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We consider realizations of a graph in the plane such that the distances
between adjacent vertices satisfy the constraints given by an edge labeling.
If there are infinitely many such realizations, counted modulo rigid motions,
the labeling is called flexible. The existence of a flexible labeling, possibly
non-generic, has been characterized combinatorially by the existence of a so
called NAC-coloring. Nevertheless, the corresponding realizations are often
non-injective. In this paper, we focus on flexible labelings with infinitely
many injective realizations. We provide a necessary combinatorial condition
on existence of such a labeling based also on NAC-colorings of the graph. By
introducing new tools for the construction of such labelings, we show that
the necessary condition is also sufficient up to 8 vertices, but this is not true
in general for more vertices.

1 Introduction
A widely studied question in Rigidity Theory is the number of realizations of a graph
in R2 such that the distances of adjacent vertices are equal to a given labeling of edges
by positive real numbers. Such a labeling is called flexible if the number of realizations,
counted modulo rigid transformations, is infinite. Otherwise, the labeling is called rigid.
We call a graph movable if there is a flexible labeling with infinitely many injective
realizations, modulo rigid transformations. In other words, we disallow realizations that
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identify two vertices; we do not care if edges intersect or even if edges overlap in a line
segment. One can model such a movable graph as a planar linkage, where the vertices
are rotational joints and the edges correspond to links of the length given by the labeling.
A result of Pollaczek-Geiringer [11], rediscovered by Laman [7], shows that a generic

realization of a graph defines a rigid labeling if and only if the graph contains a Laman
subgraph with the same set of vertices. A graph G = (VG, EG) is called Laman if
|EG|= 2|VG|−3, and |EH |≤ 2|VH |−3 for all subgraphs H of G on at least two vertices.
Hence, if a graph is not spanned by a Laman graph, then a generic labeling is flexible,
i.e., the graph is movable.
The study of movable overconstrained graphs has a long history. Two ways of making

the bipartite Laman graph K3,3 movable were given by Dixon more than one hundred
years ago [4, 12, 15]. The first one works for any bipartite graph, placing the vertices of
one part on the x-axis and of the other on the y-axis. The second construction applies
to K4,4 and hence also to K3,3. Walter and Husty proved that these two give all flexible
labelings of K3,3 with injective realizations [13]. Other constructions are Burmester’s
focal point mechanisms [1], a graph with 9 vertices and 16 edges, and two constructions
by Wunderlich [14,16] for bipartite graphs based on geometric theorems.
The main question in this paper is the following: is a given graph movable? In [6],

we already provide a combinatorial characterization of graphs with a flexible labeling:
there is a flexible labeling if and only if the graph has a so called NAC-coloring. A
NAC-coloring is a coloring of edges by two colors such that in every cycle, either all
edges have the same color or there are at least two edges of each color. Many Laman
graphs indeed have a NAC-coloring, but the corresponding realizations are in general
not injective, i.e., in order to be flexible, some non-adjacent vertices coincide. Here, we
are more restrictive – infinitely many realizations of a movable graph must be injective.
We give a necessary combinatorial condition on a graph being movable, based on the

concept of NAC-colorings. The idea is that edges can be added to a graph if their end-
points are connected by a path that is monochromatic in every NAC-coloring, without
having effect on being movable. If the augmented graph does not have any NAC-coloring,
it cannot be movable as it has no flexible labeling. On the other hand, we provide con-
structions making some graphs movable. They are based on NAC-colorings or combining
movable subgraphs. In combination with the necessary condition, we give a complete
list of movable graphs up to 8 vertices. Animations with the movable graphs can be
found in [8]. The implementation of the concepts introduced in this paper is part of the
SageMath package FlexRiLoG [5].
Figure 1 provides some examples illustrating the results: the left graph has no NAC-

coloring, hence, it has no flexible labeling. The graph in the middle has a NAC-coloring,
namely, it has a flexible labeling, but it is not movable since it does not satisfy the
necessary condition based on augmenting by edges whose endpoints are connected by a
monochromatic path. In other words, all motions require some vertices to coincide. The
third graph is movable using one of our constructions.
The structure of the paper is the following. In Section 2, we specify the system of

equations describing the problem and recall the definition of NAC-coloring and some
previous results. A few technical lemmas about NAC-colorings are also proven. In
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Section 3, we prove the necessary combinatorial condition on being movable. We list all
graphs spanned by a Laman graph up to 8 vertices that satisfy it. All these graphs are
shown to be movable in Section 4. Moreover, an example that the necessary condition
is not sufficient is also presented.

Figure 1: The left graph has no flexible labeling, the middle one has a flexible labeling,
but it is not movable, and the right one is movable

2 Preliminaries
In the whole paper, all graphs are assumed to be connected and containing at least one
edge. We denote the set of vertices of a graph G by VG and the set of edges by EG.
In this section, we recall the definition of NAC-coloring and flexible labeling of a graph.
Next, we introduce the notion of proper flexible labeling and movable graph by the
requirement of injective realizations. We define an algebraic motion of a graph with a
flexible labeling and assign a certain set of active NAC-colorings to this motion. These
active NAC-colorings come from the proof of the theorem characterizing the existence of
a flexible labeling. The active NAC-colorings are illustrated on the motion of a deltoid.
The section concludes with three lemmas, which guarantee that the introduced notions
are independent of certain choices of edges and interchanging colors.

Definition 2.1. Let G be a graph and δ:EG → {blue, red} be a coloring of edges.

(i) A path, resp. cycle, in G is called monochromatic, if all its edges have the same
color.

(ii) A cycle in G is an almost red cycle, resp. almost blue cycle, if exactly one of its
edges is blue, resp. red.

A coloring δ is called a NAC-coloring, if it is surjective and there are no almost blue
cycles or almost red cycles in G. In other words every cycle is either monochromatic or
contains at least 2 edges in each color. The set of all NAC-colorings of G is denoted by
NACG.

Now, the abbreviation NAC can be explained – it stands for “No Almost Cycle”.
Clearly, if we permute red and blue in a NAC-coloring of G, we obtain another NAC-
coloring of G.

