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Abstract

A strong k-edge-coloring of a graph G is an edge-coloring with k colors in which every color
class is an induced matching. The strong chromatic index of G, denoted by χ′

s(G), is the
minimum k for which G has a strong k-edge-coloring. In 1985, Erdős and Nešetřil conjectured
that χ′

s(G) ≤ 5
4∆(G)2, where ∆(G) is the maximum degree of G. When G is a graph with

maximum degree at most 3, the conjecture was verified independently by Andersen and Horák,
Qing, and Trotter. In this paper, we consider the list version of strong edge-coloring. In
particular, we show that every subcubic graph has strong list-chromatic index at most 11 and
every planar subcubic graph has strong list-chromatic index at most 10.
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1 Introduction

All graphs in this paper are finite and simple. A strong k-edge-coloring of a graph G is a coloring

φ : E(G) −→ [k] such that if any two edges e1 and e2 are either adjacent to each other or adjacent

to a common edge, then φ(e1) 6= φ(e2). In other words, the edges in each color class give an induced

matching in the graph; that is, any two vertices belonging to distinct edges with the same color are

not adjacent. The strong chromatic index of G, denoted by χ′s(G), is the minimum k for which G

has a strong k-edge-coloring.

The following conjecture was proposed by Erdős and Nešetřil in 1985 at Prague.

Conjecture 1.1 [6, 7] If G is a graph with maximum degree ∆(G), then

χ′s(G) ≤

{
5
4∆(G)2, if ∆(G) is even,
5
4∆(G)2 − 1

2∆(G) + 1
4 , if ∆(G) is odd.
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Note that there are examples showing that the conjectured upper bound is tight (i.e. blow-

ups of a 5-cycle). Andersen [2] and independently Horák, Qing, and Trotter [9] showed that

χ′s(G) ≤ 10 for any graph G with ∆(G) = 3, thus settling the first nontrivial case of Conjecture

1.1. Cranston [5] gave an algorithm that uses at most 22 colors for every graph with ∆(G) = 4,

which was improved to 21 very recently by Huang, Santana and Yu [16]. When ∆(G) is sufficiently

large, Molloy and Reed [15] proved that χ′s(G) ≤ 1.998∆(G)2. Henning Bruhn and Felix Joos [4]

showed that χ′s(G) ≤ 1.93∆(G)2. Recently, Bonamy, Perrett, and Postle [3] improved the upper

bound to 1.835∆(G)2.

In this article, we study the list version of strong edge-coloring. For each e ∈ E(G), let L(e) be

the list of available colors of e, and let L = {L(e) : e ∈ E(G)}. The graph G is strongly L-edge-

colorable if there exists a strong edge coloring c of G such that c(e) ∈ L(e) for every e ∈ E(G).

For a positive integer k, a graph G is strongly k-edge-choosable if G is strongly L-edge colorable for

every L with |L(e)| ≥ k for all e ∈ E(G). The strong list-chromatic index, denoted by χ′s,l(G), is the

minimum positive integer k for which G is strongly k-edge-choosable. Note that χ′s(G) ≤ χ′s,l(G)

for every graph G.

The probablistic arguments that Molloy-Reed and Bonamy-Perrett-Postle used to give upper

bounds of χ′s on graphs of large ∆(G) actually also work for the strong list-chromatic index. So we

have χ′s,l(G) ≤ 1.835∆(G)2 for large ∆(G). Ma, Miao, Zhu, Zhang and Luo [14] proved that the

strong list-chromatic index of a subcubic graph with maximum average degree less than 15
7 ,

27
11 ,

13
5 ,

36
13

is at most 6, 7, 8, 9, respectively. More results of this kind can be found in [17].

In this paper, we prove the following result.

Theorem 1.2 If ∆(G) ≤ 3, then χ′s,l(G) ≤ 11.

For planar graphs, we actually can do a little better.

Theorem 1.3 If G is a subcubic planar graph, then χ′s,l(G) ≤ 10.

