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Abstract

For a vertex subset X of a graph G, let ∆t(X) be the maximum value of

the degree sums of the subsets of X of size t. In this paper, we prove the

following result: Let k be a positive integer, and let G be an m-connected

graph of order n ≥ 5k − 2. If ∆2(X) ≥ n for every independent set X of size

⌈m/k⌉+1 in G, then G has a 2-factor with exactly k cycles. This is a common

generalization of the results obtained by Brandt et al. [Degree conditions for

2-factors, J. Graph Theory 24 (1997) 165–173] and Yamashita [On degree

sum conditions for long cycles and cycles through specified vertices, Discrete

Math. 308 (2008) 6584–6587], respectively.
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1 Introduction

In this paper, we consider finite simple graphs, which have neither loops nor multiple

edges. For terminology and notation not defined in this paper, we refer the readers

to [4]. The independence number and the connectivity of a graph G are denoted

by α(G) and κ(G), respectively. For a vertex x of a graph G, we denote by dG(x)

and NG(x) the degree and the neighborhood of x in G. Let σm(G) be the minimum

degree sum of an independent set of m vertices in a graph G, i.e., if α(G) ≥ m, then

σm(G) = min
{

∑

x∈X

dG(x) : X is an independent set of G with |X| = m
}

;
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otherwise, σm(G) = +∞. If the graph G is clear from the context, we often omit the

graph parameter G in the graph invariant. In this paper, “disjoint” always means

“vertex-disjoint”.

A graph having a hamilton cycle, i.e., a cycle containing all the vertices of the

graph, is said to be hamiltonian. The hamiltonian problem has long been funda-

mental in graph theory. But, it is NP-complete, and so no easily verifiable necessary

and sufficient condition seems to exist. Therefore, many researchers have focused on

“better” sufficient conditions for graphs to be hamiltonian (see a survey [14]). In

particular, the following degree sum condition, due to Ore (1960), is classical and

well known.

Theorem A (Ore [15]) Let G be a graph of order n ≥ 3. If σ2 ≥ n, then G is

hamiltonian.

Chvátal and Erdős (1972) discovered the relationship between the connectivity,

the independence number and the hamiltonicity.

Theorem B (Chvátal, Erdős [8]) Let G be a graph of order at least 3. If α ≤ κ,

then G is hamiltonian.

Bondy [2] pointed out that the graph satisfying the Ore condition also satisfies

the Chvátal-Erdős condition, that is, Theorem B implies Theorem A.

By Theorem B, we should consider the degree condition for the existence of a

hamilton cycle in graphs G with α(G) ≥ κ(G) + 1. In fact, Bondy (1980) gave the

following degree sum condition by extending Theorem B.

Theorem C (Bondy [3]) Let G be an m-connected graph of order n ≥ 3. If

σm+1 >
1
2
(m+ 1)(n− 1), then G is hamiltonian.

In 2008, Yamashita [17] introduced a new graph invariant and further generalized

Theorem C as follows. For a vertex subset X of a graph G with |X| ≥ t, we define

∆t(X) = max
{

∑

x∈Y

dG(x) : Y ⊆ X, |Y | = t
}

.

Let m ≥ t, and if α(G) ≥ m, then let

σm
t (G) = min

{

∆t(X) : X is an independent set of G with |X| = m
}

;

otherwise, σm
t (G) = +∞. Note that σm

t (G) ≥ t
m
· σm(G).

Theorem D (Yamashita [17]) Let G be an m-connected graph of order n ≥ 3. If

σm+1
2 ≥ n, then G is hamiltonian.
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This result suggests that the degree sum of non-adjacent “two” vertices is impor-

tant for hamilton cycles.

On the other hand, it is known that a 2-factor is one of the important general-

izations of a hamilton cycle. A 2-factor of a graph is a spanning subgraph in which

every component is a cycle, and thus a hamilton cycle is a 2-factor with “exactly 1

cycle”. As one of the studies concerning the difference between hamilton cycles and

2-factors, in this paper, we focus on 2-factors with “exactly k cycles”. Similar to the

situation for hamilton cycles, deciding whether a graph has a 2-factor with k (≥ 2)

cycles is also NP-complete. Therefore, the sufficient conditions for the existence of

such a 2-factor also have been extensively studied in graph theory (see a survey [11]).