Definition 2.2. Let G be a graph. If δ, δ ∈ NACG are such that δ(e) = blue ⇐⇒
δ(e) = red for all e ∈ EG, then they are called conjugated.
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The following definition describes the constraints on a realization in the plane given
by a labeling of edges. The realizations must be counted properly, i.e., modulo rigid
motions, in order to say whether the labeling is flexible.

Definition 2.3. Let G be a graph such that |EG|≥ 1 and let λ:EG → R+ be an edge
labeling of G. A map ρ = (ρx, ρy):VG → R2 is a realization of G compatible with λ iff
‖ρ(u)− ρ(v)‖ = λ(uv) for all edges uv ∈ EG. We say that two realizations ρ1 and ρ2
are congruent iff there exists a direct Euclidean isometry σ of R2 such that ρ1 = σ ◦ ρ2.
The labeling λ is called flexible if the number of realizations of G compatible with λ

up to congruence is infinite.

We remark that if a labeling has a positive finite number of realizations, then it is
called rigid.
The constraints given by edge lengths λuv = λ(uv) can be modeled by the following

system of equations for coordinates (xu, yu) for u ∈ VG. In order to remove rigid motions,
the position of an edge ūv̄ is fixed:

xū = 0 , yū = 0 ,
xv̄ = λūv̄ , yv̄ = 0 , (1)

(xu − xv)2 + (yu − yv)2 = λ2
uv for all uv ∈ EG \ {ūv̄}.

The labeling λ is flexible if and only if there are infinitely many solutions of the system.
So far, the realizations have not been required to be injective. Namely, it could happen

that two non-adjacent vertices were mapped to the same point in R2. Sections 3 and 4
are focused on the graphs that have a labeling with infinitely many injective compatible
realizations. This corresponds to adding the inequalities (xu − xv)2 + (yu − yv)2 6= 0 for
all u, v ∈ VG such that u 6= v and uv /∈ EG.

Definition 2.4. A flexible labeling λ of a graph G is called proper, if there exists
infinitely many injective realizations ρ of G compatible with λ, modulo rigid transfor-
mations. We say that a graph is movable if it has a proper flexible labeling.

We remark that graphs that are not movable are called absolutely 2-rigid in [9]. Con-
sidering irreducible components of the solution set of the equation (1) allows us to use
the notion of a function field, whose valuations give rise to a relation with NAC-colorings,
as we will see later.

Definition 2.5. Let λ be a flexible labeling of G. Let R(G, λ) ⊆ (R2)VG be the set of all
realizations of G compatible with λ. We say that C is an algebraic motion of (G, λ) w.r.t.
an edge ūv̄, if it is an irreducible algebraic curve in R(G, λ), such that ρ(ū) = (0, 0) and
ρ(v̄) = (λ(ūv̄), 0) for all ρ ∈ C. Since in many situations the role of ūv̄ does not matter,
we also simply say that C is an algebraic motion of (G, λ). We call F (C) the complex
function field of C.

The fact that the choice of the fixed edge does not change the function field is proven
at the end of this section. The functions in the function field related to NAC-colorings
are given by the following definition.

4



Definition 2.6. Let λ be a flexible labeling of a graph G. Let F (C) be the complex
function field of an algebraic motion C of (G, λ). For every u, v ∈ VG such that uv ∈ EG,
we define Wu,v, Zu,v ∈ F (C) by

Wu,v = (xv − xu) + i(yv − yu) ,
Zu,v = (xv − xu)− i(yv − yu) .

We use W ūv̄
u,v, resp. Z ūv̄

u,v, if we want to specify that C is w.r.t. a fixed edge ūv̄.

We remark thatWu,v = −Wv,u and Zu,v = −Zv,u, i.e., they depend on the order of u, v.
Using (1), we have

Wū,v̄ = λūv̄ , Zū,v̄ = λūv̄ ,

Wu,vZu,v = λ2
uv for all uv ∈ EG .

By the definition of Wu,v and Zu,v, the equations
n∑
i=0

Wui,ui+1 = 0 ,
n∑
i=0

Zui,ui+1 = 0

hold for every cycle (u0, u1, . . . , un, un+1 = u0) in G. Recall that the valuation of a
product is the sum of valuations and the valuation of a sum is the minimum of valua-
tions. A consequence is that if a sum of functions equals zero, then there are at least
two summands with the minimal valuation. Since we consider only valuations trivial
on C, ν(Wu,v) = ν(−Wv,u) for a valuation ν. These, together with Chevalley’s theorem
(see [3]), are the main ingredients for one implication of the following theorem that was
proven in [6].

Theorem 2.7. A connected graph G with at least one edge has a flexible labeling iff it
has a NAC-coloring.

Actually, the following statement can be deduced from the proof of Theorem 2.7
with only minor modification — replacing 0 by α. This theorem explains how the
functions Wu,v and Zu,v yield a NAC-coloring.

Theorem 2.8. Let λ be a flexible labeling of a graph G. Let F (C) be the complex
function field of an algebraic motion C of (G, λ). If α ∈ Q and ν is a valuation of
F (C) such that there exists edges ūv̄, ûv̂ in EG with ν(Wūv̄) = α and ν(Wûv̂) > α, then
δ : EG → {red, blue} given by

δ(uv) = red ⇐⇒ ν(Wu,v) > α ,

δ(uv) = blue ⇐⇒ ν(Wu,v) ≤ α .
(2)

is a NAC-coloring.

This motivates the assignment of some NAC-colorings to an algebraic motion.
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Definition 2.9. Let C be an algebraic motion of (G, λ). A NAC-coloring δ ∈ NACG is
called active w.r.t. C if there exists a valuation ν of F (C) and α ∈ Q such that (2) holds.
The set of all active NAC-colorings of G w.r.t. C is denoted by NACG(C).

For illustration, we compute the active NAC-colorings of the non-degenerated alge-
braic motion of a deltoid.

