C. By Claim 12, we have $g \geq 4$.

Claim $13 g \geq 5$.
Proof of Claim 13: Suppose that $g=4$. By Claims 6 and 12, the vertices v_{1}, v_{2}, v_{3}, and v_{4} are distinct. Let w_{1} and w_{2} be the neighbors of v_{1} distinct from u_{1}.

First, suppose that $w_{1}=v_{2}$. By Claim 11, the graph $G^{\prime}=G-\left(N_{G}\left[v_{1}\right] \cup\left\{u_{2}, u_{3}, u_{4}\right\}\right)$ has at most one isolated vertex, and, hence, by (1), it has an acyclic matching M^{\prime} of size at least $\left(n\left(G^{\prime}\right)-1\right) / 4=n / 4-2$. Adding the edges $u_{1} v_{1}$ and $u_{2} u_{3}$ to M^{\prime} yields a contradiction. Hence, we may assume, by symmetry, that $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is independent.

Next, suppose that there is some vertex x outside of $N_{G}\left[\left\{v_{1}, u_{1}, u_{3}\right\}\right]$ such that $N_{G}(x) \subseteq$ $N_{G}\left[\left\{v_{1}, u_{1}, u_{3}\right\}\right]$. By Claim 6, x is not adjacent to both u_{2} and u_{4}. Hence, by Claim 11, we may assume that x is adjacent to w_{1} but not to u_{2}. By Claim 11, the graph $G^{\prime}=$ $G-N_{G}\left[\left\{v_{1}, u_{1}, u_{3}, w_{1}\right\}\right]$ has at most two isolated vertices, and, hence, by (1), it has an acyclic matching M^{\prime} of size at least $\left(n\left(G^{\prime}\right)-2\right) / 4=n / 4-3$. Adding the edges $x w_{1}$, $u_{1} v_{1}$, and $u_{2} u_{3}$ to M^{\prime} yields a contradiction. Hence, we may assume that the graph $G^{\prime}=$ $G-N_{G}\left[\left\{v_{1}, u_{1}, u_{3}\right\}\right]$ has no isolated vertex. By (11), G^{\prime} has an acyclic matching M^{\prime} of size at least $n\left(G^{\prime}\right) / 4=n / 4-2$. Adding the edges $u_{1} v_{1}$ and $u_{2} u_{3}$ to M^{\prime} yields a contradiction.

Claim $14 g \geq 6$.
Proof of Claim 14: Suppose that $g=5$. By Claim 13, the vertices $v_{1}, v_{2}, v_{3}, v_{4}$, and v_{5} are distinct. Suppose that there is some vertex x outside of $N_{G}\left[\left\{u_{1}, u_{2}, u_{4}\right\}\right]$ such that $N_{G}(x) \subseteq N_{G}\left[\left\{u_{1}, u_{2}, u_{4}\right\}\right]$. By Claims 11 and 13, we obtain $N_{G}(x)=\left\{v_{1}, v_{2}, v_{4}\right\}$. By Claim 11, the graph $G^{\prime}=G-N_{G}\left[\left\{v_{1}, u_{1}, u_{2}, u_{4}\right\}\right]$ has at most two isolated vertices, and, hence, by (1), it has an acyclic matching M^{\prime} of size at least $\left(n\left(G^{\prime}\right)-2\right) / 4=n / 4-3$. Adding the edges $x v_{1}, u_{1} u_{2}$, and $u_{3} u_{4}$ to M^{\prime} yields a contradiction. Hence, we may assume that the graph $G^{\prime}=G-N_{G}\left[\left\{u_{1}, u_{2}, u_{4}\right\}\right]$ has no isolated vertex. By (11), the graph G^{\prime} has an acyclic matching M^{\prime} of size at least $n\left(G^{\prime}\right) / 4=n / 4-2$. Adding the edges $u_{1} u_{2}$ and $u_{3} u_{4}$ to M^{\prime} yields a contradiction.

Claim $15 g \geq 7$.

