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Abstract

Square Heffter arrays are n×n arrays such that each row and each column contains
k filled cells, each row and column sum is divisible by 2nk + 1 and either x or −x

appears in the array for each integer 1 6 x 6 nk.
Archdeacon noted that a Heffter array, satisfying two additional conditions, yields

a face 2-colourable embedding of the complete graph K2nk+1 on an orientable surface,
where for each colour, the faces give a k-cycle system. Moreover, a cyclic permutation
on the vertices acts as an automorphism of the embedding. These necessary conditions
pertain to cyclic orderings of the entries in each row and each column of the Heffter
array and are: (1) for each row and each column the sequential partial sums determined
by the cyclic ordering must be distinct modulo 2nk+1; (2) the composition of the cyclic
orderings of the rows and columns is equivalent to a single cycle permutation on the
entries in the array. We construct Heffter arrays that satisfy condition (1) whenever
(a) k is divisible by 4; or (b) n ≡ 1 (mod 4) and k ≡ 3 (mod 4); or (c) n ≡ 0 (mod 4),
k ≡ 3 (mod 4) and n ≫ k. As corollaries to the above we obtain pairs of orthogonal
k-cycle decompositions of K2nk+1.
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1 Introduction

In 1896 Heffter, [19], introduced his now famous first difference problem: partition the set
{1, . . . , 3m} into m triples {a, b, c} such that either a + b = c or a + b + c is divisible by
6m + 1. However, it was not until 1939 that Peltesohn, [22], showed that a solution exists
whenever m 6= 3. A key interest in this problem is that solutions to Heffter’s first difference
problem yield cyclic Steiner triple systems; see [13]. A natural extension to this question is:
can we identify a set of m subsets {x1, . . . , xs} ⊂ {−ms, . . . ,−1, 1, . . . , ms} such that the
sum of the entries in each subset is divisible by 2ms + 1 and further if x occurs in one of
the subsets, −x does not occur in any of the subsets? We call the set of m such subsets a
Heffter system. Two Heffter systems, H1 = {H11, . . . , H1m}, |H1i| = s for i = 1, . . .m, and
H2 = {H21, . . . , H2n} |H2j| = r for j = 1, . . . n, where sm = nt, are said to be orthogonal
if for all i, j, |H1i ∩H2j | 6 1. As observed by Dinitz and Mattern [14], a Heffter system is
equivalent to a Heffter array H(m,n; s, t), which is an m× n array of integers, such that:

• each row contains s filled cells and each column contains t filled cells;

• the elements in every row and column sum to 0 in Z2ms+1; and

• for each integer 1 6 x 6 ms, either x or −x appears in the array.

Henceforth the set of integers {0, 1, . . . , n − 1} is denoted by [n]. In the current paper the
rows and columns of an m× n array will be indexed by [m] and [n], respectively. A Heffter
array is square, if m = n and necessarily s = t, and is denoted H(n; t).

The following is an example of a pair of orthogonal Heffter systems that are equivalent
to a Heffter array H(6, 12; 8, 4), given by Archdeacon in [2].

Example 1.1. Let m = 6 and s = 8. Then for each set

{−1, 2, 5,−6,−25, 26, 29,−30}, {3,−4,−7, 8, 27,−28,−31, 32},
{9,−10,−13, 14, 33,−34,−37, 38}, {−11, 12, 15,−16,−35, 36, 39,−40},
{−17, 18, 21,−22,−41, 42, 45,−46} and {19,−20,−23, 24, 43,−44,−47, 48},

its elements sum to zero. Also for each x ∈ {1, . . . , 48}, precisely one of x or −x occurs in a
subset. Thus these 6 subsets form a Heffter system.

Let n = 12 and t = 4. Then again for each of the following sets

{9,−11,−17, 19}, {−10, 12, 18,−20}, {−1, 3, 21,−23},
{2,−4,−22, 24}, {5,−7,−13, 15}, {−6, 8, 14,−16},
{33,−35,−41, 43}, {−34, 36, 42,−44}, {−25, 27, 45,−47},
{26,−28,−46, 48}, {29,−31,−37, 39} and {−30, 32, 38,−40},

its elements sum to zero. Also for each x ∈ {1, . . . , 48}, precisely one of x or −x occurs in a
subset. Thus these 12 subsets form a Heffter system.

These two systems are orthogonal and thus we have equivalence with the following Heffter
array H(6, 12; 8, 4).
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-1 2 5 -6 -25 26 29 -30
3 -4 -7 8 27 -28 -31 32

9 -10 -13 14 33 -34 -37 38
-11 12 15 -16 -35 36 39 -40
-17 18 21 -22 -41 42 45 -46
19 -20 -23 24 43 -44 -47 48

A cycle decomposition of a complete graph is the edge-disjoint decomposition of its
edges into fixed length cycles. It was Archdeacon [2] who first showed that a Heffter array,
together with a certain ordering of its elements, yields a biembedding of a pair of cycle
decompositions of the complete graph onto an orientable surface. Since then a number of
papers have appeared on the connection between Heffter arrays and the biembedding of cycle
decompositions as well as a number of papers studying more general biembeddings of the
complete graph. See for examples the papers [2, 5, 11, 12, 14, 16, 17, 18, 21, 23] and [10].

We next describe the above orderings. Given a row r of a Heffter array H(m,n; s, t), if
there exists a cyclic ordering φr = (a0, a1, . . . , as−1) of the entries of row r such that, for
i = 0, . . . , s− 1, the partial sums

αi =
i∑

j=0

aj (mod 2ms + 1)

are all distinct, we say that φr is simple. A simple ordering of the entries of a column may
be defined similarly. If every row and column of a Heffter array H(m,n; s, t) has a simple
ordering, we say that the array is simple. The existence of a simple H(m,n; s, t) implies
the existence of orthogonal decompositions C and C′ of the graph K2ms+1 into s-cycles and
t-cycles (respectively); that is, any cycle from C shares at most one edge with any cycle from
C′ [2]. Orthogonal cycle systems of the complete graph are studied in [1], [6] and [7]. Observe
that, if s, t 6 5 then any H(m,n; s, t) is simple.

The composition of the cycles φr, for r ∈ [m], is a permutation, denoted here ωr, on the
entries of the Heffter array. Similarly we may define the permutation ωc as the composition
of the cycles φc, for c ∈ [n]. If, the permutation ωr ◦ ωc can be written as a single cycle of
length ms = nt, we say that ωr and ωc are compatible orderings for the Heffter array.

Archdeacon [2] proved the following theorem, showing that a Heffter array with a pair
of compatible and simple orderings can be used to construct an embedding of the complete
graph K2ms+1 on a surface.

Theorem 1.2. [2] Suppose there exists a Heffter array H(m,n; s, t) with orderings ωr of the
symbols in the rows of the array and ωc on the symbols in the columns of the array, where
ωr and ωc are both simple and compatible. Then there exists a face 2-colourable embedding
of K2ms+1 on an orientable surface such that the faces of one colour are cycles of length s
and the faces of the other colour are cycles of length t. Moreover, in such an embedding the
vertices may be labelled with the elements of Z2ms+1 such that the permutation x → x + 1
preserves the faces of each colour.

If we relax the condition of simplicity in the above theorem, we still have a biembedding
on an orientable surface but the faces collapse into smaller ones (and the cycles become
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circuits). On the other hand if we relax only the condition of compatibility, we have an
embedding onto a pseudosurface rather than surface, but C and C′ remain orthogonal.

To date, the existence of Heffter arrays with orderings that are both compatible and
simple is known in only a few specific cases: H(3, n;n, 3) [14]; H(5, n;n, 5) and n 6 100 [14];
H(n; t), nt ≡ 3 (mod 4) and t ∈ {3, 5, 7, 9} [4, 15, 12].

Ignoring orderings, in [3] it was shown that a H(m,n;n,m) exists for all possible values
of m and n. The spectrum for square Heffter arrays has been completely determined in [4],
[15] and [8].

Theorem 1.3. There exists an H(n; k) if and only if 3 6 k 6 n.

For the sake of ease of description, Heffter arrays often possess some extra properties that
we now describe. A Heffter array is called an integer Heffter array if the sum of each row
and column is 0 in Z. Suppose that a simple cyclic ordering φr = (a1, a2, . . . , as) of a row r
of a Heffter array has the property that whenever entry ai lies in cell (r, c) and entry ai+1

lies in cell (r, c′), then c < c′. That is, the ordering for the row r is taken from left to right
across the array. We say that φr is the natural ordering for the rows and define a natural
column ordering in a similar way from top to bottom. If the natural ordering for every row
and column is also a simple ordering, we say that the Heffter array is globally simple.

We focus on square Heffter arrays in this paper and now can state our main results.

Theorem 1.4. If p > 0 and n > 4p then there exists a globally simple integer Heffter array
H(n; 4p).

We prove Theorem 1.4 in Section 2.

Corollary 1.5. If p > 0 and n > 4p, there exists a pair of orthogonal decompositions of
K8np+1 into cycles of length 4p.

Theorem 1.6. Let n ≡ 1 (mod 4), p > 0 and n > 4p+3, then there exists a globally simple
integer Heffter array H(n; 4p+ 3).

Theorem 1.7. Let n ≡ 0 (mod 4). Then there exist constants c and n0 such that if n > n0

and n− 4p > c log2 n, then there is a globally simple Heffter array H(n; 4p+ 3).