Example 2.10. Let Q be a 4-cycle with a labeling λ given by λ({1, 2}) = λ({1, 4}) = 1
and λ({2, 3}) = λ({3, 4}) = 3. There is an algebraic motion C of (Q, λ) that can be
parametrized by

ρt(1) = (0, 0) , ρt(2) = (1, 0) ,

ρt(3) =
(

4(t2 − 2)
t2 + 4 ,

12t
t2 + 4

)
, ρt(4) =

(
t4 − 13t2 + 4
t4 + 5t2 + 4 ,

6t(t2 − 2)
t4 + 5t2 + 4

)

for t ∈ R. Now, we have

W1,2 = 1 , W2,3 = 3(t+ 2i)
t− 2i , W3,4 = −3(t+ i)

t− i
, W4,1 = −(t+ i)(t+ 2i)

(t− i)(t− 2i) .

Hence, the only non-trivial valuations correspond to the polynomials t±i and t±2i. They
give two pairs of conjugated NAC-colorings by taking a suitable threshold α ∈ {−1, 0},
see Table 1 and Figure 2. We remark that |NACQ(C)|= 4, whereas |NACQ|= 6. The
two non-active NAC-colorings correspond to the degenerated motion of (Q, λ), where
the vertices 2 and 4 coincide.

edge λ νt+i δ1 νt−i δ1 νt+2i δ2 νt−2i δ2

{1, 2} 1 0 blue 0 red 0 blue 0 red
{2, 3} 3 0 blue 0 red 1 red −1 blue
{3, 4} 3 1 red −1 blue 0 blue 0 red
{1, 4} 1 1 red −1 blue 1 red −1 blue

Table 1: Valuations giving the active NAC-colorings of a deltoid

1 2

3

4

1 2

3

4

1 2

3

4

1 2

3

4

δ1 δ1 δ2 δ2

Figure 2: Active NAC-colorings of a deltoid

We conclude this section by three technical lemmas, which show that the active NAC-
colorings do not depend on the choice of the fixed edge and that conjugated NAC-
colorings are either both active or both non-active. The first lemma says that the
function field does not depend on the choice of the edge.
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Lemma 2.11. Let λ be a flexible labeling of G. Let Cū,v̄ be an algebraic motion of (G, λ)
w.r.t. an edge ūv̄. If u′v′ ∈ EG and ϕu′,v′ : R(G, λ)→ R(G, λ) is given by

(xw, yw)w∈VG
7→
((xw − xu′)(xv′ − xu′) + (yw − yu′)(yv′ − yu′)

λ(u′v′) ,

(yw − yu′)(xv′ − xu′)− (xw − xu′)(yv′ − yu′)
λ(u′v′)

)
w∈VG

,

then Cu′,v′ = ϕu′,v′(Cū,v̄) is an algebraic motion of (G, λ) w.r.t. an edge u′v′ and ϕu′,v′ :
Cū,v̄ → Cu′,v′ is birational.

Proof. By direct computation, one can check that u′v′ is indeed fixed in Cu′,v′ and that
all realizations in Cu′,v′ are compatible with λ. The rational inverse of ϕu′,v′ is ϕū,v̄.

The following lemma shows that active NAC-colorings are independent of the choice
of the fixed edge.

Lemma 2.12. Let G be a graph with a flexible labeling λ. If Cu′,v′ and Cū,v̄ are as in
Lemma 2.11, then NACG(Cu′,v′) = NACG(Cū,v̄).

Proof. Let δ ∈ NACG(Cū,v̄), i.e., there exists a valuation ν̄ of F (Cū,v̄) and α ∈ Q such
that δ(uv) = red ⇐⇒ ν̄(W ūv̄

u,v) > α for all uv ∈ EG. Let ϕu′,v′ : Cū,v̄ → Cu′,v′ be
the birational map from Lemma 2.11. Hence, there is a function field isomorphism
φ : F (Cu′,v′) → F (Cū,v̄) given by f 7→ f ◦ ϕu′,v′ . We define a valuation ν ′ of F (Cu′,v′) by
ν ′(f) := ν̄(φ(f)). If W u′v′

u,v ∈ F (Cu′,v′), then

W u′v′

u,v ◦ ϕu′,v′ =
(
(xv − xu)(xv′ − xu′) + (yv − yu)(yv′ − yu′)

)
/λ(u′v′)

+ i
(
(yv − yu)(xv′ − xu′)− (xv − xu)(yv′ − yu′)

)
/λ(u′v′)

=
(
(xv − xu) + i(yv − yu)

)
·
(
(xv′ − xu′)− i(yv′ − yu′)

)
/λ(u′v′) .

Therefore, ν ′(W u′v′
u,v ) = ν̄(W ūv̄

u,v) + ν̄(Z ūv̄
u′,v′). This concludes the proof, since

δ(uv) = red ⇐⇒ ν̄(W ūv̄
u,v) > α ⇐⇒ ν ′(W u′v′

u,v ) > α + ν̄(Z ūv̄
u′,v′) .

Finally, we show that the set of active NAC-colorings is closed under conjugation.

Lemma 2.13. Let λ be a flexible labeling of a graph G. Let C be an algebraic motion
of (G, λ). If δ, δ ∈ NACG are conjugated, then δ ∈ NACG(C) if and only if δ ∈ NACG(C).

Proof. Let δ be an active NAC-coloring of G w.r.t. C given by a valuation ν of F (C)
and a threshold α. Since the algebraic motion C is a real algebraic curve, it has complex
conjugation defined on its complex points. This induces another valuation ν of F (C)
given by ν(f) := ν(f) for any f ∈ F (C), where f is given by f(ρ) := f(ρ) for every ρ ∈ C.

7



If β = max{ν(Zu,v): ν(Zu,v) < −α, uv ∈ EG}, then ν and β satisfy (2) for δ, since for
every edge uv ∈ EG:

δ(uv) = red ⇐⇒ α < ν(Wu,v) ⇐⇒ −α > ν(Zu,v)
⇐⇒ β ≥ ν(Zu,v) ⇐⇒ β ≥ ν(Wu,v) ⇐⇒ δ(uv) = blue .

Namely, δ is in NACG(C).