Recall that Andersen [2] and Horák, Qing, and Trotter [9] proved that χ′s(G) ≤ 10 if ∆(G) ≤ 3.

Kostochka et. al. [12] proved that χ′s(G) ≤ 9 under the additional assumption that G is planar.

We do not feel that our results are optimal, but it may involve substantial work to improve them.

One of the main tools we use is Hall’s Theorem.

Lemma 1.4 (Hall [8]) Let A1, ..., An be n subsets of a set U. Distinct representatives of {A1, ..., An}
exist if and only if for all k, 1 ≤ k ≤ n and every choice of subcollection of size k, {Ai1 , ..., Aik},
we have |Ai1

⋃
...
⋃
Aik | ≥ k.
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Another tool we use is the Combinatorial Nullstellensatz.

Lemma 1.5 (Alon [1], Combinatorial Nullstellensatz) Let F be an arbitrary field, and let P =

P (x1, x2, . . . , xn) be a polynomial in F[x1, x2, . . . , xn]. Suppose that the degree deg(P ) of P equals∑n
i=1 ki, where each ki is a non-negative integer, and the coefficient of xk11 x

k2
2 · · ·xknn in P is non-

zero. Then if S1, S2, . . . , Sn are subsets of F with |Si| > ki, i = 1, 2, . . . , n, there exist s1 ∈ S1, s2 ∈
S2, . . . , sn ∈ Sn so that P (s1, s2, . . . , sn) 6= 0.

We use MATLAB to calculate the coefficients of specific monomials. Let P = P (x1, x2, . . . , xn)

be a polynomial in n variables, where n ≥ 1. By cp(x
k1
1 x

k2
2 · · ·xknn ), we denote the coefficient of the

monomial xk11 x
k2
2 · · ·xknn in P , where ki (1 ≤ i ≤ n) is a non-negative integer. The codes are listed

in the Appendix.

2 Basic properties

Consider (G,L) such that G is not L-choosable but any proper subgraph of G is L-choosable.

Clearly, G is connected. In this section, we will show that if |L(e)| ≥ 10 for each e ∈ E(G), then G

is cubic and has no cycles of length at most five.

We first introduce some notation. An i-vertex is a vertex of degree i in our graphs. An i-cycles

is a cycle of length i in graphs. A partial coloring of G is a coloring of a proper subgraph of G.

Given edges e and e′ in G, we say that e sees e′ if either e and e′ are adjacent, or there is another

edge e′′ adjacent to both e and e′. Note that even if e sees e′ in G, e does not necessarily see e′

in a proper subgraph of G. Additionally, we will also say that e sees a color α if e sees an edge e′

of color α. Let φ be a partial coloring of G. For e ∈ E(G), let Cφ(e) denote the set of colors seen

by e, and let Aφ(e) = L(e) \ Cφ(e). For v ∈ V (G), H ⊆ G, let d(v,H) with respect to v be the

minimum of the lengths of the u-v paths of G where u ∈ V (H).

Lemma 2.1 G is cubic.

Proof. By way of contradiction, we assume that d(v) ≤ 2 for some v ∈ V (G). By the minimality of

G, G− v has an L-coloring φ. First let v be a 1-vertex incident with the edge e. Since |Cφ(e)| ≤ 6,

|Aφ(e)| ≥ 4, so e can be colored. Let v be a 2-vertex with incident edges e1 and e2. Since |Cφ(ei)| ≤ 8

for i = 1, 2, |Aφ(ei)| ≥ 2. So we can color e1 and e2 in any order. �

Lemma 2.2 G has no triangles.
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Proof. Suppose that G contains a triangle: v1v2v3v1 (see Fig.1 (1)). By the minimality of G, let φ

be an L-coloring of the subgraph H = G−v1. Note that |Aφ(ei)| ≥ 3, for i = 1, 2 and |Aφ(e3)| ≥ 1.

Then φ can be extended to an L-coloring of G by Lemma 1.4. �

v
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Figure 1: Structures with 3-, 4-, and 5-cycles

Lemma 2.3 G has no 4-cycles.