We prove Theorems 1.6 and 1.7 in Sections 3 and 4.

Corollary 1.8. If either (a) n ≡ 1 (mod 4), p > 0 and n > 4p + 3, or (b) n ≡ 0 (mod 4)
and n ≫ 4p, there exists a pair of orthogonal decompositions of K2n(4p+3)+1 into cycles of
length 4p+ 3.

Even though not explicitly stated, the partial sums (given by the natural ordering) will
also be distinct (mod 2nk + 2). As shown in [12], our results thus also yield orthogonal cycle
decompositions of the complete graph of order 2nk + 2 minus a 1-factor.

The following are useful conventions and results which will be used through out the paper.
It is important to be aware that row and column indices are always calculated modulo n,
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while entries of arrays are always evaluated as integers. The support of an array A is the set
containing the absolute values of the entries of A and denoted s(A). In what follows, for a
partially filled array A = [A(i, j)] we use A(i, j) to denote the entry in cell (i, j) of array A.
The cells of an n× n array can be partitioned into n disjoint diagonals Dd, d ∈ [n], where

Dd := {(i+ d, i) | i ∈ [n]}.

Let the entry in row a and column a of diagonal Di be denoted by di(ra) and di(ca), respec-
tively, with these values defined to be 0 when there is no entry. For a given row a we define
Σ(x) =

∑x

i=0 di(ra) and for a given column a we define Σ(x) =
∑x

i=0 di(ra). For a given row
a, the values of Σ(x) such that dx(ra) is non-zero are called the row partial sums for a. For a
given column a, the values of Σ(x) such that dx(ca) is non-zero are called the column partial
sums for a. Thus to show an array is globally simple, it suffices to show that the row partial
sums are distinct (modulo 2nk + 1) for each row a and that the column partial sums are
distinct (modulo 2nk + 1) for each column c. To aid the reader, we will often refer to the
following straightforward observations.

Remark 1.9. Let m, x1, x2, α1, α2, β1, β2 be integers and m > 0. Then for:

−m 6 x1, x2 6 m, x1 ≡ x2 (mod 2m+ 1) ⇒ x1 = x2; (1)

0 6 x1, x2 < m, x1 ≡ x2 (mod m) ⇒ x1 = x2; (2)

−
m

2
< α1, α2 <

m

2
, β1m+ α1 = β2m+ α2 ⇒ β1 = β2 and α1 = α2; (3)

−m < x1 < 0 < x2 < m, x1 ≡ x2 (mod m) ⇒ x2 = m+ x1. (4)

2 Globally simple integer H(n; 4p) constructions

In this section we prove Theorem 1.4. That is, we construct a globally simple Heffter array
H(n; 4p) for each n and p > 3 such that n > 4p. Note that a globally simple H(n, 8) was
constructed in [12] and it is easy to see that all Heffter arrays H(n, 4) are globally simple.
We will divide this section according to the parity of p. Throughout this section k = 4p.

2.1 p is odd

Let p > 1 be odd and I = [p−1
2
]. We remind the reader that throughout this paper, rows

and columns are evaluated modulo n, while entries are always evaluated as integers.
For x ∈ [n] and i ∈ I define the array A to have the following entries:

4i+ 1 + kx in cell (4i+ x, x) ∈ D4i,

−(4i+ 2)− k(x+ 1 (mod n)) in cell (4i+ 1 + x, x) ∈ D4i+1,

−(k − (4i+ 3))− kx in cell (4i+ 2 + x, x) ∈ D4i+2,

k − (4i+ 4) + k(x+ 1 (mod n)) in cell (4i+ 3 + x, x) ∈ D4i+3,
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2p− 1 + kx in cell (2p− 2 + x, x) ∈ D2p−2,

−2p− k(x+ 1 (mod n)) in cell (2p− 1 + x, x) ∈ D2p−1,

−(2p− 2− 4i)− kx in cell (2p+ 4i+ x, x) ∈ D2p+4i,

2p− 3− 4i+ k(x+ 1 (mod n)) in cell (2p+ 4i+ 1 + x, x) ∈ D2p+4i+1,

2p+ 4 + 4i+ kx in cell (2p+ 4i+ 2 + x, x) ∈ D2p+4i+2,

−(2p + 5 + 4i)− k(x+ 1 (mod n)) in cell (2p+ 4i+ 3 + x, x) ∈ D2p+4i+3,

−(2p+ 1 + kx) in cell (k − 2 + x, x) ∈ Dk−2,

k + k(x+ 1 (mod n)) in cell (k − 1 + x, x) ∈ Dk−1.

Example 2.1. A globally simple Heffter array H(17; 12) (n = 17 and p = 3).

1 96 -91 -119 118 135 -136 -162 161 188 -189 -2
-14 13 108 -103 -131 130 147 -148 -174 173 200 -201
-9 -26 25 120 -115 -143 142 159 -160 -186 185 8
20 -21 -38 37 132 -127 -155 154 171 -172 -198 197
5 32 -33 -50 49 144 -139 -167 166 183 -184 -6
-18 17 44 -45 -62 61 156 -151 -179 178 195 -196
-4 -30 29 56 -57 -74 73 168 -163 -191 190 3
15 -16 -42 41 68 -69 -86 85 180 -175 -203 202
10 27 -28 -54 53 80 -81 -98 97 192 -187 -11
-23 22 39 -40 -66 65 92 -93 -110 109 204 -199
-7 -35 34 51 -52 -78 77 104 -105 -122 121 12
24 -19 -47 46 63 -64 -90 89 116 -117 -134 133

36 -31 -59 58 75 -76 -102 101 128 -129 -146 145
48 -43 -71 70 87 -88 -114 113 140 -141 -158 157

60 -55 -83 82 99 -100 -126 125 152 -153 -170 169
72 -67 -95 94 111 -112 -138 137 164 -165 -182 181

84 -79 -107 106 123 -124 -150 149 176 -177 -194 193

2.1.1 Support of the array when p is odd

Observe that for each α ∈ [k], s(Dα) = {Sα + kx|x ∈ [n]} in A where Sα satisfies:
{S4i|i ∈ I} = {1, 5, . . . , 2p− 5}, {S4i+2|i ∈ I} = {2p+ 3, 2p+ 7, . . . , 4p− 3},
{S4i+1|i ∈ I} = {2, 6, . . . , 2p− 4}, {S4i+3|i ∈ I} = {2p+ 2, 2p+ 6, . . . , 4p− 4},
{S2p+4i|i ∈ I} = {4, 8, . . . , 2p− 2}, {S2p+4i+2|i ∈ I} = {2p+ 4, 2p+ 8, . . . , 4p− 2},
{S2p+4i+1|i ∈ I} = {3, 7, . . . , 2p− 3}, {S2p+4i+3|i ∈ I} = {2p+ 5, 2p+ 9, . . . , 4p− 1},

S2p−2 = 2p− 1, S4p−2 = 2p+ 1, S2p−1 = 2p, S4p−1 = 4p.
Hence it is easy to see that s(A) = {1, 2, . . . , nk}.

2.1.2 Distinct column partial sums when p is odd

Recall that k = 4p. In this section we will show that in the array A, |Σ(α)| 6 nk for all
α ∈ [k]. Hence by (1),

Σ(α1) ≡ Σ(α2) (mod 2nk + 1) ⇒ Σ(α1) = Σ(α2).
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But then we will show that Σ(α1) 6= Σ(α2) by comparing these values modulo k. Hence we
obtain the required result Σ(α1) 6≡ Σ(α2) (mod 2nk + 1).

First observe that for each column a and i ∈ I:
3∑

j=0

d4i+j = −2, and

3∑

j=0

d2p+4i+j = −2.

Now the partial column sums for each column a can be calculated as follows:

Σ(4i) = 4i+ 1 + ak − 2i = 2i+ 1 + ak < nk

⇒ {Σ(4i) (mod k) | i ∈ I} = {1, 3, . . . , p− 2}.

Σ(4i+ 1) = 2i+ 1 + ak − (4i+ 2)− k(a+ 1 (mod n))

= −(2i+ 1) + ka− k(a + 1 (mod n)),

⇒ {Σ(4i+ 1) (mod k) | i ∈ I} = {3p+ 2, . . . , 4p− 3, 4p− 1}.

Σ(4i+ 2) = −(2i+ 1) + ka− k(a + 1 (mod n))− k + (3 + 4i)− ak

= 2i+ 2− k − k(a + 1 (mod n)),

⇒ {Σ(4i+ 2) (mod k) | i ∈ I} = {2, 4, . . . , p− 1}.

Σ(4i+ 3) = 2i+ 2− k − k(a + 1 (mod n)) + k − (4 + 4i) + k(a+ 1 (mod n))

= −2i− 2,

⇒ {Σ(4i+ 3) (mod k) | i ∈ I} = {3p+ 1, . . . , 4p− 4, 4p− 2}.

Σ(2p− 2) = −2(p− 3)/2− 2 + 2p− 1 + ak = p+ ak.

Σ(2p− 1) = p+ ak − 2p− k(a+ 1 (mod n)) = −p + ak − k(a+ 1 (mod n)).

Σ(2p+ 4i) = −p+ ak − k(a+ 1 (mod n))− 2p+ 2 + 4i− ak − 2i

= −3p+ 2i+ 2− k(a+ 1 (mod n)),

⇒ {Σ(2p+ 4i) (mod k) | i ∈ I} = {p+ 2, . . . 2p− 3, 2p− 1}.