3 Combinatorial tools
From now on, we are interested only in proper flexible labelings, namely, the question,
whether a graph is movable. One of our main tools is introduced in this section: An edge
uv can be added to a graph without changing its algebraic motion, if the vertices u and
v are connected by a path that is monochromatic in every active NAC-coloring. This
leads to the notion of constant distance closure — augmenting the graph by edges with
the property above, taking into account all NAC-colorings of the graph instead of active
ones. Hence, we obtain a necessary combinatorial condition on movability: a graph
can be movable only if its constant distance closure has a NAC-coloring. Based on this
necessary condition, we show that so called tree-decomposable graphs are not movable.
At the end of the section, we list all maximal constant distance closures of graphs up
to 8 vertices having a spanning Laman graph that satisfy the necessary condition.
The following statement guarantees that adding an edge uv with the mentioned prop-

erty preserves an algebraic motion, since the distance between u and v is constant during
the motion.

Lemma 3.1. Let G be a graph, λ a flexible labeling of G and u, v ∈ VG where uv 6∈ EG.
Let C be an algebraic motion of (G, λ) such that ∀ρ ∈ C : ρ(u) 6= ρ(v). If there exists a
uv-path P in G such that P is monochromatic for all δ ∈ NACG(C), then λ has a unique
extension λ′ of G′ = (VG, EG ∪ {uv}), such that C is an algebraic motion of (G′, λ′) and
NACG′(C) = {δ′ ∈ NACG′ : δ′|EG

∈ NACG(C)}.

Proof. Let S = {‖ρ(u)− ρ(v)‖ ∈ R+: ρ ∈ C}. We first show that S is finite. By
Lemma 2.12, we can assume that the first edge u1u2 of the path P is the fixed one
in C. If there is any ukuk+1 in P such that Wuk,uk+1 is transcendental, then there is a
valuation ν such that ν(Wuk,uk+1) > 0 by Chevalley’s Theorem (see [3]). Hence, an active
NAC-coloring can be constructed by Theorem 2.8 with ν(Wu1,u2) = 0, which contradicts
that P is monochromatic. Therefore, Wuk,uk+1 is algebraic for all ukuk+1 in P . Then
there are only finitely many values for Wuk,uk+1 . These values correspond to possible
angles of the line given by the realization of the vertices uk and uk+1. Hence, there can
only be finitely many elements in S.
Indeed, we can show that |S|= 1. Assume S = {s1, . . . , s`}, then C = ⋃

i∈{1,...,`}{ρ ∈
C: ‖ρ(u)− ρ(v)‖2 = s2

i }. Since C is irreducible, then ` = 1. We define λ′ by λ′|EG
= λ

and λ′(uv) = s1.
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The restriction of any active NAC-coloring δ′∈ NACG′(C) to EG is clearly in NACG(C).
On the other hand, every active NAC-coloring of G is extended uniquely to an active
NAC-coloring of G′, since the path P is monochromatic.

Notice that it is sufficient to check the assumption only for non-conjugated active
NAC-colorings due to Lemma 2.13.
Removal of an edge also preserves movability, since edge lengths are assumed to be

positive. Together with the fact that NACG(C) ⊂ NACG for any algebraic motion C,
this gives the following corollary.

Corollary 3.2. Let G be a graph and u, v ∈ VG be such that uv /∈ EG. If there exists a
uv-path P in G such that P is monochromatic for all δ ∈ NACG, then G is movable if
and only if G′ = (VG, EG ∪ {uv}) is movable.

Proof. Let λ′ be a proper flexible labeling of G′. Clearly, λ = λ′|EG
is a flexible labeling

of G. A realization ρ of G′ compatible with λ′ maps u and v to distinct points, since
‖ρ(u)− ρ(v)‖ = λ′(uv) 6= 0. Clearly, ρ is also a realization of G and it is compatible
with λ. The other direction follows from Lemma 3.1.

Let us point out that there is no specific algebraic motion assumed in the previous
corollary. Hence, it can be used for proving that a graph is not movable in purely
combinatorial way. This is demonstrated by the following example.

Example 3.3. The graph G in Figure 3 is not movable: since the vertices 1 and 4
are connected by the path (1, 3, 4) which is monochromatic in every NAC-coloring, and
similarly for 2 and 5 with the path (2, 3, 5), G is movable if and only if G′ = (VG, EG ∪
{{1, 4}, {2, 5}}) is movable. But G′ has no flexible labeling by Theorem 2.7, since it has
no NAC-coloring.

1 2

3

4 5

6 7

1 2

3

4 5

6 7

1 2

3

4 5

6 7

Figure 3: All non-conjugated NAC-colorings of a Laman graph with no proper flexible
labeling

The corollary and example motivate the next definition. The name is inspired by the
constant distance between vertices u and v in Lemma 3.1 during the motion.

Definition 3.4. Let G be a graph. Let U(G) denote the set of all pairs {u, v} ⊂ VG
such that uv /∈ EG and there exists a path from u to v which is monochromatic for all
δ ∈ NACG. If there exists a sequence of graphs G0, . . . , Gn such that

(i) G = G0,
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(ii) Gi = (VGi−1 , EGi−1 ∪ U(Gi−1)) for i ∈ {1, . . . , n},

(iii) U(Gn) = ∅,
then the graph Gn is called the constant distance closure of G, denoted by CDC(G).
The idea of repetitive augmenting the graph G by edges in U(G) is to decrease the

number of inequalities checking injectivity of compatible realizations — adjacent vertices
must be always mapped to different points. This can be seen in Example 3.3 — the
construction of a flexible labeling from a NAC-coloring described in [6] always coincides
the vertices 1 and 4, or 2 and 5. But the edges {1, 4} and {2, 5} are added to the constant
distance closure already in the first iteration.
In other words, considering the constant distance closure, while seeking for a proper

flexible labeling, utilizes more information from the graph than taking the graph itself.
For instance, since NACCDC(G) ⊂ NACG, the NAC-colorings of G that are active only
for motions with non-injective realizations might be eliminated. This is summarized by
the following statement.
Theorem 3.5. A graph G is movable if and only if the constant distance closure of G
is movable.
Proof. The theorem follows by recursive application of Corollary 3.2.