Proof of Claim 15: Suppose that $g=6$. Let w_{1} and w_{2} be the neighbors of v_{1} distinct from u_{1}. By Claim (14, the vertices v_{i} for $i \in[6] \backslash\{4\}, w_{1}$, and w_{2} are distinct. Suppose that there is some vertex x outside of $N_{G}\left[\left\{v_{1}, u_{3}, u_{5}, u_{6}\right\}\right]$ such that $N_{G}(x) \subseteq N_{G}\left[\left\{v_{1}, u_{3}, u_{5}, u_{6}\right\}\right]$. By Claims 11 and 14, we obtain that x is adjacent to v_{3}, to one vertex in $\left\{v_{5}, v_{6}\right\}$, and to one vertex in $\left\{w_{1}, w_{2}\right\}$. Let $G^{\prime}=G-N_{G}\left[\left\{v_{1}, v_{3}, u_{3}, u_{5}, u_{6}\right\}\right]$. By Claim [14, no isolated vertex in G^{\prime} is adjacent to u_{2} or u_{4}. Since there are at most 10 edges between $N_{G}\left[\left\{v_{1}, v_{3}, u_{3}, u_{5}, u_{6}\right\}\right]$ and $V\left(G^{\prime}\right)$ in G, this implies that G^{\prime} has at most two isolated vertices, and, hence, by (11), it has an acyclic matching M^{\prime} of size at least $\left(n\left(G^{\prime}\right)-2\right) / 4=n / 4-4$. Adding the edges $x v_{3}$, $u_{1} v_{1}, u_{2} u_{3}$, and $u_{5} u_{6}$ to M^{\prime} yields a contradiction. Hence, we may assume that the graph $G^{\prime}=G-N_{G}\left[\left\{v_{1}, u_{3}, u_{5}, u_{6}\right\}\right]$ has no isolated vertex. By (11), the graph G^{\prime} has an acyclic matching M^{\prime} of size at least $n\left(G^{\prime}\right) / 4=n / 4-3$. Adding the edges $u_{1} v_{1}, u_{2} u_{3}$, and $u_{5} u_{6}$ to M^{\prime} yields a contradiction.
We are now in a position to complete the proof.
First, suppose that g is odd. If the graph $G^{\prime}=G-N_{G}\left[\left\{u_{1}, \ldots, u_{g-2}\right\}\right]$ has an isolated vertex, then, by Claim [11, there is a cycle of length at most $\left\lfloor\frac{g}{3}\right\rfloor+4$. Since the last expression is less than g for odd g at least 7, it follows that G^{\prime} has no isolated vertex. By (1), the graph G^{\prime} has an acyclic matching M^{\prime} of size at least $n\left(G^{\prime}\right) / 4=n / 4-(g-1) / 2$. Adding the edges in $\left\{u_{2 i-1} u_{2 i}: i \in[(g-1) / 2]\right\}$ to M^{\prime} yields a contradiction. Hence, we may assume that g is even. Let w_{1} and w_{2} be the neighbors of v_{1} distinct from u_{1}. By the choice of C, the vertices v_{i} for $i \in[g], w_{1}$, and w_{2} are distinct. If the graph $G^{\prime}=G-N_{G}\left[\left\{v_{1}, u_{1}, \ldots, u_{g-2}\right\}\right]$ has an
isolated vertex, then, by Claim 11, there is a cycle of length at most $\left\lfloor\frac{g}{3}\right\rfloor+5$. Since the last expression is less than g for even g at least 8 , it follows that G^{\prime} has no isolated vertex. By (1), the graph G^{\prime} has an acyclic matching M^{\prime} of size at least $n\left(G^{\prime}\right) / 4=n / 4-g / 2$. Adding the edges in $\left\{u_{1} v_{1}\right\} \cup\left\{u_{2 i} u_{2 i+1}: i \in[(g-2) / 2]\right\}$ to M^{\prime} yields a contradiction, which completes the proof.

3 Conclusion

We believe that Theorem 2 can be improved as follows.
Conjecture 3 There is a constant c such that $\nu_{a c}(G) \geq \frac{3 n(G)}{11}-c$ for every connected subcubic graph G.