Σ(2p+ 4i+ 1) = −3p+ 2i+ 2− k(a+ 1 (mod n)) + 2p− 3− 4i+ k(a+ 1 (mod n))

= −p− (2i+ 1),

⇒ {Σ(2p+ 4i+ 1) (mod k) | i ∈ I} = {2p+ 2, . . . , 3p− 3, 3p− 1}.

Σ(2p+ 4i+ 2) = −p− (2i+ 1) + 2p+ 4 + 4i+ ak = p+ 2i+ 3 + ak,

⇒ {Σ(2p+ 4i+ 2) (mod k) | i ∈ I} = {p+ 3, p+ 5, . . . , 2p}.

Σ(2p+ 4i+ 3) = p+ 2i+ 3 + ak − 2p− 5− 4i− k(a+ 1 (mod n)),

= −p− 2(i+ 1) + ak − k(a + 1 (mod n))

⇒ {Σ(2p+ 4i+ 4) mod k | i ∈ I} = {2p+ 1, . . . , 3p− 4, 3p− 2}.

Σ(k − 2) = −p− 2((p− 3)/2 + 1) + ak − k(a+ 1 (mod n))− 2p− 1− ak

= −k − k(a + 1 (mod n)) 6= 0.

Σ(k − 1) = 0.

One can easily check from above calculations that for column a, Σ(α1) 6= Σ(α2) (mod k)
for all α1, α2 ∈ [k − 1] and α1 6= α2. Furthermore Σ(k − 2) = −dk−1(ca) 6= 0. Also it is
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not hard to check that for all α ∈ [k], |Σ(α)| 6 nk. Hence all the column partial sums are
distinct (mod 2kn+ 1).

2.1.3 Distinct row partial sums when p is odd

As elements in s(Dα) are all congruent modulo k in A, we have dα(ra) ≡ dα(cb) (mod k) for
all a, b ∈ [n], α ∈ [k]. Hence Σα

j=0dj(ra) ≡ Σα
j=0dj(cb) (mod k). Now as the partial column

sums up to and including diagonal 4p− 2 are distinct modulo k, partial sums of rows up to
and including diagonal 4p − 2 are distinct modulo k. To use the same argument as above,
we thus just need to show that |Σ(α)| 6 nk for each row a and α ∈ [k].

First observe that for each 0 6 j 6 2p− 2, d2j(ra) and d2j+1(ra) are in the form:
d2j(ra) = α+ sjk(a− β (mod n)) and d2j+1(ra) = −α− 1− sjk(a− β (mod n)) where α

and β are integers and sj ∈ {1,−1}.
Hence d2j(ra) + d2j+1(ra) = −1 and Σ(2j + 1) = −(j + 1), for each 0 6 j 6 2p− 2.
Now d4i(ra), d2p−2(ra), d2p+4i+2 > 0. Hence −nk 6 Σ(2α) = −α + d2α(ra) 6 nk for

α ∈ {2i, p− 1, p+ 2i+ 1|i ∈ I}.
Finally

Σ(4i+ 2) = −(2i+ 1)− k + 4i+ 3− k(a− 4i− 2 (mod n))

= 2i+ 2− k − k(a− 4i− 2 (mod n)) > −nk,

Σ(2p+ 4i) = −(p + 2i)− 2p+ 2 + 4i− k(a− 4i− 2p (mod n))

= −3p + 2i+ 2− k(a− 4i− 2p (mod n)) > −nk,

Σ(4p− 2) = −(2p− 1)− 2p− 1− k(a− k + 2 (mod n))

= −k − k(a− k + 2 (mod n)) > −nk,

Σ(4p− 1) = 0.

2.2 p is even

Let p > 2 be even and I = [p−2
2
].

For x ∈ [n] and i ∈ I define the array A to have the following entries:

4i+ 1 + kx in cell (4i+ x, x) ∈ D4i,

−(4i+ 2)− k(x+ 1 (mod n)) in cell (4i+ 1 + x, x) ∈ D4i+1,

−(k − (4i+ 3))− kx in cell (4i+ 2 + x, x) ∈ D4i+2,

k − (4i+ 4) + k(x+ 1 (mod n)) in cell (4i+ 3 + x, x) ∈ D4i+3,

2p− 3 + kx in cell (2p− 4 + x, x) ∈ D2p−4,

−2p+ 2− k(x+ 1 (mod n)) in cell (2p− 3 + x, x) ∈ D2p−3,
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−(2p− 4i)− kx in cell (2p+ 4i− 2 + x, x) ∈ D2p+4i−2,

2p− 1− 4i+ k(x+ 1 (mod n)) in cell (2p+ 4i− 1 + x, x) ∈ D2p+4i−1,

2p+ 2 + 4i+ kx in cell (2p+ 4i+ x, x) ∈ D2p+4i,

−(2p+ 3 + 4i)− k(x+ 1 (mod n)) in cell (2p+ 4i+ 1 + x, x) ∈ D2p+4i+1,

−4− kx in cell (k − 6 + x, x) ∈ Dk−6,

3 + k(x+ 1 (mod n)) in cell (k − 5 + x, x) ∈ Dk−5,

k − 2 + kx in cell (k − 4 + x, x) ∈ Dk−4,

−(k − 1)− k(x+ 1 (mod n)) in cell (k − 3 + x, x) ∈ Dk−3,

−(2p+ 1 + kx) in cell (k − 2 + x, x) ∈ Dk−2,

k + k(x+ 1 (mod n)) in cell (k − 1 + x, x) ∈ Dk−1,

Example 2.2. A globally simple Heffter array H(17, 16) (n = 17 and p = 4).

1 64 -57 -95 94 115 -91 -119 118 183 -184 -214 213 252 -253 -2
-18 17 80 -73 -111 110 131 -103 -131 130 199 -200 -230 229 268 -269
-13 -34 33 96 -89 -127 126 147 -115 -143 142 215 -216 -246 245 12
28 -29 -50 49 112 -105 -143 142 163 -127 -155 154 231 -232 -262 261
5 44 -45 -66 65 128 -121 -159 158 179 -139 -167 166 247 -248 -6
-22 21 60 -61 -82 81 144 -137 -175 174 195 -151 -179 178 263 -264
-8 -38 37 76 -77 -98 97 160 -153 -191 190 211 -163 -191 190 7
23 -24 -54 53 92 -93 -114 113 176 -169 -207 206 227 -175 -203 202
10 39 -40 -70 69 108 -109 -130 129 192 -185 -223 222 243 -187 -11
-27 26 55 -56 -86 85 124 -125 -146 145 208 -201 -239 238 259 -199
-4 -43 42 71 -72 -102 101 140 -141 -162 161 224 -217 -255 254 3
19 -20 -59 58 87 -88 -118 117 156 -157 -178 177 240 -233 -271 270
14 35 -36 -75 74 103 -104 -134 133 172 -173 -194 193 256 -249 -15
-31 30 51 -52 -91 90 119 -120 -150 149 188 -189 -210 209 272 -265
-9 -47 46 67 -68 -107 106 135 -136 -166 165 204 -205 -226 225 16
32 -25 -63 62 83 -84 -123 122 151 -152 -182 181 220 -221 -242 241

48 -41 -79 78 99 -100 -139 138 167 -168 -198 197 236 -237 -258 257

2.2.1 Support when p is even

Observe that for each α ∈ [k], s(Dα) = {Sα + kx|x ∈ [n]} in A where Sα satisfies:
{S4i|i ∈ I} = {1, 5, . . . , 2p− 7}, {S4i+2|i ∈ I} = {2p+ 5, 2p+ 9, . . . , 4p− 3},
{S4i+1|i ∈ I} = {2, 6, . . . , 2p− 6}, {S4i+3|i ∈ I} = {2p+ 4, 2p+ 8, . . . , 4p− 4},
{S2p+4i−2|i ∈ I} = {8, 12, . . . , 2p}, {S2p+4i|i ∈ I} = {2p+ 2, 2p+ 6, . . . , 4p− 6},
{S2p+4i−1|i ∈ I} = {7, 11, . . . , 2p− 1}, {S2p+4i+1|i ∈ I} = {2p+ 3, 2p+ 7, . . . , 4p− 5},

S2p−4 = 2p− 3, S4p−2 = 2p+ 1, S2p−3 = 2p− 2, S4p−1 = 4p,
S4p−6 = 4, S4p−4 = 4p− 2, S4p−5 = 3, S4p−3 = 4p− 1.
Hence it is easy to see that s(A) = {1, 2, . . . , nk}.

2.2.2 Distinct column partial sums when p is even

First observe that for each column a and i ∈ I:
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3∑

j=0

d4i+j(ca) = −2, and
3∑

j=0

d2p+4i−2+j(ca) = −2.