Proof. Suppose that G contains a 4-cycle. By Lemma 2.2, each 4-cycle must be an induced

4-cycle, and we divide all 4-cycles into three classes. The possible local structures about a 4-cycle

are shown in Figure 1 (2)-(7). For 2 ≤ i ≤ 7, let Hi be the subgraph of G obtained by removing
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the vertices with labels in Figure 1 (i) for 2 ≤ i ≤ 7. By minimality of G, Hi has an L-coloring φ.

Let Ai = Aφ(ei) for each labelled edge ei in the figures.

When e1 does not see e3 and e2 does not see e4, we consider H2.

In H2, we have |Ai| ≥ 4 for i = 1, 2, 3, 4 and |Ai| ≥ 6 for i = 5, 6, 7, 8. By Lemma 1.4, we

may assume that for some I ⊆ [8], |
⋃
i∈I Ai| < |I|. So |I| > 6, and |I| ∈ {7, 8}. By symmetry,

let 1, 3 ∈ I. Then |A1 ∪ A3| < 8, so there exists α ∈ A1 ∩ A3, and we color e1 and e3 with α.

Let A′i = Ai − {α}. Now for J ⊆ [8] − {1, 3}, if |
⋃
i∈J A

′
i| < |J |, then |J | > 3, which implies that

J ∩ {5, 6, 7, 8} 6= ∅, so |J | ≥ 6. Then |J | = 6, |A′i| ≥ 5 for i ∈ {5, 6, 7, 8} and A′2 ∩A′4 6= ∅. Color e2

and e4 with β ∈ A′2 ∩A′4, then we can color e5, e6, e7, e8 in any order, a contradiction.

When e1 sees e3 and e2 does not see e4, we consider H3 and H4.

Consider H3. Note that |Ai| ≥ 7 for i = 1, 3, 5, 6, 7, 8 and |Ai| ≥ 4 for i = 2, 4. By Lemma 1.4,

we may assume that for some I ⊆ [8], |
⋃
i∈I Ai| < |I|. Then I = [8], |Ai| ≥ 7 for i ∈ {1, 3, 5, 6, 7, 8}

and A2 ∩ A4 6= ∅. Color e2 and e4 with α ∈ A2 ∩ A4, and then we can color the rest of edges one

by one, a contradiction.

Consider H4. Note that |Ai| ≥ 4 for i = 2, 4, 10, 11, |A5| ≥ 6 and |Ai| ≥ 8 for i ∈ {1, 3, 6, 7, 8, 9}.
By Lemma 1.4, we may assume that for some I ⊆ [11], |

⋃
i∈I Ai| < |I|. Then |I∩{1, 3, 6, 7, 8, 9} 6= ∅,

so |I| ≥ 9.

We consider the following cases.

Case 1: {6, 11} ⊂ I (or by symmetry, {7, 10} ⊂ I). Then A6 ∩ A11 6= ∅ and color e6 and e11

with α ∈ A6 ∩ A11. For i ∈ [11] − {6, 11}, let A′i = Ai − {α}. Then for some J ⊆ [11] − {6, 11},
|
⋃
i∈J A

′
i| < |J |. Then |J | ≥ 8. So at most one of 2, 4, 5, 7, 10 is not in J .

• 5 ∈ J . We may assume that 2 ∈ J as well (or by symmetry, 4 ∈ J). Then A′2 ∩ A′5 6= ∅,
and we color e2 and e5 with β ∈ A′2 ∩ A′5. Let A′′i = Ai − {α, β} for i ∈ [11] − {2, 5, 6, 11}.
Then for some K ⊆ [11] − {2, 5, 6, 11}, |

⋃
i∈K A

′′
i | < |K|. So K ∩ {1, 3, 7, 8, 9} 6= ∅ and thus

|K| = 7. Now we can color e7 and e10 with γ ∈ A′′7 ∩ A′′10, and by Lemma 1.4, color the rest

of the edges.