In particular, the following theorem, due to Brandt, Chen, Faudree, Gould and Les-

niak (1997), is interesting. (In the paper [5], the order condition is not “n ≥ 4k− 1”

but “n ≥ 4k”. However, by using a theorem of Enomoto [9] and Wang [16] (“every

graph G of order at least 3k with σ2(G) ≥ 4k− 1 contains k disjoint cycles”) for the

cycles packing problem, we can obtain the following. See the proof in [5, Lemma 1].)

Theorem E (Brandt et al. [5]) Let k be a positive integer, and let G be a graph

of order n ≥ 4k − 1. If σ2 ≥ n, then G has a 2-factor with exactly k cycles.

This theorem shows that the Ore condition guarantees the existence of a hamilton

cycle but also the existence of a 2-factor with a prescribed number of cycles.

By considering the relation between Theorem A and Theorem E, Chen, Gould,

Kawarabayashi, Ota, Saito and Schiermeyer [6] conjectured that the Chvátal-Erdős

condition in Theorem B also guarantees the existence of a 2-factor with exactly k

cycles (see [6, Conjecture 1]). Chen et al. also proved that if the order of a 2-connected

graph G with α(G) = α ≤ κ(G) is sufficiently large compared with k and with the

Ramsey number r(α + 4, α + 1), then the graph G has a 2-factor with k cycles. In

[12], Kaneko and Yoshimoto “almost” solved the above conjecture for k = 2 (see the

comment after Theorem E in Chen et al. [6] for more details). Another related result

can be found in [7]. But, the above conjecture is still open in general. In this sense,

there is a big gap between hamilton cycles and 2-factors with exactly k (≥ 2) cycles.

In this paper, by combining the techniques of the proof for hamiltonicity and

the proof for 2-factors with a prescribed number of cycles, we give the following

Yamashita-type condition for 2-factors with k cycles.

Theorem 1 Let k be a positive integer, and let G be an m-connected graph of order

n ≥ 5k − 2. If σ
⌈m/k⌉+1
2 ≥ n, then G has a 2-factor with exactly k cycles.

This theorem implies the following:

Remark 2

• Theorem 1 is a generalization of Theorem D.
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• Theorem 1 leads to the Bondy-type condition: If G is an m-connected graph

of order n ≥ 5k − 2 with σ⌈m/k⌉+1(G) > 1
2
(⌈m/k⌉ + 1)(n − 1), then G has a

2-factor with exactly k cycles. Therefore, Theorem 1 is also a generalization of

Theorem E for sufficiently large graphs. (Recall that σm
t (G) ≥ t

m
· σm(G) and

σm(G) ≥ m
2
· σ2(G) for m ≥ t ≥ 2.)

• Theorem 1 leads to the Chvátal-Erdős-type condition: If G is a graph of order

at least 5k − 2 with α(G) ≤ ⌈κ(G)/k⌉, then G has a 2-factor with exactly k

cycles.

The complete bipartite graph K(n−1)/2,(n+1)/2 (n is odd) does not contain a 2-

factor, and hence the degree condition in Theorem 1 is best possible in this sense.

The order condition in Theorem 1 comes from our proof techniques. Similar to the

situation for the proof of Theorem E, we will use the order condition only for the

cycles packing problem (see Lemma 5 and the proof of Theorem 1 in Section 3). The

complete bipartite graph K2k−1,2k−1 shows that n ≥ 4k − 1 is necessary. In the last

section (Section 4), we note that “n ≥ 5k − 2” can be replaced with “n ≥ 4k − 1”

for the Bondy-type condition (and the Chvátal-Erdős-type condition) in Remark 2.

Table 1 summarizes the conditions mentioned in the above.

hamilton cycle 2-factor with k cycles

Ore-type σ2 ≥ n σ2 ≥ n

Theorem A (Ore) Theorem E (Brandt et al.)

Chvátal-Erdős-type α ≤ κ α ≤ ⌈ κ/k ⌉

Theorem B (Chvátal and Erdős) Remark 2

Bondy-type σκ+1 > 1

2
(κ+ 1)(n− 1) σ⌈κ/k⌉+1 > 1

2
(⌈κ/k⌉+ 1)(n− 1)

Theorem C (Bondy) Remark 2

Yamashita-type σκ+1

2 ≥ n σ
⌈κ/k⌉+1

2 ≥ n

Theorem D (Yamashita) Theorem 1 (Main theorem)

Table 1: Comparison of the degree conditions

To prove Theorem 1, in the next section, we extend the concept of insertible

vertices which was introduced by Ainouche [1], and we prove Theorem 1 in Section 3

by using it.