Similarly to the previous subsection, the column partial sums for each column a can be
calculated as follows:

Σ(4i) = 2i+ 1 + ka ⇒ {Σ(4i) (mod k) | i ∈ I} = {1, 3, . . . , p− 3},

Σ(4i+ 1) = −(2i+ 1) + ka− k(a + 1 (mod n))

⇒ {Σ(4i+ 1) (mod k) | i ∈ I} = {3p+ 3, . . . , 4p− 3, 4p− 1},

Σ(4i+ 2) = 2i+ 2− k − k(a + 1 (mod n))

⇒ {Σ(4i+ 2) (mod k) | i ∈ I} = {2, 4, . . . , p− 2},

Σ(4i+ 3) = −2i− 2 ⇒ {Σ(4i+ 3) (mod k) | i ∈ I} = {3p+ 2, . . . , 4p− 4, 4p− 2},

Σ(2p− 4) = −2(p− 4)/2− 2 + 2p− 3 + ak = p− 1 + ka,

Σ(2p− 3) = −p+ 1 + ka− k(a + 1 (mod n)),

Σ(2p+ 4i− 2) = −3p+ 2i+ 1− k(a+ 1 (mod n))

⇒ {Σ(2p+ 4i− 2) (mod k) | i ∈ I} = {p+ 1, . . . , 2p− 1, 2p− 3},

Σ(2p+ 4i− 1) = −p− 2i,

⇒ {Σ(2p+ 4i− 1) (mod k) | i ∈ I} = {2p+ 4, . . . , 3p− 2, 3p},

Σ(2p+ 4i) = −p− 2i+ 2p+ 4i+ ak + 2 = p+ 2i+ 2 + ka

⇒ {Σ(2p+ 4i+ 1) (mod k) | i ∈ I} = {p+ 2, p+ 4, . . . , 2p− 2},

Σ(2p+ 4i+ 1) = −p− 2i− 1 + ka− k(a+ 1 (mod n))

⇒ {Σ(2p+ 4i+ 4) (mod k) | i ∈ I} = {2p+ 3, . . . , 3p− 3, 3p− 1},

Σ(k − 6) = −(2p+ 1)− k(a+ 1 (mod n)),

Σ(k − 5) = −2p+ 2,

Σ(k − 4) = 2p+ ka,

Σ(k − 3) = −2p+ 1 + ka− k(a+ 1 (mod n)),

Σ(k − 2) = −k − k(a+ 1 (mod n)) 6= 0,

Σ(k − 1) = 0.

One can easily check from above calculations that for column a, Σ(α1) 6= Σ(α2) (mod k)
for all α1, α2 ∈ [k − 1] and α1 6= α2. It is also straightforward to check that |Σ(α)| 6 nk.
Hence all the column partial sums are distinct modulo 2kn+ 1.

2.2.3 Distinct row partial sums when p is even

Similarly to the case when p is odd, we just need to show that |Σ(α)| 6 nk for each row
a and α ∈ [k]. As before, d2j(ra) + d2j+1(ra) = −1 and Σ(2j + 1) = −(j + 1), for each
0 6 j 6 2p− 2.

Now d4i(ra), d2p−4(ra), d2p+4i(ra), dk−4(ra) > 0 for i ∈ I. Hence −nk 6 Σ(2α) = −α +
d2α(ra) 6 nk for α ∈ {2i, p− 2, p+ 2i, 2p− 2|i ∈ I}.
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Finally,

Σ(4i+ 2) = −(2i+ 1)− k + 4i+ 3− k(a− 4i− 2 (mod n)),

= 2i+ 2− k − k(a− 4i− 2 (mod n)) > −nk,

Σ(2p+ 4i− 2) = −(p + 2i− 1)− 2p+ 4i− k(a− 4i− 2p+ 2 (mod n)),

= −3p + 2i+ 1− k(a− 4i− 2p (mod n)) > −nk,

Σ(k − 6) = −(2p− 3)− 4− k(a− 4i− 2p (mod n)) > −nk,

Σ(k − 2) = −(2p− 1)− 2p− 1− k(a− k + 2 (mod n))

= −k − k(a− k + 2 (mod n)) > −nk,

Σ(k − 1) = 0.

So Theorem 1.4 is proven.

3 Support shifted globally simple Heffter arrays

The array A is defined to be a support shifted Heffter array H(n; 4p, γ) if it satisfies the
following properties:

P1. Every row and every column of A has 4p filled cells.

P2. s(A) = {γn+ 1, . . . , (4p+ γ)n}.

P3. Elements in every row and every column sum to 0.

P4. Partial sums are distinct in each row and each column of A modulo 2(4p+ γ)n+ 1.

A related generalization of Heffter arrays is studied in [9]. Note that a support shifted
Heffter array H(n; 4p, 0) is in fact an integer Heffter array H(n; 4p). In the following section
we let γ = 3 and we merge the support shifted Heffter array H(n; 4p, 3) constructed below
with a Heffter array H(n; 3) to obtain Heffter arrays H(n; 4p+ 3). In this section we write
our results generally in terms of γ in case the following theorem is useful for future research.

Theorem 3.1. Let p > 0, n > 4p, and γ > 0. If there exists 2p− 1 6 α 6 n− 1 − 2p with
gcd(n, α) = 1 then there exists a globally simple support shifted Heffter array A where the
non-empty cells are precisely on the diagonals Di for i ∈ [4p− 1] ∪ {2p+ α}.

The proof of Theorem 3.1 will be broken into sections. In Subsection 3.1 we will define an
array A that has 4p entries per row and column, with the right support, thus verifying that
A satisfies Properties P1 and P2. Then in Subsection 3.2 we will show that each row and
column of A sums equal to 0, thus verifying A satisfies Property P3. Finally in Subsections
3.3, 3.4 and 3.5 we will verify that A satisfies Property P4 by showing, respectively, that
the row partial sums are distinct, the partial sums for the non-zero columns are distinct and
then finally the partial sums for column 0 are distinct modulo 2(4p+ γ)n+ 1.
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Remark 3.2. Throughout Section 3 it will be assumed that p > 0, n > 4p, and γ > 0,
2p − 1 6 α 6 n − 1 − 2p and gcd(α, n) = 1. We will define I = [p], 2I = {2i | i ∈ I},
J = [p−1], D = {0, 1, . . . , 4p−2, 2p+α} and T = D\2I. Further we remind the reader that
row and column numbers will be calculated modulo n with residues from [n], while entries
are calculated as integers.

3.1 Definition of the array A

Let A = [A(i, j)] be an n× n array with filled cells defined by the 4p diagonals

D2i, D2i+1, D2p, D2p+1+2j , D2p+2+2j, D2p+α,

where i ∈ I and j ∈ J , and with entries for each x ∈ [n]:

(γ + 2)n+ 4in− 2x in cell (2i− x,−x) ∈ D2i,

−γn− 4in− 1− 2x in cell (2i+ 1 + x, x) ∈ D2i+1,

−(4p+ γ)n + 2x in cell (2p− αx,−αx) ∈ D2p,

(4p+ γ − 6)n− 4jn+ 1 + 2x in cell (2p+ 1 + 2j − x,−x) ∈ D2p+1+2j ,

−(4p + γ − 4)n+ 4jn+ 2x in cell (2p+ 2 + 2j + x, x) ∈ D2p+2+2j ,

(4p+ γ − 2)n+ 1 + 2x in cell (2p+ α + αx, αx) ∈ D2p+α.

It is useful to note that the set D contains the indices for the non-empty diagonals of A.
Then for each i ∈ I and j ∈ J :

s(D2i ∪D2i+1) = {γn+ 4in+ 1, . . . , (γ + 2)n+ 4in};

s(D2p+1+2j ∪D2p+2+2j) = {(4p+ γ − 6)n− 4n+ 1, . . . , (4p+ γ − 4)n− 4jn}

= {(γ + 2)n+ 4ǫn+ 1, . . . , (γ + 4)n+ 4ǫn} (ǫ = p− 2− j);

s(D2p ∪D2p+α) = {(4p+ γ)n− 2n + 1, . . . , (4p+ γ)n}.

Hence s(A) = {γn + 1, . . . , (4p+ γ)n}.

Example 3.3. Here we display a support shifted Heffter array H(17; 12, 3) (the array A
above) illustrating Theorem 3.1 with α = 6.

85 252 -105 104 -169 168 -253 -212 213 -148 149 -84
-52 53 224 -103 102 -167 166 -225 -214 215 -150 151
153 -54 55 230 -101 100 -165 164 -231 -216 217 -152
-120 121 -56 57 236 -99 98 -163 162 -237 -218 219
221 -122 123 -58 59 242 -97 96 -161 160 -243 -220
-188 189 -124 125 -60 61 248 -95 94 -159 158 -249
-255 -190 191 -126 127 -62 63 254 -93 92 -157 156
154 -227 -192 193 -128 129 -64 65 226 -91 90 -155
-187 186 -233 -194 195 -130 131 -66 67 232 -89 88
86 -185 184 -239 -196 197 -132 133 -68 69 238 -87
-119 118 -183 182 -245 -198 199 -134 135 -70 71 244

-117 116 -181 180 -251 -200 201 -136 137 -72 73 250
222 -115 114 -179 178 -223 -202 203 -138 139 -74 75

228 -113 112 -177 176 -229 -204 205 -140 141 -76 77
234 -111 110 -175 174 -235 -206 207 -142 143 -78 79

240 -109 108 -173 172 -241 -208 209 -144 145 -80 81
246 -107 106 -171 170 -247 -210 211 -146 147 -82 83
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To prove that the array is globally simple we must verify that all sequential partial
sums are distinct. For the above example we give the row and column partial sums in the
Appendix, where we have listed the row (column) number and each partial sum beginning
with the entry in diagonalD0. These partial sums are considered modulo 2(4p+γ)n+1 = 511
so it is important to check carefully when the absolute value of the partial sums exceeds 255.