An immediate consequence is that a graph G can be movable only if the constant
distance closure CDC(G) has a flexible labeling, namely, we relax the requirement on
the labeling to be proper. By Theorem 2.7, it is equivalent to say that if G is movable,
then CDC(G) has a NAC-coloring. We can reformulate this necessary condition using
the next two lemmas.
Lemma 3.6. Let G be a graph. If H is a subgraph of G, then the constant distance
closure CDC(H) is a subgraph of the constant distance closure CDC(G).
Proof. If we show that U(H) ⊂ U(G), then the claim follows by induction. Let a
nonedge uv be in U(H), namely, there exists a path P from u to v such that it is
monochromatic for all NAC-colorings in NACH . But then uv is also in U(G), since the
path P is monochromatic also for all δ ∈ NACG, because P is a subgraph of H and
either δ|EH

∈ NACH or |δ(EH)|= 1.

Now, we can show that having a NAC-coloring and being non-complete is the same
for a constant distance closure.
Lemma 3.7. Let G be a graph. The constant distance closure CDC(G) is the complete
graph if and only if there exists a spanning subgraph of CDC(G) that has no NAC-
coloring.
Proof. If CDC(G) is the complete graph, then it has clearly no NAC-coloring. For the
opposite implication, assume that there is a spanning subgraph H of CDC(G) that has
no NAC-coloring. Trivially, U(H) consists of all nonedges of H. Hence, the constant
distance closure of H is the complete graph. By Lemma 3.6, CDC(G) is also complete.
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The previous statement clarifies that the necessary condition obtained from Theo-
rem 3.5 can be expressed as follows by relaxing the requirement of a flexible labeling
being proper.

Corollary 3.8. Let G be a graph. If the constant distance closure CDC(G) is the
complete graph, then G is not movable.

Let us use this necessary condition to prove that a certain class of Laman graphs is
not movable. We would like to thank Meera Sitharam for pointing us to this class.

Definition 3.9. A graph G is tree-decomposable if it is a single edge, or there are three
tree-decomposable subgraphs H1, H2 and H3 of G such that VG = VH1 ∪ VH2 ∪ VH3 ,
EG = EH1 ∪EH2 ∪EH3 and VH1 ∩ VH2 = {u}, VH2 ∩ VH3 = {v} and VH1 ∩ VH3 = {w} for
three distinct vertices u, v, w ∈ VG.

One could prove geometrically that the tree-decomposable graphs are not movable,
but the notion of constant distance closure allows to do it in a combinatorial way.

Theorem 3.10. If a graph is tree-decomposable, then it is not movable.

Proof. Let G be a tree-decomposable graph. It is sufficient to show that the constant
distance closure CDC(G) is the complete graph and use Corollary 3.8. We proceed by
induction on the tree-decomposable construction. Clearly, the constant distance closure
of a single edge is the edge itself which is K2. Let H1, H2 and H3 be tree-decomposable
subgraphs of G as in Definition 3.9, with the pairwise common vertices u, v and w.
By Lemma 3.6 and induction assumption, the subgraphs H ′1, H ′2 and H ′3 of CDC(G)
induced by VH1 , VH2 and VH3 respectively are complete. Thus, there is no NAC-coloring
of H ′ = (VH1 ∪ VH2 ∪ VH3 , EH′1 ∪ EH′2 ∪ EH′3), since all edges in a complete graph must
have the same color and H ′1, H

′
2 and H ′3 contain each an edge of the triangle induced

by u, v, w. By Lemma 3.7, CDC(G) is complete, since H ′ is its spanning subgraph .

We remark that the class of so called H1 graphs is a subset of tree-decomposable
graphs, hence, they are not movable. A graph is called H1 if it can be constructed from
a single edge by a sequence of Henneberg I steps — each step adds a new vertex by linking
it to two existing ones. The next statement recalls the known fact that Henneberg I
steps do not affect movability.

Lemma 3.11. Let G be a graph and u ∈ VG be a vertex of degree two. The graph G is
movable if and only if G′ = G \ u is movable.

Proof. Let v and w be the neighbours of u. If λ′ is a proper flexible labeling of G′,
then λ : EG → R+ given by λ′|EG′

= λ and λ(uv) = λ(uw) = L, where L is the maximal
distance between v and w in all realizations compatible with λ′, is a proper flexible
labeling of G. On the other hand, the restriction of a proper flexible labeling of G to G′
is a proper flexible labeling, since there are only two possible points where u can be
placed if v and w are mapped to distinct points, i.e., there must be infinitely many
realization of G′.
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Since the previous lemma justifies that the question of movability of a graph with
vertices of degree two reduces to a smaller graph with all degrees being different from
two, we can provide a list of “interesting" graphs regarding movability. By “interesting",
we mean, besides all vertices having degree at least three, also the fact that they are
spanned by a Laman graph. Recall that graphs that are not spanned by a Laman graph
are clearly movable, since a generic labeling is proper flexible. We are interested in
graphs that can be movable only due to a non-generic labeling. So we conclude this
section by the list of the “interesting" constant distance closures up to 8 vertices:

Theorem 3.12. Let G be a graph with at most 8 vertices such that it has a spanning
Laman subgraph and CDC(G) has no vertex of degree two. If G satisfies the neces-
sary condition of movability, i.e, the constant distance closure CDC(G) is not complete,
then CDC(G) is one of the graphs K3,3, K3,4, K3,5, K4,4, L1, . . . , L6, Q1, . . . , Q6, S1, . . . , S5,
or a spanning subgraph thereof, where the non-bipartite graphs are given by Figure 4.

Proof. Using the list of Laman graphs [2], one can compute constant distance closures of
all graphs spanned by a Laman graph with at most 8 vertices. The computation shows
that each constant distance closure is either a complete graph, or it has a vertex of
degree two, or it is a spanning subgraph (or the full graph) of one of K3,3, K3,4, K3,5, K4,4
or the graphs in Figure 4.