2 The concept of insertible vertices

In this section, we prepare terminology and notations and give some lemmas.

Let G be a graph. For v ∈ V (G) and X ⊆ V (G), we let NG(v;X) = NG(v) ∩X

and dG(v;X) = |NG(v;X)|. For V,X ⊆ V (G), let NG(V ;X) =
⋃

v∈V NG(v;X). For
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X ⊆ V (G), we denote by G[X ] the subgraph of G induced by X . An (x, y)-path in

G is a path from a vertex x to a vertex y in G . We write a cycle (or a path) C

with a given orientation by
−→
C . If there exists no fear of confusion, we abbreviate

−→
C

by C. Let C be an oriented cycle (or path). We denote by
←−
C the cycle C with a

reverse orientation. For x ∈ V (C), we denote the successor and the predecessor of x

on
−→
C by x+ and x−. For x, y ∈ V (C), we denote by x

−→
C y the (x, y)-path on

−→
C . The

reverse sequence of x
−→
C y is denoted by y

←−
Cx. In the rest of this paper, we consider

that every cycle (path) has a fixed orientation, unless stated otherwise, and we often

identify a subgraph H of G with its vertex set V (H).

The following lemma is obtained by using the standard crossing argument, and

so we omit the proof.

Lemma 1 Let G be a graph of order n, and let P be an (x, y)-path of order at least

3 in G. If dG(x) + dG(y) ≥ n, then G contains a cycle of order at least |P |.

In [1], Ainouche introduced the concept of insertible vertices, which has been

used for the proofs of the results on hamilton cycles. In this paper, we modify it

for 2-factors with k cycles, and it also plays a crucial role in our proof. Let G be a

graph, and let D = {D1, . . . , Dr+s} (r + s ≥ 1) be the set of r cycles and s paths in

G which are pairwise disjoint. For a vertex x in G −
⋃

1≤p≤r+sDp, the vertex x is

insertible for D if there is an edge uv in E(Dp) such that xu, xv ∈ E(G) for some p

with 1 ≤ p ≤ r+s. In the following lemma, “partition” of a graph means a partition

of the vertex set.

Lemma 2 Let G be a graph, and let D = {D1, . . . , Dr+s} (r + s ≥ 1) be the set

of r cycles and s paths in G which are pairwise disjoint, and P be a path in G −
⋃

1≤p≤r+sDp. If every vertex of P is insertible for D, then G
[
⋃

1≤p≤r+s V (Dp)∪V (P )
]

can be partitioned into r cycles and s paths.

Proof of Lemma 2. By choosing the following two vertices u, v ∈ V (P ) and

the edge ww+ ∈
⋃

1≤p≤r+sE(Dp) inductively, we can get the desired partition of

G
[
⋃

1≤p≤r+s V (Dp) ∪ V (P )
]

. Let u be the first vertex along
−→
P , and take an edge

ww+ in E(Di)
(

⊆
⋃

1≤p≤r+sE(Dp)
)

such that uw, uw+ ∈ E(G) for some i with

1 ≤ i ≤ r + s (since u is insertible for D, we can take such an edge). We let v be

the last vertex along
−→
P such that vw, vw+ ∈ E(G) (may be u = v). Then, we can

insert all vertices of u
−→
P v into Di. In fact, by replacing the edge ww+ by the path

wu
−→
P vw+, we can obtain a spanning subgraph D′

i of G[V (Di ∪ u
−→
P v)] such that D′

i

is a cycle if Di is a cycle; otherwise, D′
i is a path. By the choice of u and v, we have

zw /∈ E(G) or zw+ /∈ E(G) for each vertex z of P ′ := P − u
−→
P v, and hence every

vertex of P ′ is insertible for D′ = {D1, . . . , Di−1, D
′
i, Di+1, . . . , Dr+s}. Thus, we can

repeat this argument for the path P ′ and the set D′, and we get then the desired

5



partition. �

In the rest of this section, we fix the following. Let C1, . . . , Ck be k disjoint cycles

in a graph G, and let C∗ =
⋃

1≤p≤k Cp. Choose C1, . . . , Ck so that

|C∗|
(

=
∑

1≤p≤k

|Ci|
)

is as large as possible.