3.2 Row sums and column sums

For a given row a ∈ [n] and all i ∈ I, there exists x1, x2 ∈ [n] such that a = 2i− x1 (mod n)
and a = 2i + 1 + x2 (mod n). Thus x1 + x2 + 1 = 0 (mod n) and so x1 + x2 = n − 1.
Consequently for all i ∈ I,

d2i(ra) + d2i+1(ra) = (γ + 2)n+ 4in− 2x1 − γn− 4in− 1− 2x2

= 2n− 1− 2(n− 1) = 1. (5)

Similarly, for a given row a and for all j ∈ J , there exists x1, x2 ∈ [n] such that a =
2p+1+2j−x1 (mod n) and a = 2p+2+2j+x2 (mod n), implying x1+x2+1 = 0 (mod n),
and so x1 + x2 = n− 1. Consequently for all j ∈ J ,

d2p+2j+1(ra) + d2p+2j+2(ra) = (4p+ γ − 6− 4j)n+ 1 + 2x1 − (4p+ γ − 4 + 4j)n+ 2x2

= −1. (6)

Finally for x1, x2 ∈ [n], a = 2p − αx1 (mod n) and a = 2p + α + αx2 (mod n) implies
that α(x1 + x2 + 1) = 0 (mod n). Since gcd(α, n) = 1, x1 + x2 + 1 = 0 (mod n) and again
x1 + x2 = n− 1. Hence

d2p(ra) + d2p+α(ra) = −(4p+ γ)n + 2x1 + (4p+ γ − 2)n+ 1 + 2x2

= −1. (7)

Therefore as required, the sum of the entries in row a of A is (1×p)+(−1×(p−1))−1 = 0.
In column a = 0 the sum of the entries is

(d2p(c0) + d2p+α(c0)) +

p−1∑

i=0

(d2i(c0) + d2i+1(c0)) +

p−2∑

j=0

(d2p+2j+1(c0) + d2p+2j+2(c0))

= −(2n− 1) +

p−1∑

i=0

(2n− 1) +

p−2∑

j=0

−(2n− 1) = 0. (8)

For a given column a 6= 0, there exists x1, x2 ∈ [n] such that a = −x1 (mod n) and
a = x2 (mod n) or equivalently x1 = n− a and x2 = a. Thus for all i ∈ I and for all j ∈ J

d2i(ca) + d2i+1(ca) = (γ + 2)n+ 4in− 2(n− a)− (γn+ 4in+ 1)− 2a = −1, (9)

d2p+2j+1(ca) + d2p+2j+2(ca) = (4p+ γ − 6− 4j)n+ 1 + 2(n− a)− (4p+ γ − 4− 4j)n+ 2a

= 1. (10)
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Furthermore setting a = −αx1 (mod n) and a = αx2 (mod n) we see that 0 = α(x1 +
x2) (mod n). Now since gcd(α, n) = 1, x1 + x2 = 0 (mod n) and so x1 + x2 = n. Hence

d2p(ca) + d2p+α(ca) = −(4p+ γ)n + 2x1 + (4p+ γ − 2)n+ 1 + 2x2 = 1. (11)

Hence, the sum of the entries in column a 6= 0 of A is (−1× p) + (1× (p− 1)) + 1 = 0.

3.3 Distinct partial sums for rows

For a given row a we will calculate Σ(x) =
∑x

i=0 di(ra), for each x ∈ D, and show that
Σ(x1) 6= Σ(x2) (mod 2(4p+ γ) + 1) for each x1, x2 ∈ D (Note that these sums cover the
entries of the non-empty diagonals).

Recall that Equations (5) and (6) give d2i(ra)+d2i+1(ra) = 1 and d2p+2j+1(ra)+d2p+2j+2(ra) =
−1, for all i ∈ I and for all j ∈ J . Then using the definition of the array A we may evaluate
and determine bounds for Σ(x) as follows.

γn + 1 < Σ(2i) = d2i(ra) + i < (4p+ γ − 2)n+ p,

0 < Σ(2i+ 1) = i+ 1 < p+ 1,

−(4p+ γ)n < Σ(2p) = d2p(ra) + p < −(4p+ γ − 2)n+ p− 1,

Σ(2p) < Σ(2p+ 2j + 1) = d2p(ra) + p + d2p+2j+1(ra)− j < 0,

−(4p+ γ)n < Σ(2p+ 2j + 2) = d2p(ra) + p− (j + 1) < Σ(2p),

Σ(2p+ α) = 0.

Also, for all i′ ∈ I \ {p− 1} and for all j′ ∈ J \ {p− 2},

Σ(2(i′ + 1))− Σ(2i′) = d2i′+2(ra) + i′ + 1− d2i′(ra)− i′

= 4n+ 1− 2(2i′ + 2− a (mod n)) + 2(2i′ − a (mod n)) > 4n− 3 and

Σ(2p + 2(j′ + 1) + 1)− Σ(2p+ 2j′ + 1) = d2p+2j′+3(ra)− (j′ + 1)− d2p+2j′+1(ra) + j′

= −4n− 1 + 2(2p+ 2j′ + 3− a (mod n))− 2(2p+ 2j′ + 1− a (mod n)) 6 −4n + 3.

Thus for i ∈ I and j ∈ J , the function f(i) = Σ(2i) is strictly increasing and the function
g(j) = Σ(2p + 2j + 1) is strictly decreasing.

Hence

Σ(4p− 2) < Σ(4p− 4) < · · · < Σ(2p+ 2) < Σ(2p) < −(4p + γ − 3)n,

Σ(2p) < Σ(4p− 3) < Σ(4p− 5) < · · · < Σ(2p + 1) < 0, (12)

0 < Σ(1) < Σ(3) < · · · < Σ(2p− 1) < p+ 1 < γn < Σ(0) < Σ(2) < · · · < Σ(2p− 2).

Furthermore, for all x ∈ D, the row partial sums |Σ(x)| 6 (4p + γ)n, and so by Remark
(1) Σ(x) ≡ Σ(y) (mod 2(4p+ γ)n + 1) if and only if Σ(x) = Σ(y). Hence for all i ∈ I and
for all j ∈ J the partial sums calculated on row a are all distinct modulo 2(4p+ γ)n+ 1.
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3.4 Distinct partial sums for non-zero columns

Similarly to above, we calculate Σ(x) =
∑x

i=0 di(ca), for each x ∈ D and show that Σ(x1) 6=
Σ(x2) (mod 2(4p+ γ) + 1) for each x1, x2 ∈ D.

Equations (9) and (10) imply that d2i(ca)+d2i+1(ca) = −1 and d2p+2j+1(ca)+d2p+2j+2(ca) =
1, for all i ∈ I and for all j ∈ J . Then using the definition of the array A we may evaluate
and determine bounds for Σ(x) as follows.

γn < Σ(2i) = d2i(ca)− i < (4p+ γ − 2)n,

−p 6 Σ(2i+ 1) = −(i+ 1) < 0,

−(4p + γ)n− p 6 Σ(2p) = d2p(ca)− p 6 −(4p+ γ − 2)n− p− 2,

−(4p− 2)n < Σ(2p+ 2j + 1) =

d2p(ca)− p+ d2p+2j+1(ca) + j < −2n− p,

Σ(2p) < Σ(2p+ 2j + 2) = d2p(ca)− p+ (j + 1) < −(4p+ γ − 2)n,

Σ(2p+ α) = 0.

Furthermore, for all i′ ∈ I \ {p− 1} and for all j′ ∈ J \ {p− 2},

Σ(2(i′ + 1))− Σ(2i′) = d2i′+2(ca)− (i′ + 1)− d2i′(ca) + i′ = 4n− 1 and

Σ(2p+2(j′+1)+ 1)−Σ(2p+2j′+1) = d2p+2j′+3(ca) + j′+1− d2p+2j′+1(ca)− j′ = −4n+1.

Thus for i ∈ I and j ∈ J the function f(i) = Σ(2i) is strictly increasing and g(j) =
Σ(2p+ 2j + 1) is strictly decreasing.

Hence

−(4p + γ + 1)n < Σ(2p) < Σ(2p+ 2) < · · · < Σ(4p− 2) < Σ(4p− 3)

Σ(4p− 3) < Σ(4p− 5) < · · · < Σ(2p+ 1) < −n <

Σ(2p− 1) < · · · < Σ(3) < Σ(1) < 0 < γn < Σ(0) < Σ(2) < · · · < Σ(2p− 2). (13)

Thus for column a 6= 0 and each x ∈ D, the partial sum |Σ(x)| < (4p+ γ + 1)n. Further
for x ∈ D \F , where F = {2p, 2p+2, . . . , 4p− 2}, |Σ(x)| 6 (4p+ γ − 2)n < (4p+ γ)n. Thus
for all x, y ∈ D \ F , Σ(x) ≡ Σ(y) (mod 2(4p+ γ)n+ 1) if and only if Σ(x) = Σ(y) by (1).
Furthermore, for all x ∈ F , 2(4p+γ)n+1+Σ(x) > (4p+γ)n−p+1 > (4p+γ−2)n > Σ(y)
for all y ∈ D. Hence, in column a 6= 0 the partial sums calculated on diagonals Dx, x ∈ D,
are distinct modulo 2(4p+ γ)n+ 1.
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3.5 Distinct partial sums for column zero

From Section 3.1, for i ∈ I and j ∈ J the entries in column 0 are

d2i(c0) = γn+ 4in+ 2n,

d2i+1(c0) = −γn− 4in− 1,

d2p(c0) = −4pn− γn,

d2p+1+2j(c0) = 4pn+ γn− 6n− 4jn + 1,

d2p+2+2j(c0) = −4pn− γn+ 4n+ 4jn,

d2p+α(c0) = 4pn+ γn− 2n+ 1,

and thus d2i(c0) + d2i+1(c0) = 2n− 1 and d2p+2j+1(c0) + d2p+2j+2(c0) = −(2n− 1). Thus, for
i ∈ I and j ∈ J , the partial sums may be calculated and bounded as follows.