L1 L2 L3 L4 L5 L6

Q1 Q2 Q3 Q4 Q5 Q6

S1 S2 S3 S4 S5

Figure 4: Maximal non-bipartite constant distance closures of graphs with a spanning
Laman subgraph, at most 8 vertices and no vertex of degree two.
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4 Construction of proper flexible labelings
The goal of this section is to prove that all graphs listed in Theorem 3.12 are actually
movable. By this we also show that the necessary condition of movability (the constant
distance closure is non-complete) is also sufficient for graphs up to eight vertices. Four
general ways of constructing a proper flexible labeling are presented. The first two are
known — the Dixon I construction for bipartite graphs [4] and the construction from a
single NAC-coloring presented in [6]. We describe a new construction that produces an
algebraic motion with two active NAC-colorings based on a certain injective embedding
of vertices in R3. The fourth method assumes two movable subgraphs whose union spans
the whole graph and whose motions coincide on the intersection. We provide a proper
flexible labeling for S5 ad hoc, since none of the four methods applies. Animations for the
movable graphs can be found in [8]. In the conclusion, we give an example showing that
the necessary condition is not sufficient for graphs with arbitrary number of vertices. In
order to be self-contained, we recall Dixon’s construction.

Lemma 4.1. Every bipartite graph with at least three vertices is movable.

Proof. Let (X, Y ) be a bipartite partition of a graph G. Hence, a realization with the
vertices of one partition set on the x-axis, and vertices of the other on the y-axis induces
a proper flexible labeling by Dixon’s construction [4, 12]:

ρt(v) =

(
√
x2
v − t2, 0) , if v ∈ X ,

(0,
√
y2
v + t2) , if v ∈ Y ,

where xv, yv are arbitrary nonzero real numbers. Let λ(uv) :=
√
x2
v + y2

v for all u ∈ X
and v ∈ Y . By the Pythagorean Theorem, ρt is compatible with λ for every sufficiently
small t.

The following method from [6] was used in the proof of Theorem 2.7 but without the
assumption guaranteeing injectivity of realizations.

Lemma 4.2. Let δ be a NAC-coloring of a graph G. Let R1, . . . , Rm, resp. B1, . . . , Bn,
be the sets of vertices of connected components of the graph obtained from G by keeping
only red, resp. blue, edges. If |Ri ∩Bj| ≤ 1 for all i, j, then G is movable.

Proof. For α ∈ [0, 2π), we define a realization ρα:VG → R2 by

ρα(v) = i · (1, 0) + j · (cosα, sinα) ,

where i and j are such that v ∈ Ri ∩Bj. Now, the realization ρα is compatible with the
labeling λ : EG → R+, given by λ(uv) =

∥∥∥ρπ/2(u)− ρπ/2(v)
∥∥∥, for every α ∈ [0, 2π). The

induced flexible labeling λ is proper, since all realizations ρα, α /∈ {0, π}, are injective
by the assumption |Ri ∩Bj| ≤ 1.

13



L1 L2 L3 L4 L5 L6

Figure 5: The NAC-colorings inducing a proper flexible labeling.

The construction yields proper flexible labelings for L1, . . . , L6, since there are NAC-
colorings satisfying the assumption, see Figure 5. The displayed proper flexible labelings
can be obtained by the more general “zikzag" construction from [6].

Corollary 4.3. The graphs L1, . . . , L6, see Figure 4 or 5, are movable.

Now, we present a construction assuming a special injective embedding in R3. The
lemma also gives a hint, how existence of such an embedding can be checked (and an
embedding found), if we know all NAC-colorings of the given graph.

Lemma 4.4. Let G = (V,E) be a graph with an injective embedding ω : V → R3 such
that for every edge uv ∈ E, the vector ω(u)− ω(v) is parallel to one of the four vectors
(1, 0, 0), (0, 1, 0), (0, 0, 1), (−1,−1,−1), and all four directions are present. Then G is
movable.
Moreover, there exists an algebraic motion of G with exactly two active NAC-colorings

modulo conjugation. Two edges are parallel in the embedding ω if and only if they receive
the same pair of colors in the two active NAC-colorings.

Proof. Let ρt : {1, 2, 3, 4} → R2 be a parametrization of an algebraic motion of the
4-cycle with a labeling λ. We define three functions from R to R2 by

f1(t) = ρt(2)− ρt(1), f2(t) = ρt(3)− ρt(2), f3(t) = ρt(4)− ρt(3).

The norms ‖f1‖ , ‖f2‖ , ‖f3‖ and ‖−f1(t)− f2(t)− f3(t)‖ are the corresponding values
of λ, i.e., they are independent of t. For each t ∈ R, we define

ρ̃t : V → R2, u 7→ ω1(u)f1(t) + ω2(u)f2(t) + ω3(u)f3(t) ,

where ω(u) = (ω1(u), ω2(u), ω3(u)). For any edge uv, ρ̃t(u) − ρ̃t(v) is a multiple of
f1, f2, f3 or −f1(t)− f2(t)− f3(t) by assumption. Thus, the distance ‖ρ̃t(u)− ρ̃t(v)‖ is
independent of t and different from zero. Hence, the set of all ρt is an algebraic motion;
this proves the first statement.
In order to construct an algebraic motion with two active NAC-colorings, we take ρt to

be the parametrization of the deltoid in Example 2.10. For any edge uv, the functionWu,v

is just a scalar multiple of one of the functions in the example. Hence, there are only
two active NAC-colorings modulo conjugation, see Table 1.

14



Remark. Clearly, we can construct also an algebraic motion with three non-conjugated
active NAC-colorings by taking ρt from an algebraic motion of the 4-cycle with a general
edge lengths, which has three non-conjugated active NAC-colorings. This also shows
that if δ1 and δ2 are the two active NAC-colorings from the second statement of the
lemma, then the coloring δ3, given by δ3(e) = blue if and only if δ1(e) = δ2(e), is also a
NAC-coloring of G. This follows from the fact that there are only three non-conjugated
NAC-colorings of a 4-cycle with one chosen edge being always blue and they are related
as given above.

Lemma 4.4 allows to compute algebraic motions with exactly two active NAC-color-
ings: For any pair of NAC-colorings, try to find an embedding ω : V → R3 with edge
directions (1, 0, 0), (0, 1, 0), (0, 0, 1) or (−1,−1,−1) depending on the colors in these two
colorings. This leads to a system of linear equations. If it has a non-trivial solution,
check if a general solution is injective.