Suppose that C∗ does not form a 2-factor of G. Let H = G − C∗, and let H0 be a

component of H and x0 ∈ V (H0). Let

u1, u2, . . . , ul be l distinct vertices in NG(H0;C1), where l ≥ 2.

We assume that u1, u2, . . . , ul appear in this order on
−→
C1, and let ul+1 = u1. Note

that by the maximality of |C∗|, u+
i 6= ui+1 for 1 ≤ i ≤ l. We denote by

−→
Qi and

−−→
Qi,j a

(ui, x0)-path in G[V (H0) ∪ {ui}] and a (ui, uj)-path passing through a vertex of H0

in G[V (H0) ∪ {ui, uj}], respectively.

Lemma 3 For 1 ≤ i ≤ l, u+
i

−→
C1u

−
i+1 contains a non-insertible vertex for {C2, . . . , Ck}.

Proof of Lemma 3. Suppose that every vertex of u+
i

−→
C1u

−
i+1 is insertible for {C2, . . . ,

Ck}. Then, by Lemma 2, G
[
⋃

2≤p≤k V (Cp)∪V (u+
i

−→
C1u

−
i+1)

]

has a 2-factor with exactly

k − 1 cycles. With the cycle ui+1

−→
C1ui

−−−→
Qi,i+1ui+1, we can get k disjoint cycles in G

such that the sum of the orders is larger than |C∗|, a contradiction. �

For 1 ≤ i ≤ l, let xi be the first non-insertible vertex for {C2, . . . , Ck} in

V (u+
i

−→
C1u

−
i+1) on

−→
C1, i.e., every vertex of u+

i

−→
C1x

−
i is insertible for {C2, . . . , Ck}, but

xi is not insertible (Lemma 3 guarantees the existence of such a vertex xi).

Lemma 4 Let i, j be integers with 1 ≤ i, j ≤ l and i 6= j. If x ∈ V (u+
i

−→
C1xi) and x′ ∈

{x0, u
+
j }, then (i) xx′ /∈ E(G), and (ii) dG(x;H ∪C1)+dG(x

′;H∪C1) ≤ |H ∪C1|−1.

Proof of Lemma 4. Consider the path

−→
P =







x
−→
C1ui
−→
Qix0 (if x′ = x0)

x
−→
C1uj

←−−
Qi,jui

←−
C1u

+
j (if x′ = u+

j )
.

See Figure 1. Then, P is a path in G[V (H ∪ x
−→
C1ui)] passing through all vertices

of x
−→
C1ui and a vertex of H0. Recall that every vertex of u+

i

−→
C1x

− is insertible for

{C2, . . . , Ck}, and hence G
[
⋃

2≤p≤k V (Cp)∪V (u+
i

−→
C1x

−)
]

has a 2-factor with exactly

k − 1 cycles (by Lemma 2). Hence, the maximality of |C∗| and Lemma 1 yield that

xx′ /∈ E(G) and dG(x;H ∪ x
−→
C1ui) + dG(x

′;H ∪ x
−→
C1ui) ≤ |H ∪ x

−→
C1ui| − 1.
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ui

uj
u

+

j

u
+

i

x
−

x

xix
′
=x0

ui

uj

u
+

i

x
−

x

xi

Qi

H0 H0

Qi,j

P P

C1

x
′
=u

+

j

C1

Figure 1: The path P

In particular, (i) holds. Then, by applying (i) for each vertex in u+
i

−→
C1x

− and the

vertex x′, we have NG(x
′; u+

i

−→
C1x

−) = ∅. Combining this with the above inequality,

we get,

dG(x;H ∪ C1) + dG(x
′;H ∪ C1)

= dG(x;H ∪ x
−→
C1ui) + dG(x

′;H ∪ x
−→
C1ui) + dG(x; u

+
i

−→
C1x

−)

≤
(

|H ∪ x
−→
C1ui| − 1

)

+ |u+
i

−→
C1x

−| = |H ∪ C1| − 1.

Thus (ii) also holds. �

3 Proof of Theorem 1

Before proving Theorem 1, we will give the following lemma for the cycles packing

problem.

Lemma 5 Let k,m, n and G be the same ones as in Theorem 1. Under the same

degree sum condition as Theorem 1, G contains k disjoint cycles.