• 5 6∈ J . Then |J | = 8, so A′2∩A′4 6= ∅. Color e2 and e4 with β ∈ A′2∩A′4. Let A′′i = Ai−{α, β}
for i ∈ [11] − {6, 11, 2, 4}. Then for some K ⊆ [11] − {2, 4, 6, 11}, |

⋃
i∈K A

′′
i | < |K|. So

K ∩ {1, 3, 7, 8, 9} 6= ∅ and thus |K| = 7. Now we can color e7 and e10 with γ ∈ A′′7 ∩A′′10, and

by Lemma 1.4, color the rest of the edges.

Case 2: {6, 11} 6⊂ I and {7, 10} 6⊂ I. Then |I| = 9 and 2, 4, 5 ∈ I. So A2 ∩ A5 6= ∅. Color e2

and e5 with α ∈ A2 ∩A5. For i ∈ [11]−{2, 5}, let A′i = Ai −{α}. Then for some J ⊆ [11]−{2, 5},
|
⋃
i∈J A

′
i| < |J |. Then |J | ≥ 8. Then {6, 11} ⊂ J (or by symmetry {7, 10} ⊂ J), and A6 ∩A11 6= ∅
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and color e6 and e11 with β ∈ A6 ∩A11. Let A′′i = Ai − {α, β} for i ∈ [11]− {2, 5, 6, 11}. Then for

some K ⊆ [11] − {2, 5, 6, 11}, |
⋃
i∈K A

′′
i | < |K|. So K ∩ {1, 3, 7, 8, 9} 6= ∅ and thus |K| = 7. Now

we can color e7 and e10 with γ ∈ A′′7 ∩A′′10, and by Lemma 1.4, color the rest of the edges.

When e1 sees e3 and e2 sees e4, we consider H5, H6 and H7.

Consider H5. Note that |Ai| ≥ 7 for i = 1, 2, 3, 4 and |Ai| ≥ 8 for i = 5, 6, 7, 8. By Lemma 1.4,

we may assume that for some I ⊆ [8], |
⋃
i∈I Ai| < |I|. Clearly, no such I exists, a contradiction.

Consider H6. First, |Aφ(ei)| ≥ 4 for i = 11, 12, 13, 14. We can make it that the colors of ei are

different by Lemma 1.4 for i = 11, 12, 13, 14. Then we note that |Ai| ≥ 6 for i = 1, 2, 3, 4, |Ai| ≥ 8

for i = 5, 6, 7, 8 and |Ai| ≥ 4 for i = 9, 10. By Lemma 1.4, we may assume that for some I ⊆ [10],

|
⋃
i∈I Ai| < |I|. Then |I| > 8, so |I| ∈ {9, 10}. By symmetry, we may assume that {4, 10} ⊂ I.

Then A4 ∩ A10 6= ∅, so color e4, e10 with α ∈ A4 ∩ A10. Let A′i = Ai − {α} for i ∈ [10] − {4, 10}.
Then for some J ⊆ [10] − {4, 10}, |

⋃
i∈J A

′
i| < |J |. It implies that J ∩ {5, 6, 7, 8} 6= ∅, thus

J = [10] − {4, 10}, and |A′i| ≥ 7 for i ∈ {5, 6, 7, 8} and A′1 ∩ A′9 6= ∅. Color e1 and e9 with

β ∈ A′1 ∩A′9, then we can color the rest of the edges one by one, a contradiction.

Consider H7. First, |Aφ(ei)| ≥ 4 for i = 10, 11. We can make it that the color of e10 is different

from the color of e11. Then we note that |Ai| ≥ 7 for i = 1, 3, |Ai| ≥ 6 for i = 2, 4, |Ai| ≥ 8 for

i = 5, 6, 7, 8 and |Aφ(e9)| ≥ 4. By Lemma 1.4, we may assume that for some I ⊆ [9], |
⋃
i∈I Ai| < |I|.

Then I = [9] and A3 ∩ A9 6= ∅. Color e3 and e9 with α ∈ A3 ∩ A9, and then we can color the rest

of edges one by one, a contradiction. �

Lemma 2.4 G has no 5-cycles.