Conjecture 3 would be asymptotically best possible. If H arises from a copy of $K_{1,2}$, where $u(H)$ denotes the vertex of degree 2 , by replacing each endvertex with an endblock isomorphic to $K_{2,3}$, and, for some positive integer k, the connected subcubic graph G_{k} arises from k disjoint copies H_{1}, \ldots, H_{k} of H by adding, for every $i \in[k-1]$, an edge between $u\left(H_{i}\right)$ and some vertex of degree 2 in H_{i+1} that is distinct from $u\left(H_{i+1}\right)$, then $\nu_{a c}\left(G_{k}\right)=3 n\left(G_{k}\right) / 11$.

For general maximum degree, we pose the following conjecture motivated by [13].
Conjecture 4 If G is a graph of maximum degree Δ without isolated vertices, then

$$
\nu_{a c}(G) \geq \min \left\{\frac{2 n(G)}{\left(\left\lceil\frac{\Delta}{2}\right\rceil+1\right)\left(\left\lfloor\frac{\Delta}{2}\right\rfloor+1\right)}, \frac{n(G)}{2 \Delta}\right\} .
$$

There should be better lower bounds on the acyclic matching number for graphs of large girth, and methods from [3,5,10] might be useful. Moreover, a lower bound as Conjecture 4, which is essentially tight for all possible densities of a graph G of bounded maximum degree, would be interesting, yet very challenging.

References

[1] J. Baste, D. Rautenbach, Degenerate matchings and edge colorings, arXiv:1702.02358,
[2] T. Biedl, E.D. Demaine, C.A. Duncan, R. Fleischer, S.G. Kobourov, Tight bounds on maximal and maximum matchings, Discrete Mathematics 285 (2004) 7-15.
[3] V. Costa, S. Dantas, D. Rautenbach, Matchings in graphs of odd regularity and girth, Discrete Mathematics 313 (2013) 2895-2902.
[4] J. Edmonds, Paths, trees, and flowers, Canadian Journal of Mathematics 17 (1965) 449467.
[5] A.D. Flaxman, S. Hoory, Maximum matchings in regular graphs of high girth, Electronic Journal of Combinatorics 14 (2007) \# N1.
[6] M. Fürst, D. Rautenbach, On some hard and some tractable cases of the maximum acyclic matching problem, arXiv:1710.08236.
[7] W. Goddard, S.M. Hedetniemi, S.T. Hedetniemi, R. Laskar, Generalized subgraphrestricted matchings in graphs, Discrete Mathematics 293 (2005) 129-138.
[8] M.A. Henning, A. Yeo, Tight lower bounds on the size of a maximum matching in a regular graph, Graphs and Combinatorics 23 (2007) 647-657.
[9] M.A. Henning, C. Löwenstein, D. Rautenbach, Independent sets and matchings in subcubic graphs, Discrete Mathematics 312 (2012) 1900-1910.
[10] M.A. Henning, D. Rautenbach, Induced matchings in subcubic graphs without short cycles, Discrete Mathematics 315-316 (2014) 165-172.
[11] P. Horák, H. Qing, W.T. Trotter, Induced matchings in cubic graphs, Journal of Graph Theory 17 (1993) 151-160.
[12] F. Joos, D. Rautenbach, T. Sasse, Induced matchings in subcubic graphs, SIAM Journal on Discrete Mathematics 28 (2014) 468-473.
[13] F. Joos, Induced matchings in graphs of bounded maximum degree, SIAM Journal on Discrete Mathematics 30 (2016) 1876-1882.
[14] S. O, D.B. West, Balloons, cut-edges, matchings and total domination in regular graphs of odd degree, Journal of Graph Theory 64 (2010) 116-131.
[15] E. Speckenmeyer, Untersuchungen zum Feedback Vertex Set Problem in ungerichteten Graphen, PhD thesis, Universität-GH Paderborn, Reihe Informatik, Bericht, (1983).