Proof of Lemma 5. If k = 1, then it is easy to check that G contains a cycle. If

⌈m/k⌉ = 1 or ⌈m/k⌉ ≥ 3, then by a theorem of Enomoto [9], G contains k disjoint

cycles (note that if ⌈m/k⌉ ≥ 3, then G is (2k + 1)-connected, that is, the minimum

degree δ(G) is at least 2k + 1). Thus, we may assume that k ≥ 2 and ⌈m/k⌉ = 2.

Then, we have δ(G) ≥ m ≥ k + 1 and σ3
2(G) = σ

⌈m/k⌉+1
2 (G) ≥ n ≥ 5k − 2. Note

that, by the definition of σ3
2(G) and σ3(G), σ3(G) ≥ σ3

2(G) + δ(G). Note also that

n ≥ 5k − 2 ≥ 3k + 2 ≥ 8 because k ≥ 2. Hence, by a theorem of Fujita et al. [10]

(“every graph G of order at least 3k+2 ≥ 8 with σ3(G) ≥ 6k− 2 contains k disjoint

cycles”), we can get the desired conclusion. �

Now we are ready to prove Theorem 1.
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Proof of Theorem 1. Let G be an m-connected graph of order n ≥ 5k − 2 such

that σ
⌈m/k⌉+1
2 (G) ≥ n. We show that G has a 2-factor with exactly k cycles. By

Theorem E, we may assume that ⌈m/k⌉ ≥ 2. By Lemma 5, G contains k disjoint

cycles. Let Ci (1 ≤ i ≤ k), C∗, H , H0, x0 and ui (1 ≤ i ≤ l) be the same graphs

and vertices as the ones described in the paragraph preceding Lemma 3 in Section 2.

In particular, we may assume that l = ⌈m/k⌉. Because, since G is m-connected, it

follows that |NG(H0;C
∗)| ≥ m (note that by the maximality of |C∗|, |C∗| > m), and

hence, without loss of generality, we may assume that |NG(H0;C1)| ≥ ⌈m/k⌉ (≥ 2).

We first consider the set

X = {x0} ∪ {u
+
i : 1 ≤ i ≤ l}.

Then, Lemma 4 implies the following:

(1) X is an independent set of size l + 1.

(2) dG(x;H ∪ C1) + dG(x
′;H ∪ C1) ≤ |H ∪ C1| − 1 for x, x′ ∈ X (x 6= x′).

On the other hand, by the maximality of |C∗| and Lemma 2, x0 is non-insertible

for {C2, . . . , Ck}. This implies the following:

(3) dG(x0;Cp) ≤ |Cp|/2 for 2 ≤ p ≤ k, and hence dG(x0;C
∗ − C1) ≤ |C

∗ − C1|/2.

Since σl+1
2 (G) ≥ n, it follows from (1) that there exist two distinct vertices x and

x′ in X such that dG(x) + dG(x
′) ≥ n. Then, by (2), we get

dG(x;C
∗ − C1) + dG(x

′;C∗ − C1) ≥ n−
(

|H ∪ C1| − 1
)

= |C∗ − C1|+ 1.

Combining this with (3) and the definition of X , we may assume that

(4) dG(u
+
1 ;C

∗ − C1) > |C
∗ − C1|/2.

Next, let x1 be the first non-insertible vertex for {C2, . . . , Ck} in the path u−
1

←−
C1u

+
l

on
←−
C1 (we can take such a vertex by Lemma 3 and the symmetry of

−→
C1 and

←−
C1), and

we consider the set

Y = {x0, x1} ∪ {u
−
i : 2 ≤ i ≤ l}.

Then, by the symmetry of
−→
C1 and

←−
C1, Lemma 4, and since x1 is non-insertible for

{C2, . . . , Ck}, we have the following:

(5) Y is an independent set of size l + 1.

(6) dG(y;H ∪ C1) + dG(y
′;H ∪ C1) ≤ |H ∪ C1| − 1 for y, y′ ∈ Y (y 6= y′).

(7) dG(x1;Cp) ≤ |Cp|/2 for 2 ≤ p ≤ k, and hence dG(x1;C
∗ − C1) ≤ |C

∗ − C1|/2.
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Since σl+1
2 (G) ≥ n, it follows from (5) that there exist two distinct vertices y and

y′ in Y such that dG(y) + dG(y
′) ≥ n. Then, by (6), we get

dG(y;C
∗ − C1) + dG(y

′;C∗ − C1) ≥ n−
(

|H ∪ C1| − 1
)

= |C∗ − C1|+ 1.