Proof. Suppose that G contains the 5-cycle (see Figure 1 (8)). Then by the minimality of G,

there is an L-coloring φ of H = G− {vi : i ∈ [4]}. We want to color ei with a color si ∈ Aφ(ei) for

i ∈ [9] such that close ones do not see each other. So we need to find si ∈ Aφ(ei) for i ∈ [9] such

that P (s1, s2, s3, s4, s5, s6, s7, s8, s9) 6= 0, where

P (x1, x2, x3, x4, x5, x6, x7, x8, x9) =

∏
1≤k<l≤9

(xk − xl)

(x1 − x9)(x5 − x8)(x3 − x6)(x4 − x7)
.

Note that deg(P ) = 32, |Aφ(e2)| ≥ 6 and |Aφ(ei)| ≥ 5 for i ∈ [9] − {2}. Our MATLAB codes

show that cP (x41x
5
2x

4
3x

4
4x

3
5x

3
6x

3
7x

3
8x

3
9) = −6. By Lemma 1.5, there exist si ∈ Ai for i ∈ [9] such that

P (s1, s2, s3, s4, s5, s6, s7, s8, s9) 6= 0. Note that the polynomial P ′ of any other 5-cycle in G is a

subpolynomial of P , then P 6= 0 implies that P ′ 6= 0 as well. �

Now we are ready to prove Theorem 1.3.
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Proof of Theorem 1.3. Let G be a minimal counterexample. By Lemma 2.1-2.4, the girth of

G is at least six. By Euler’s formula,
∑

v∈V (G)(2d(v) − 6) +
∑

f∈F (G)(d(f) − 6) = −12. It follows

that the minimum degree of G is at most two, a contradiction to Lemma 2.1 that G is 3-regular. �

3 Proof of Theorem 1.2

In this section, we give a proof of Theorem 1.2. Let (G,L) be a minimal counterexample, where

|L(e)| ≥ 11 for each e ∈ E(G). Without loss of generality, we assume |L(e)| = 11. By Lemma 2.1-

2.4, G is 3-regular and the girth of G is at least six. Let v ∈ V (G) with N(v) = {v1, v2, v3}, and

let N(vi)− {v} = {wi, w′i} for i ∈ [3]. Then w1, w2, w3 form an independent set.

v1 v2

v3

v
w1

w2

w3

v1 v2

v3

v
w1

w2

w3

(1) (2)

'
3w

'
2w

'
1w

Figure 2:

Lemma 3.1 Each precoloring of v1w1, v2w2, v3w3 from their lists can be extended to an L-coloring

of H = G− v.

Proof. Order the edges in G with respect to the distance from v, that is, if edge e precedes edge

f , then d(v, e) ≥ d(v, f), where d(v, e) and d(v, f) are the distance from v to the edges e and f ,

respectively. Then the last three edges in the list are vv1, vv2 and vv3. The edges viwi and viw
′
i for

i ∈ [3] precede them. Color the edges in the list from the first to the last greedily. For each e = xy

in the list with d(v, x) ≥ d(v, y) ≥ 1, y is adjacent to some vertex z with d(v, z) < d(v, y). So the

three edges incident with z are after the edge e in the list. Clearly, at least two of the three edges

at z are not precolored, thus e sees at least two uncolored edges in G (Figure 3). So e sees at most

10 different colors, and thus can be colored. �

For i ∈ [3], let Bi = L(viwi) ∪ L(viw
′
i) and Li = L(vvi). We will prove Theorem 1.2 through a

series of claims.

(1) B1 ∩B2 ∩B3 = ∅.
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v1 w2

v3

w2

v
v2

'

e

The dashed lines means the edges precolored.  

Figure 3:

For otherwise, precolor viwi (or viw
′
i) with α ∈ B1 ∩ B2 ∩ B3, which can be extended to an

L-coloring of H by Lemma 3.1. Now vvi for i ∈ [3] sees at most 8 different colors, so |A(vvi)| ≥ 3.