Σ(2i) = (γ + 2 + 4i)n+ (2n− 1)i = (γ + 2 + 6i)n− i

⇒ 0 < Σ(0) < Σ(2) < · · · < Σ(2p− 2) < 2(4p+ γ)n + 1,

Σ(2i+ 1) = (2n− 1)(i+ 1) = 2(i+ 1)n− (i+ 1)

⇒ 0 < 2n− 1 = Σ(1) < Σ(3) < · · · < Σ(2p− 1) = (2n− 1)p,

Σ(2p) = (2n− 1)p− (4p+ γ)n = −(2p + γ)n− p

⇒ Σ(2p) < 0,

Σ(2p+ 2j + 1) = (p− j)(2n− 1)− (4p+ γ)n + (4p+ γ − 6)n− 4jn+ 1

= (2p− 6j − 6)n− (p− j) + 1

⇒ −(4p− 6)n− 1 = Σ(4p− 3) < · · · < Σ(2p+ 1) < 2pn,

Σ(2p+ 2j + 2) = (p− j − 1)(2n− 1)− (4p+ γ)n = −(2p + 2j + γ + 2)n− (p− j − 1)

⇒ −(4p+ γ − 2)n− 1 = Σ(4p− 2) < · · · < Σ(2p+ 2) < Σ(2p),

Σ(2p+ α) = 0.

Note that for all x ∈ D and y ∈ D \ 2I:

Σ(x) = βn+ ǫ for some β, ǫ ∈ Z with −
n

4
6 −p 6 ǫ 6 p 6

n

4
, (14)

|Σ(x)| 6 2(4p+ γ)n+ 1, (15)

|Σ(y)| 6 (4p+ γ)n. (16)

We will proceed by checking a number of cases individually. In what follows we will make
extensive use of (14) and (3).

For all i1, i2, i ∈ I and j1, j2, j ∈ J :

1(i) Suppose that Σ(2i1) = Σ(2i2 + 1) (mod 2(4p+ γ)n + 1). Then (2) and (15) implies
(2 + γ + 6i1)n− i1 = 2(i2 +1)n− (i2 +1). Hence i1 = i2 + 1 and 2 + γ +6i1 = 2i2 +2.
But then γ = −4i2 − 6. This contradicts γ > 0.
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1(ii) Suppose that Σ(2i) = Σ(2p) (mod 2(4p+ γ)n+ 1). Then by (4)

(2 + γ + 6i)n− i = 2(4p+ γ)n+ 1− (2p+ γ)n− p

⇒ (2 + γ + 6i)n− i = (6p+ γ)n + 1− p.

This implies i = p− 1 and 2 + 6i = 6p leading to the contradiction −4 = 0.

1(iii) Suppose that Σ(2i) = Σ(2p+ 2j + 1) (mod 2(4p+ γ)n+ 1). Then

(2 + γ + 6i)n− i = (2p− 6j − 6)n− (p− j) + 1 or

−2(4p+ γ)n− 1 + (2 + γ + 6i)n− i = (2p− 6j − 6)n− (p− j) + 1.

The former case implies i = p − j − 1 and so 2 + γ + 6p − 6j − 6 = 2p − 6j − 6 but
then γ = −4p − 2 which contradicts γ > 0. In the latter case we have (−8p − γ +
6i+ 2)n− (i+ 1) = (2p− 6j − 6)n − (p− j) + 1, which implies p− 2 = i + j and so
γ = −10p+ 6(i+ j) + 8 = −10p + 6p− 12 + 8 = −4p− 4, a contradiction.

1(iv) Suppose that Σ(2i) = Σ(2p+ 2j + 2) (mod 2(4p+ γ)n+ 1). Then by (4)

(2 + γ + 6i)n− i = 2(4p+ γ)n+ 1− (2p+ 2j + γ + 2)n− (p− j − 1)

⇒ (2 + γ + 6i)n− i = (6p+ γ − 2j − 2)n− (p− j − 2).

This implies i = p− j − 2 and 2 + 6i = 6p− 2j − 2 or equivalently 2 + 6(p− j − 2) =
6p− 6j − 2 and so −10 = −2, a contradiction.

For the remaining cases we will use (1) together with (16).

2(i) Σ(2i + 1) > 0 and Σ(2p),Σ(2p + 2j + 2) < 0 and so we have Σ(2i + 1) 6≡ Σ(2p)
(mod 2(4p+ γ)n + 1) and Σ(2i+ 1) 6≡ Σ(2p+ 2j + 2) (mod 2(4p+ γ)n + 1).

2(ii) Suppose that Σ(2i + 1) ≡ Σ(2p + 2j + 1) (mod 2(4p+ γ)n + 1). Then we have (2p −
6j − 6)n− (p− j) + 1 = (2i+ 2)n− (i+ 1). So p = j + i+ 2 and 2p− 6j − 2i− 8 = 0
which implies 2(i+ j + 2)− 6j − 2i− 8 = 0 and then j = −1, a contradiction.

3(i) Suppose that Σ(2p) ≡ Σ(2p + 2j + 1) (mod 2(4p+ γ)n + 1). Then −(2p + γ)n − p =
(2p− 6j − 6)n− (p− j) + 1. So −p = −p+ j + 1 but then j = −1.

3(ii) Suppose that Σ(2p) ≡ Σ(2p + 2j + 2) (mod 2(4p+ γ)n + 1). Then −(2p + γ)n − p =
−(2p+ 2j + γ + 2)n− (p− j − 1). So p = p− j − 1 but then j = −1.

4(i) Suppose that Σ(2p+2j1+1) ≡ Σ(2p+2j2+2) (mod 2(4p+ γ)n + 1). Then (2p−6j1−
6)n− (p− j1)+ 1 = −(2p+2j2+ γ+2)n− (p− j2− 1). So −(p− j1)+ 1 = −p+ j2+1
and 4p− 6j1 + 2j2 − 4 + γ = 0. Then j1 = j2 and γ = −4(p− j1 − 1) < 0.

4(ii) Suppose that Σ(2p + 2j + 1) ≡ 0 (mod 2(4p+ γ)n+ 1) then −p + j + 1 = 0 which
implies j = p− 1 > p− 2, a contradiction.

Hence for column 0 all the partial sums are distinct modulo 2(4p+ γ)n+ 1. This proves
Theorem 3.1.
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4 Globally simple Heffter arrays H(n; 4p + 3)

In this section we will merge a Heffter array H(n; 3) with the support shifted Heffter array
H(n; 4p, 3) given by Theorem 3.1 to obtain a globally simple Heffter array H(n; 4p+3). First
we need a suitable H(n; 3).

Theorem 4.1. [4] Let n ≡ 0, 1 (mod 4). Then there exists a Heffter array H(n; 3) that has
the following properties: non-empty cells are only on diagonals D0, Dn−1 and D1; sL′(D0) =
{1, . . . , n}; entries of L′ on Dn−1 are all positive and entries of L′ on D1 are all negative.

Theorem 4.2. Let n ≡ 1 (mod 4). Then for each 0 6 β 6 n−5 there exists a Heffter array
H(n; 3), denoted by L, with the following properties

• The non empty cells are exactly on the diagonals Dβ, Dβ+2 and Dβ+4,

• s(Dβ+2) = {1, . . . , n},

• s(Dβ ∪Dβ+4) = {n+ 1, . . . , 3n},

• entries on Dβ are all positive,

• entries on Dβ+4 are all negative,

• the array defined by M = [M(i, j)] where M(i, j) = L(i + 1, j + 1), i, j ∈ [n] retains
the above properties.

Proof. Let L′ be a Heffter array H(n; 3) with the properties from Theorem 4.1 where n ≡
1 (mod 4). Now define L(2(i + 1) + β, 2j) = L′(i, j) for all i, j ∈ [n] where operations on
coordinates are taken modulo n. As n is odd, for any given a, b ∈ [n] there exists unique
i, j ∈ [n] such that 2(i+1)+β ≡ a (mod n) and 2j ≡ b (mod n). Hence we may obtain L by
applying row and column permutations to L′. Therefore L is also a Heffter array H(n; 3).
Furthermore, the entries on Dβ of L are exactly the entries on Dn−1 of L′; consequently
entries on Dβ of L are all positive. Also the set of entries on Dβ+2 of L are exactly the set
of entries on D0 of L′; consequently sL(Dβ+2) = {1, . . . , n}. Similarly the set of entries on
Dβ+4 of L are exactly the set of entries on D1 of L

′; consequently entries on Dβ +4 of L are
all negative.

Finally, it is clear that the array M retains the above properties, since each diagonal
retains the same set of symbols under this transformation.

By similar reasoning to the previous theorem, we also have the following.