54

6 3

27

1

54

6 3

27

1

Figure 6: The graph Q1 with a pair of NAC-colorings giving an embedding in R3.

Example 4.5. In order to find an embedding ω : V → R3 for the graph Q1 using
the NAC-colorings in Figure 6, such that every edge colored with blue/blue is parallel
to (1, 0, 0), every edge colored with blue/red is parallel to (0, 1, 0), every edge colored
with red/blue is parallel to (0, 0, 1), and every edge colored with red/red is parallel
to (−1,−1,−1), we put ω(1) to the origin and introduce variables xi, yi, zi for pi := ω(i),
i = 2, . . . , 7. For each edge, we have two linear equations. We obtain the system

0 = y7 = z7 = y7 − y2 = z7 − z2 = y2 = z2 = y3 − y5 = z3 − z5 = y4 − y6 ,

0 = z4 − z6 = x5 = z5 = x2 − x3 = z2 − z3 = x3 − x4 = y3 − y4 = x5 − x6 ,

0 = y5 − y6 = x7 − x6 − y7 + y6 = x7 − x6 − z7 + z6 = x4 − y4 = x4 − z4 ,

with the general solution parametrized by t ∈ R

(p1, . . . , p7) = ((0, 0, 0), (t, 0, 0), (t, t, 0), (t, t, t), (0, t, 0), (0, t, t), (−t, 0, 0)).

The solution is injective for t 6= 0. If we take t = 1 and the parametrization of the
deltoid from Example 2.10, then we obtain an algebraic motion of the graph such that
its projection to the 4-cycle induced by {1, 2, 3, 4} is precisely the motion of the deltoid.
Any other parametrization of the 4-cycle also yields an algebraic motion of the whole
graph. Figure 7 illustrates using the deltoid and also a general quadrilateral. We remark
that the triangle {1, 2, 7} is degenerated independently of the choice of parametrization
of the 4-cycle. Moreover, the 4-cycles {1, 2, 3, 5}, {3, 5, 6, 4} and {1, 4, 6, 7} are always
parallelograms.
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Figure 7: Embeddings of the graph Q1 compatible with proper flexible labelings in-
duced by a deltoid and a general quadrilateral (colors indicate edges with
same lengths). Note that the vertices 1,2,7 form a degenerate triangle.

By applying the described procedure to all pairs of NAC-colorings for the graphs in
the list, we obtain the following:

Corollary 4.6. The graphs Q1, . . . , Q6, see Figure 4 or 8, are movable.

Proof. Figure 8 shows the pairs of NAC-colorings of the graphs in Q1, . . . , Q6 that can
be used to construct an injective embedding in R3 analogously to Example 4.5. Hence,
they are movable by Lemma 4.4.

Q1 Q2 Q3 Q4 Q5 Q6

Figure 8: Pairs of NAC-colorings used for construction of injective embeddings in R3

satisfying the assumption of Lemma 4.4.

For the graphs S1, . . . , S4, we take advantage of the fact that they contain other graphs
in the list as subgraphs. The next lemma formalizes the general construction based on
movable subgraphs.

Lemma 4.7. Let G be a graph. Let G1 and G2 be two subgraphs of G such that VG =
VG1 ∪ VG2 , EG = EG1 ∪ EG2 and EG1 ∩ EG2 6= ∅. Let W = VG1 ∩ VG2. Let λ1 and λ2
be proper flexible labelings of G1 and G2 respectively. If there are algebraic motions C1
of (G1, λ1) and C2 of (G2, λ2) such that:

(i) the projections of C1 and C2 to W are the same, and

(ii) for all v1 ∈ VG1 \W and v2 ∈ VG2 \W , the projections of C1 to v1 and C2 to v2 are
different,
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then there exists a proper flexible labeling of G.

Proof. We define a labeling λ of G by λ|EG1
= λ1 and λ|EG2

= λ2. This is well-defined,
since λ1|EG1∩EG2

= λ2|EG1∩EG2
by (i). Now, every realization in the projection of C1 to W

can be extended to a realization of G that is compatible with λ. Hence, λ is flexible. It
is also proper, since all extended realizations are injective by the second assumption.

Now, we identify the suitable subgraphs and motions for S1, S2 and S3. Movability
of S4 does not follow from the previous lemma, but it is straightforward.

Corollary 4.8. The graphs S1, S2, S3 and S4, see Figure 4 or 9, are movable.

Proof. Figure 9 shows vertex-labelings of the graphs S1, S2 and S3 that are used in the
proof. The labelings given by the displayed edge lengths are actually proper flexible.
Edges with same lengths have the same color.
Notice that the subgraphs G1 and G2 of S1 induced by the vertices {1, . . . , 6} and
{3, . . . , 8} are isomorphic to L1 and K3,3 respectively. Since G1 and G2 satisfy the
assumptions of Lemma 4.8, it is sufficient to take proper flexible labelings of G1 and G2,
given by Lemma 4.2 and 4.1, such that the quadrilateral (3,4,5,6) in both graphs moves
as a non-degenerated rhombus, i.e., λ(3, 4) = λ(4, 5) = λ(5, 6) = λ(3, 6).
Recall that a proper flexible labeling of K4,4 according to Dixon II is induced by

placing the nodes of the two partition sets to the vertices of two cocentric rectangles in
orthogonal position. By removing two vertices, one can easily obtain a motion of K3,3.
The graph S2 has a subgraph HQ1 induced by vertices {1, . . . , 7}, which is isomorphic

to Q1, and HK3,3 induced by {1, . . . , 5, 8} isomorphic to K3,3. We consider a proper
flexible labeling of the subgraph HK3,3 with an algebraic motion by Dixon II according
to Figure 9. Now, we can use the motion of the 4-cycle {1, 2, 3, 4} to construct a
motion of HQ1 following Example 4.5. Since the 4-cycle {1, 2, 3, 5} is a parallelogram
in the motions of HK3,3 and HQ1 , the subgraphs satisfy the assumption of Lemma 4.7.
Hence, S2 is movable.
Similarly, we construct a proper flexible labeling of S3, since the vertices {1, . . . , 7} and
{1, 3, 4, 5, 6, 8} induce subgraphs isomorphic to Q1 and K3,3, respectively. See Figure 9
for placing the vertices according to Dixon II. Now, the 4-cycle {1, 4, 3, 5} is used to
construct the motion according to Example 4.5.
A proper flexible labeling of S4 can be clearly obtained by extending a proper flexible

labeling of its K3,3 subgraph.