So vv1, vv2, vv3 can be colored in the order.

(2) For any i, j ∈ [3] with i 6= j, Bi ∩Bj ⊆ L1 ∩ L2 ∩ L3.

Suppose that for some i, j ∈ [3] with i 6= j, there exists α ∈ (Bi ∩ Bj) − (L1 ∩ L2 ∩ L3). It

means α must not belong to the one of L1, L2, L3. We assume α ∈ (B2 ∩ B3)− L1. Without loss

of generality, assume α ∈ L(v2w2) ∩L(v3w3)−L1. Precolor v2w2, v3w3 with α and by Lemma 3.1,

we can extend it to an L-coloring φ of H. Then |Aφ(vv1)| ≥ 3, |Aφ(vv2)| ≥ 2, |Aφ(vv3)| ≥ 2, and

we can color vv2, vv3, vv1 by Lemma 1.4.

(3) For some i, j ∈ [3] with i 6= j, Li ∩ Lj 6= ∅.
For otherwise, in an L-coloring of H, each of vv1, vv2, vv3 has an available color and the colors

are distinct, so they could be colored.

We may assume that L2 ∩ L3 6= ∅.

(4)|
⋃3
i=1Bi| ≥ |

⋃3
i=1 Li|+ |L1 ∩ L2 ∩ L3|.

By (1), B1 ∩B2, B2 ∩B3, B3 ∩B1 are disjoint, and by (2), are subsets of L1 ∩ L2 ∩ L3. So

|
3⋃
i=1

Bi| =
3∑
i=1

|Bi| −
∑
i,j∈[3]

|Bi ∩Bj |+ |
3⋂
i=1

Bi| ≥
3∑
i=1

|Bi| − |
3⋂
i=1

Li| = 33− |
3⋂
i=1

Li|.

On the other hand,

|
3⋃
i=1

Li| =
3∑
i=1

|Li| −
∑
i,j∈[3]

|Li
⋂
Lj |+ |

3⋂
i=1

Li| ≤ 33− 2|
3⋂
i=1

Li|.

Therefore, |
⋃3
i=1Bi| ≥ |

⋃3
i=1 Li|+ |L1 ∩ L2 ∩ L3|.

(5) For some i, j ∈ [3] with i 6= j, Bi
⋂
Bj 6= ∅.

8



For otherwise, |Bi| ≥ 11 for i = 1, 2, 3 and |
⋃3
i=1Bi| ≥ 33. Since L2 ∩ L3 6= ∅, we have

|
⋃3
i=1 Li| ≤ 32. So there exists α ∈ (B1 ∪ B2 ∪ B3)− (L1 ∪ L2 ∪ L3). Assume α ∈ L(v1w1) ⊂ B1.

Since |B2∪B3| ≥ 22 and |L2∪L3| ≤ 21, there exists β ∈ (B2∪B3)− (L2∪L3), and we may assume

β ∈ L(v2w2). Now we precolor v1w1 with α and v2w2 with β, and by Lemma 3.1, extend it to an

L-coloring φ of H. Now |Aφ(vv1)| ≥ 2, |Aφ(vv2)| ≥ 3, |Aφ(vv3)| ≥ 3, we can color vv3, vv2, vv1 by

Lemma 1.4.

By (5) and (2), |L1 ∩ L2 ∩ L3| ≥ 1, so by (4), there exists α ∈
⋃3
i=1Bi −

⋃3
i=1 Li. Assume

α ∈ L(v1w1) ⊆ B1.

Precolor v1w1 with α.

• B2 ∩B3 6= ∅.

Let β ∈ L(v2w2) ∩ L(v3w3). Precolor v2w2, v3w3 with β. By Lemma 3.1, this precoloring

can be extended to an L-coloring φ of H. Note that for i ∈ [3], |Aφ(vvi)| ≥ 3, we can color

vv1, vv2, vv3 in the order.

• B2 ∩B3 = ∅.