Combining this with (3), (7) and the definition of Y , we have the following:

(8) dG(u
−
i ;C

∗ − C1) > |C
∗ − C1|/2 for some i with 2 ≤ i ≤ l.

By (4) and (8), we have

dG(u
+
1 ;C

∗ − C1) + dG(u
−
i ;C

∗ − C1) > |C
∗ − C1| =

∑

2≤p≤k

|Cp|.

Hence, there exists a cycle Cp (2 ≤ p ≤ k), say p = 2, such that

dG(u
+
1 ;C2) + dG(u

−
i ;C2) ≥ |C2|+ 1.

This implies that there exists an edge uv in E(C2) such that u+
1 u, u

−
i v ∈ E(G). By

changing the orientation of C2 if necessary, we may assume that u+ = v. Note that

i ≥ 2, and consider two cycles

D1 = ui

−→
C1u1

−−→
Q1,iui and D2 = u+

1

−→
C1u

−
i u

+−→C2uu
+
1 (see Figure 2).

Then, D1, D2, C3, . . . , Ck are k disjoint cycles such that the sum of the orders is

H0

u

u
+

C1

x0

u
+

1

ui

u
−

i

ul

C2

u1

D1

D2

Q1,i

u
−

l

x1

u
+

i

u
+

l

Figure 2: The cycles D1 and D2

larger than |C∗|, a contradiction.

This completes the proof of Theorem 1. �

4 Notes on the order condition

As shown in the argument of the previous section, in the proof of Theorem 1, the

order condition “n ≥ 5k−2” is required only to show the existence of k disjoint cycles

in a graph G (recall that the order condition in Theorem E is also). Therefore, the

proof of Theorem 1 actually implies the following.
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Theorem 3 Let k be a positive integer, and let G be an m-connected graph of order

n. Suppose that G contains k disjoint cycles. If σ
⌈m/k⌉+1
2 ≥ n, then G has a 2-factor

with exactly k cycles.

From this theorem, if we can obtain better results on the cycles packing problem,

then the order conditions in Theorem 1 and Remark 2 can be improved. In fact, by

using the result of Kierstead, Kostochka and Yeager (2017) and modifying the proof

of Lemma 5, we can obtain a sharp order condition for the result in Remark 2 (see

Corollary 4).

Theorem F (Kierstead et al. [13]) Let k be an integer with k ≥ 2, and let G be

a graph of order n ≥ 3k with δ(G) ≥ 2k − 1. Then G contains k disjoint cycles if

and only if (i) α(G) ≤ n − 2k, and (ii) if k is odd and n = 3k, then G 6∼= 2Kk ∨Kk

and if k = 2, then G is not a wheel.

Lemma 6 Let k be a positive integer, and let G be an m-connected graph of order

n ≥ 4k− 1. If σ⌈m/k⌉+1(G) > 1
2
(⌈m/k⌉+1)(n− 1), then G contains k disjoint cycles.

Proof of Lemma 6. By a similar argument as in the proof of Lemma 5, we have

the following: If k = 1, then we can easily find a cycle; If ⌈m/k⌉ = 1 or ⌈m/k⌉ ≥ 3,

then by a theorem of Enomoto [9], G contains k disjoint cycles; If ⌈m/k⌉ = 2, and

k ≥ 3 or n ≥ 4k, then by a theorem of Fujita et al. [10], G contains k disjoint

cycles. Thus, we may assume that k = 2, ⌈m/k⌉ = 2 and n = 4k − 1 = 7. Then,

δ(G) ≥ m ≥ k + 1 = 3 = 2k − 1 and σ3(G) > 3
2
(n − 1) = 6k − 3 = 9. Since n = 7

and σ3(G) > 9, it follows that α(G) ≤ 3 = n− 2k and G is not a wheel. Hence, by

Theorem F, G contains two disjoint cycles. Thus, the lemma follows. �

Recall that σm
t (G) ≥ t

m
· σm(G) for m ≥ t ≥ 2, and hence Theorem 3 and

Lemma 6 lead to the following.

Corollary 4 Let k be a positive integer, and let G be an m-connected graph of

order n ≥ 4k− 1. If σ⌈m/k⌉+1(G) > 1
2
(⌈m/k⌉+ 1)(n− 1), then G has a 2-factor with

exactly k cycles.
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