Corollary 4.3. Let n ≡ 0 (mod 4) and gcd(n, ǫ) = 1. Then for each 0 6 β 6 n − 2ǫ − 1
there exists a Heffter array H(n; 3), denoted by L, with the following properties

• The non empty cells are exactly on the diagonals Dβ, Dβ+ǫ and Dβ+2ǫ,

• s(Dβ+2ǫ) = {1, . . . , n} and s(Dβ ∪Dβ+4ǫ) = {n+ 1, . . . , 3n},
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Figure 1: The arrays L and L′ from Theorem 4.2 with β = 1.

• entries on Dβ are all positive,

• entries on Dβ+2ǫ are all negative,

• the array defined by M = [M(i, j)] where M(i, j) = L(i + 1, j + 1), i, j ∈ [n] retains
the above properties.

4.1 Globally simple H(n; 4p+ 3) when n ≡ 1 (mod 4)

Theorem 4.4. Let n ≡ 1 (mod 4), p > 0 and n > 4p + 3. Let α be an integer such that
2p+ 2 6 α 6 n− 2− 2p and gcd(n, α) = 1. Let β = 2p+ α− 3 and let L be a Heffter array
H(n; 3) based on β satisfying the properties of Theorem 4.2. Then the union of arrays L
and the support shifted Heffter array H(n; 4p, 3) (given by Theorem 3.1) is a globally simple
Heffter array H(n; 4p+ 3) where the entries are on the set of diagonals Di such that i is in
D = {0, 1, . . . , 4p− 2, 2p+ α} ∪ {2p+ α− 3, 2p+ α− 1, 2p+ α + 1}.

Proof. First we will assume that there exists α coprime to n such that 2p+2 6 α 6 n−2−2p.
Next, construct the array A as in Theorem 3.1 with γ = 3. Then we will merge this array
with L as constructed in Theorem 4.2 with β = 2p+α−3 to get a Heffter array H(n; 4p+3)
that will be globally simple, which we denote by B. Note that since n ≡ 1 (mod 4), such an
L exists.

Define
B(i, j) = A(i, j) if i− j 6∈ {2p+ α− 3, 2p+ α− 1, 2p+ α + 1},
B(i, j) = L(i, j) if i− j ∈ {2p+ α− 3, 2p+ α− 1, 2p+ α + 1}.
Hence we are positioning diagonals D2p+α−3, D2p+α−1 and D2p+α+1 of L to the empty

diagonals D2p+α−3, D2p+α−1 and D2p+α+1 of A.

Example 4.5. The array B (a Heffter array H(17; 15)) when n = 17, p = 3 and α = 8.
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85 -33 244 13 20 -105 104 -169 168 -245 -212 213 -148 149 -84
-52 53 -24 240 -4 28 -103 102 -167 166 -241 -214 215 -150 151
153 -54 55 -49 236 12 37 -101 100 -165 164 -237 -216 217 -152
-120 121 -56 57 -41 232 -3 44 -99 98 -163 162 -233 -218 219
221 -122 123 -58 59 -32 228 11 21 -97 96 -161 160 -229 -220
-188 189 -124 125 -60 61 -25 224 -2 27 -95 94 -159 158 -225
-255 -190 191 -126 127 -62 63 -48 254 10 38 -93 92 -157 156
154 -251 -192 193 -128 129 -64 65 -42 250 -1 43 -91 90 -155
-187 186 -247 -194 195 -130 131 -66 67 -31 246 9 22 -89 88
86 -185 184 -243 -196 197 -132 133 -68 69 -26 242 8 26 -87
-119 118 -183 182 -239 -198 199 -134 135 -70 71 -47 238 17 30

35 -117 116 -181 180 -235 -200 201 -136 137 -72 73 -51 234 16

46 -115 114 -179 178 -231 -202 203 -138 139 -74 75 -39 230 -7

15 19 -113 112 -177 176 -227 -204 205 -140 141 -76 77 -34 226
222 -6 29 -111 110 -175 174 -223 -206 207 -142 143 -78 79 -23

-50 252 14 36 -109 108 -173 172 -253 -208 209 -144 145 -80 81
-40 248 -5 45 -107 106 -171 170 -249 -210 211 -146 147 -82 83

We know that s(A) = {γn + 1, . . . , (4p+ γ)n}, s(L) = {1, . . . , 3n} and γ = 3 so s(B) =
{1, . . . , (4p + 3)n}. Also as row and column sums of both A and L are 0, it is easy to see
that the row and column sums of B are 0.

Now we just need to show that row partial sums and column partial sums of B are
distinct.

We will use the notation ΣA(x) and ΣA(x) to denote the partial sum in the array A as
given in the previous section and; ΣB(x) and ΣB(x) to denote the partial sum in the array
B as constructed here. Firstly, ΣB(i) = ΣA(i) and ΣB(i) = ΣA(i) for all 1 6 i 6 4p− 2 for
all rows and columns of B so row partial sums and column partial sums are distinct modulo
2(4p+ 3)n+ 1 from diagonal 0 to 4p− 2.

Consider row a. First note that L(a, a − 2p − α + 3) + L(a, a − 2p − α + 1) + L(a, a −
2p − α − 1) = 0, L(a, a − 2p − α + 3) > 0 and L(a, a − 2p − α − 1) < 0. It was shown in
Section 3.3 that ΣB(4p− 2) = d2p(ra) + 1. Hence we have

ΣB(2p+ α− 3) = d2p(ra) + 1 + L(a, a− 2p− α + 3) < 0,

ΣB(2p+ α− 1) = d2p(ra) + 1− L(a, a− 2p− α− 1) < 0,

ΣB(2p+ α) = −L(a, a− 2p− α− 1) > 0,

ΣB(2p+ α + 1) = 0.

By Theorem 4.2, it follows that

n + 1 6 ΣB(2p+ α) 6 3n (17)

so by the inequality (12), ΣB(2p+ α) 6= ΣB(i) for each 0 6 i 6 4p− 2.
Now, from the definition of the array A, any entry in diagonal D4p−3 is greater than 5n.

Thus, from Section 3.3 ΣB(4p− 3) = d2p(ra) + d4p−3(ra) + 2 > d2p(ra) + 5n. So,

ΣB(2p) = d2p(ra) + p < d2p(ra) + n+ 2

6 ΣB(2p+ α− 3),ΣB(2p+ α− 1) 6 d2p(ra) + 1 + 3n < ΣB(4p− 3)

so by inequality (12) ΣB(2p+α−3) 6= ΣB(i) and ΣB(2p+α−1) 6= ΣB(i) for all 0 6 i 6 4p−2.
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Next consider column a 6= 0. We have L(2p+a+α−3, a)+L(2p+a+α−1, a)+L(2p+
a + α + 1, a) = 0, with the first of these terms positive and the final term negative. Also it
was shown in Section 3.4 that ΣB(4p− 2) = d2p(ca)− 1. So

ΣB(2p+ α− 3) = d2p(ca)− 1 + L(2p+ a + α− 3, a) < 0,

ΣB(2p+ α− 1) = d2p(ca)− 1− L(2p+ a+ α + 1, a) < 0,

ΣB(2p+ α) = −L(2p + a+ α + 1, a) > 0,

ΣB(2p+ α + 1) = 0.

Similarly to (17),

n+ 1 6 ΣB(2p+ α) 6 3n. (18)

Thus for each column a 6= 0 and 1 6 i 6 4p− 2 we have ΣB(2p+α) 6= ΣB(i) by inequalities
(18) and (13).

Also

ΣB(4p− 2) = d2p(ca)− 1 < d2p(ca) + n

6 ΣB(2p+ α− 3),ΣB(2p+ α− 1) 6 d2p(ca)− 1 + 3n < ΣB(4p− 3)

so by inequality (13) ΣB(2p+α−3) 6= ΣB(i) and ΣB(2p+α−1) 6= ΣB(i) for all 0 6 i 6 4p−1.
Finally consider column 0.
By Theorem 4.2, the Heffter array L may be replaced by the array M = [M(i, j)] where

M(i, j) = L(i + 1, j + 1), i, j ∈ [n], while retaining the properties we have so far required.
In effect, we may thus apply this transformation to the diagonals D2p+α−3, D2p+α−1 and
D2p+α+1 without changing the rest of the array, and without changing the validity of the
above arguments. Since n > 9, we may thus assume that {L(2p + α − 3, 0),−L(2p + α +
1, 0)} ∩ {2n− 1, 2n− (2p+ 1)/3} = ∅. By Section 3.5 we have:

ΣB(2i) = (5 + 6i)n− i,

ΣB(2i+ 1) = (2n− 1)(i+ 1) = 2(i+ 1)n− (i+ 1),

ΣB(2p) = −(2p+ 3)n− p < 0,

ΣB(2p+ 2j + 1) = (2p− 6j − 6)n− (p− j) + 1,

ΣB(2p+ 2j + 2) = −(2p+ 2j + 5)n− (p− j − 1) < 0,

ΣB(2p+ α− 3) = −(4p+ 1)n− 1 + L(2p+ α− 3, 0) < 0,

ΣB(2p+ α− 1) = −(4p+ 1)n− 1− L(2p+ α + 1, 0) < 0,

ΣB(2p+ α) = −L(2p + α+ 1, 0) > 0,

ΣB(2p+ α+ 1) = 0.

1(i) ΣB(2i) = (5+6i)n− i > 5n so by (15), (18) and (2), ΣB(2p+α) 6= ΣB(2i) for all i ∈ I.