Then |B2∪B3| = 22−|B2∩B3| = 22 > 22−|L(e2)∩L(e3)| = |L(e2)∪L(e3)|. So there exists

β ∈ (B2 ∪ B3) − (L2 ∪ L3). Suppose that β ∈ L(v3w3) without loss of generality. Precolor

v3w3 with β, by Lemma 3.1, this precoloring can be extended to an L-coloring φ of H. Note

that |Aφ(vv1)| ≥ 2, |Aφ(vv2)| ≥ 3, |Aφ(vv3)| ≥ 3, and we can color vv1, vv2, vv3 in the order.

�

4 Final discussion

As we mentioned in the introduction, one may try to improve our results by one, which, if true,

would be optimal. But this may not be easy, especially for subcubic planar graphs.

Here is another related question. A graph is chromatic-choosable if its chromatic number equals

to its list chromatic number. It is an interesting problem to find graphs that are chromatic-

choosable. Zhu asked whether there exists a constant integer k such that the k-th power Gk

is chromatic-choosable for every graph G. Kim, Kwon, and Park [10] answered this question

negatively. Moreover, for any fixed k they showed that there are graphs G such that the value

χl(G
k)− χ(Gk) can be arbitrarily large.

We know χ′s,l(G) is the list chromatic number of the square of the line graph of G. Kostochka

and Woodall [13] asked whether G2 is chromatic-choosable for every graph. Kim and Park [11]

9



solved the conjecture in the negative by finding a family of graphs G whose squares are complete

multipartite graphs with partite sets of unbounded size.

Question 4.1 Is G2 chromatic-choosable for every line graph G?

Acknowledgement: We are very grateful for the careful reading and many helpful comments

from the referees.
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Appendix

Note that if P (x1, x2, · · · , xm) is a polynomial with deg(P ) = n, and k1, k2, · · · , km are non-negative

integers with
m∑
i=1

ki = n. Let cP (xk11 x
k2
2 · · ·xkmm ) be the coefficient of monomial xk11 x

k2
2 · · ·xkmm in P .

Then
∂nP

∂xk11 ∂x
k2
2 · · · ∂x

km
m

= cP (xk11 x
k2
2 · · ·x

km
m )

m∏
i=1

ki!.

%input
syms x1 x2 x3 x4 x5 x6 x7 x8 x9
%Lemma 2 .4
Q=(x1−x2 ) ∗( x1−x3 ) ∗( x1−x4 ) ∗( x1−x5 ) ∗( x1−x6 ) ∗( x1−x7 ) ∗( x1−x8 ) ∗( x2−x3 ) ∗( x2−x4 ) ∗( x2

−x5 ) ∗( x2−x6 ) ∗( x2−x7 ) ∗( x2−x8 ) ∗( x2−x9 ) ∗( x3−x4 ) ∗( x3−x5 ) ∗( x3−x7 ) ∗( x3−x8 ) ∗( x3−
x9 ) ∗( x4−x5 ) ∗( x4−x6 ) ∗( x4−x8 ) ∗( x4−x9 ) ∗( x5−x6 ) ∗( x5−x7 ) ∗( x5−x9 ) ∗( x6−x7 ) ∗( x6−x8
) ∗( x6−x9 ) ∗( x7−x8 ) ∗( x7−x9 ) ∗( x8−x9 ) ;

C=d i f f ( d i f f ( d i f f ( d i f f ( d i f f ( d i f f ( d i f f ( d i f f ( d i f f (Q, x1 , 4 ) , x2 , 5 ) , x3 , 4 ) , x4 , 4 ) , x5
, 3 ) , x6 , 3 ) , x7 , 3 ) , x8 , 3 ) , x9 , 3 ) / f a c t o r i a l ( 4 ) / f a c t o r i a l (5 ) / f a c t o r i a l (4 ) /
f a c t o r i a l (4 ) / f a c t o r i a l (3 ) / f a c t o r i a l (3 ) / f a c t o r i a l ( 3 ) / f a c t o r i a l (3 ) / f a c t o r i a l
(3 )

%output
C=−6
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