Finally, only the graph S5 is missing to be proven to be movable. Unfortunately, none
of the previous constructions applies in this case. Hence, we provide a parametrization
of its algebraic motion ad hoc.

Lemma 4.9. The graph S5 is movable.

Proof. In order to construct a proper flexible labeling for the graph S5, we assume the
following: the triangles (1, 2, 3) and (1, 4, 5) are degenerated into lines, the quadrilaterals
(1, 4, 6, 2) and (1, 4, 7, 3) are antiparallelograms, the quadrilateral (4, 7, 8, 6) is a rhombus
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Figure 9: The graphs S1, S2 and S3 with proper flexible labelings (same colors mean
same lengths). Note that the vertices 1,2,7 in S2 and S3 form a degenerate
triangle.

and the quadrilaterals (4, 5, 8, 7) and (4, 5, 8, 6) are deltoids, see Figure 10. We scale the
lengths so that λ1,4 = 1 and λ1,2 =: a > 1. Now, we define an injective realization ρθ
parametrized by the position of vertex 4. Let

ρθ(1) = (0, 0), ρθ(2) = (−a, 0), ρθ(3) = (a, 0), ρθ(4) = (cos θ, sin θ) .

Since the coordinates of a missing vertex of an antiparallelogram can be obtained by
folding the parallelogram with the same edges along a diagonal, we get

ρθ(6) =
(
−a

3 + (a2 − 1) cos θ − a
a2 + 2a cos θ + 1 ,

(1− a2) sin θ
a2 + 2a cos θ + 1

)
,

ρθ(7) =
(

a3 − (a2 − 1) cos θ − a
a2 − 2a cos θ + 1 ,

(1− a2) sin θ
a2 − 2a cos θ + 1

)
.

The intersection of the line given by ρθ(6) and ρθ(7) with the line given by ρθ(1) and ρθ(4)
gives

ρθ(5) = 1− a2

a2 + 1(cos θ, sin θ) .

The position of 8 can be easily obtained by the fact that (4, 7, 8, 6) is a rhombus:

ρθ(8) =

(
(a2 − 1)2 − 4a2 (sin θ)2

)
cos (θ)

(a2 − 1)2 + 4a2 (sin θ)2 ,
−
(
3a4 − 4a2 (cos θ)2 + 2a2 − 1

)
sin θ

(a2 − 1)2 + 4a2 (sin θ)2

 .

One can verify that the induced labeling λ is independent of θ and hence it is flexible:

λ1,4 = λ2,6 = λ3,7 = 1 , λ2,3 = 2a ,
λ1,2 = λ1,3 = λ4,6 = λ4,7 = λ6,8 = λ7,8 = a ,

λ1,5 = a2 − 1
a2 + 1 , λ4,5 = λ5,8 = 2a2

a2 + 1 = λ1,5 + λ1,4 .

The labeling is proper for a generic a.
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Figure 10: The graph S5 and its embedding inducing a proper flexible labeling. The
same colors mean same edge lengths.

Since all graphs in the list were proven to be movable, we can conclude that the
necessary condition is also sufficient up to 8 vertices.

Corollary 4.10. Let G be a graph with at most 8 vertices. The graph G is movable if
and only if the constant distance closure CDC(G) is not complete.

Proof. We can assume that G is spanned by a Laman graph, otherwise there exists a
generic proper flexible labeling. By Lemma 3.11, we can assume that G has no vertex of
degree two. Corollary 3.8 gives the necessary condition for movability. For the opposite
implication, Theorem 3.12 lists all constant distance closures that are not complete,
Lemma 4.1 and 4.9, and Corollary 4.3, 4.6 and 4.8 show that all these graphs are
movable. Hence, also all their subgraphs are movable.

Based on the previous corollary, one might want to conjecture that the statement
holds independently of the number of vertices. Nevertheless, the graph G25 in Figure 11
serves as a counter example.
This graph was proposed by Tibor Jordán as a counter example for some conjectures

characterizing movable graphs within informal discussions with his students. The con-
stant distance closure of G25 is the graph itself, since there is no monochromatic path of
length at least two: for every two incident edges uv and vw, there exists a NAC-coloring
δ such that δ(uv) 6= δ(vw). Namely, we can define δ by δ(e) = blue if and only if w
is a vertex of e. Hence, the necessary condition is satisfied. An explanation that G25
is not movable is the following: it contains five subgraphs isomorphic to the bipartite
graph K5,5, each of them induced by the vertices on two neighboring lines in the figure.
The only way to construct a proper flexible labeling of K5,5, with partition sets V1 and
V2, is placing the vertices of V1 on a line and the vertices of V2 on another line that is
perpendicular to the first one [10]. Therefore, constructing a proper flexible labeling of
G25 would require that the vertices on every two neighboring lines in the figure are on
perpendicular lines, which is not possible.
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Figure 11: Graph G25

Conclusion
The newly introduced notion of active NAC-colorings bridges the combinatorial proper-
ties of a movable graph with its motion. Motivated by invariance of the motion under
adding new edges whose endpoints are connected by a path that is monochromatic in
all active NAC-colorings, the constant distance closure of a graph is defined purely com-
binatorially. This augmented graph being non-complete serves as a necessary condition
of movability of the original graph. We focused on the graphs up to 8 vertices satisfying
the condition and developed tools showing that all are movable.
Since it was shown that the necessary condition is not always sufficient, the ques-

tion on a (combinatorial) characterization of movability remains open. Similarly, the
characterization of all possible algebraic motions of a given graph is subject to future
research. A particularly interesting open problem is to determine possible subsets of
active NAC-colorings and then construct a corresponding proper flexible labeling.
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