1(ii) ΣB(2i + 1) = (2n − 1)(i+ 1) then ΣB(2p + α) 6= ΣB(2i + 1) (mod 2(4p+ 3)n+ 1) by
(16), (18) and (1) as −L(2p + α + 1, 0) 6= 2n− 1.
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1(iii) Σ(2p),Σ(2p+2j+2) < 0 hence Σ(2p+α) 6= Σ(2p) (mod 2(4p+ 3)n+ 1), Σ(2p+α) 6=
Σ(2p+ 2j + 2) (mod 2(4p+ 3)n+ 1) for all j ∈ J by (16), (18) and (16).

1(iv) Suppose that Σ(2p+ 2j +1) = Σ(2p+α) (mod 2(4p+ 3)n + 1). Then by (1) and (16)

(2p− 6j − 6)n− (p− j) + 1 = −L(2p + α + 1, 0).

Now by (3), ((14) and 18) 2p−6j−6 = 2 which implies p−4 = 3j hence j = (p−4)/3
and −L(2p+ α + 1, 0) = 2n− (2p+ 1)/3.

2(i) Suppose that Σ(2i) = Σ(2p+α−3) (mod 2(4p+ 3)n+ 1) for some i ∈ I. Then Σ(2i) =
(5+6i)n−i = 2(4p+3)n+1−(4p+1)n−1+L(2p+α−3, 0) = 2(4p+3)n+1+ΣB(2p+α−3)
hence −(4p − 6i)n − i = L(2p + α − 3, 0) which implies −(4p − 6i) = 2 and so
L(2p+ α− 3, 0) = 2n− (2p+ 1)/3.

2(ii) Σ(2i + 1) > 0 for all i ∈ [p] so Σ(2p + α − 1) 6= Σ(2i + 1) (mod 2(4p+ 3)n+ 1) and
Σ(2p+ α− 3) 6= Σ(2i+ 1) (mod 2(4p+ 3)n + 1).

2(iii) Suppose that Σ(2p) ≡ Σ(2p+α−3) (mod 2(4p+ 3)n+ 1) then −(4p+1)n−1+L(2p+
α− 3, 0) = −(2p + 3)n− p so L(2p + α− 3, 0) = (2p− 2)n− p + 1. Then 2p− 2 = 2
hence p = 2 and L(2p+ α− 3, 0) = 2n− 1.

2(iv) Suppose that Σ(2p + 2j + 1) ≡ Σ(2p + α − 3) (mod 2(4p+ 3)n+ 1) for some j ∈ J .
Then by (15) and (16),

(2p− 6j − 6)n− (p− j) + 1 = −(4p+ 1)n− 1 + Ln(2p+ α− 3, 0)

⇒ (6p− 6j − 5)n = p− j − 2 + Ln(2p+ α− 3, 0) 6 (p− 2) + 3n < 4n

and also by (18) n + 1 6 p− j − 2 + Ln(2p+ α− 3, 0) so 1 < 6p− 6j − 5 < 4. Hence
6 < 6(p− j) < 9, a contradiction.

2(v) Suppose that Σ(2p + 2j + 2) ≡ Σ(2p + α − 3) (mod 2(4p+ 3)n+ 1) for some j ∈ J .
Then

−(2p+ 2j + 5)n− (p− j − 1) = −(4p+ 1)n− 1 + Ln(2p+ α− 3, 0)

⇒ (2p− 2j − 4)n = p− j − 2 + L(2p+ α− 3, 0) 6 (p− 2) + 3n < 4n

and also n+1 6 p−j−2+L(2p+α−3, 0) so 1 < 2(p−j−2) < 4. Hence 1 = p−j−2
then j = p− 3 which implies L(2p + α− 3, 0) = 2n− 1.

Note that all parts of item 2 can be similarly verified for Σ(2p+α−1). This proves Theorem
4.4.

Finally, to prove Theorem 1.6, it remains to choose an α that satisfies the conditions of
Theorem 4.4. Let n = 4h + 1 and α = 2h; then gcd(n, α) = 1. Now since n > 4p + 3,
h > p+ 1 so 2p+ 2 6 α = 2h 6 n− 2h 6 n− 2− 2p so we are done.
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4.2 Globally simple H(n; 4p+ 3) when n ≡ 0 (mod 4)

Finally it remains to prove Theorem 1.7. Using Theorem 4.3, we can construct a suitable
Heffter array H(n; 3) which merges with the support shifted Heffter array H(n; 4p, 3) from
Theorem 3.1, similarly to Theorem 4.4. In this process the diagonals of the Heffter array
H(n; 3) become diagonals D2p+α−ǫ−1, D2p+α−1 and D2p+α+ǫ−1 in the Heffter array H(n; 4p+
3). Then, so long as 2p+α−ǫ−1 > 4p−2 and 2p+α+ ǫ−1 < n, the partial sums will have
all the same properties as in the n ≡ 1 (mod 4) construction. We thus have the following
theorem.

Theorem 4.6. Let n ≡ 0 (mod 4), p > 0 and n > 4p+3. Suppose ǫ 6 (n−4p)/2 is coprime
to n. If there exists an integer α coprime to n such that 2p+ ǫ 6 α 6 n− ǫ− 2p, then there
exists a globally simple Heffter array H(n; 4p+ 3).

For example, if n ≡ 0 (mod 4) but n 6≡ 0 (mod 12) and n > 4p + 8, then choosing ǫ = 3
and α = n/2− 1 yields a globally simple H(n; 4p+ 3).

The Jacobsthal function j(n) is defined to be the smallest m such that every sequence
of m consecutive integers contains an integer coprime to n. It was shown in [20] that
j(n) = O(log2 n). Thus for n − 4p sufficiently large we can choose ǫ = O(log2 n) and
α = 2p + O(log2 n) which are each coprime to n and satisfy the inequalities of the above
theorem. Thus Theorem 1.7 is true.

5 Conclusion and Future Work

As shown in [4] and [15], an integer Heffter array H(n; k) exists if and only if nk ≡
0, 3 (mod 4). In this paper we have shown the existence of an integer Heffter array H(n; k)
which is globally simple whenever (a) k ≡ 0 (mod 4); (b) n ≡ 1 (mod 4) and k ≡ 3 (mod 4);
or (c) n ≡ 0 (mod 4), k ≡ 3 (mod 4) and n ≫ k. In future work we will show that in
most cases (in particular when n is prime), the array H(n; 4p+ 3) given in Section 4 has an
ordering which is both simple and compatible. As discussed in the introduction, this will
yield biembeddings of cycle systems on orientable surfaces. We will also give lower bounds
on the number of such non-isomorphic biembeddings.
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Appendix
Row partial sums for Example 3.3.

Partial sum to diagonal
Row Number D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D12

0 85 1 150 2 215 3 -250 -82 -251 -147 -252 0
1 53 1 152 2 217 3 -222 -56 -223 -121 -224 0
2 55 1 154 2 219 3 -228 -64 -229 -129 -230 0
3 57 1 122 2 221 3 -234 -72 -235 -137 -236 0
4 59 1 124 2 223 3 -240 -80 -241 -145 -242 0
5 61 1 126 2 191 3 -246 -88 -247 -153 -248 0
6 63 1 128 2 193 3 -252 -96 -253 -161 -254 0
7 65 1 130 2 195 3 -224 -70 -225 -135 -226 0
8 67 1 132 2 197 3 -230 -44 -231 -143 -232 0
9 69 1 134 2 199 3 -236 -52 -237 -151 -238 0
10 71 1 136 2 201 3 -242 -60 -243 -125 -244 0
11 73 1 138 2 203 3 -248 -68 -249 -133 -250 0
12 75 1 140 2 205 3 -220 -42 -221 -107 -222 0
13 77 1 142 2 207 3 -226 -50 -227 -115 -228 0
14 79 1 144 2 209 3 -232 -58 -233 -123 -234 0
15 81 1 146 2 211 3 -238 -66 -239 -131 -240 0
16 83 1 148 2 213 3 -244 -74 -245 -139 -246 0

Column partial sums for Example 3.3.
Partial sum to diagonal

Column Number D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D12

0 85 33 186 66 287 99 -156 -2 -189 -103 -222 0
1 53 -1 120 -2 187 -3 -230 -44 -229 -111 -228 0
2 55 -1 122 -2 189 -3 -236 -52 -235 -119 -234 0
3 57 -1 124 -2 191 -3 -242 -60 -241 -127 -240 0
4 59 -1 126 -2 193 -3 -248 -68 -247 -135 -246 0
5 61 -1 128 -2 195 -3 -254 -76 -253 -143 -252 0
6 63 -1 130 -2 197 -3 -226 -50 -225 -117 -224 0
7 65 -1 132 -2 199 -3 -232 -58 -231 -125 -230 0
7 67 -1 134 -2 201 -3 -238 -66 -237 -133 -236 0
9 69 -1 136 -2 203 -3 -244 -74 -243 -141 -242 0
10 71 -1 138 -2 205 -3 -250 -82 -249 -149 -248 0
11 73 -1 140 -2 207 -3 -256 -90 -255 -157 -254 0
12 75 -1 142 -2 209 -3 -228 -64 -227 -131 -226 0
13 77 -1 144 -2 211 -3 -234 -72 -233 -139 -232 0
14 79 -1 146 -2 213 -3 -240 -80 -239 -147 -238 0
15 81 -1 148 -2 215 -3 -246 -88 -245 -155 -244 0
16 83 -1 150 -2 217 -3 -252 -96 -251 -163 -250 0
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