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Abstract

The chromatic edge-stability number esχ(G) of a graph G is the minimum number of
edges whose removal results in a spanning subgraph G′ with χ(G′) = χ(G) − 1. Edge-
stability critical graphs are introduced as the graphs G with the property that esχ(G−e) <
esχ(G) holds for every edge e ∈ E(G). If G is an edge-stability critical graph with χ(G) = k

and esχ(G) = ℓ, then G is (k, ℓ)-critical. Graphs which are (3, 2)-critical and contain at
most four odd cycles are classified. It is also proved that the problem of deciding whether
a graph G has χ(G) = k and is critical for the chromatic number can be reduced in
polynomial time to the problem of deciding whether a graph is (k, 2)-critical.

Keywords: chromatic edge-stability; edge-stability critical graph; odd cycle; computational
complexity
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1 Introduction

Given a graph G, a function c : V (G) → [k] = {1, . . . , k} such that c(u) 6= c(v) if uv ∈ E(G), is
called a k-coloring of G. The minimum k for which G is k-colorable is the chromatic number of
G, and is denoted by χ(G). The chromatic edge-stability number, esχ(G), of G is the minimum
number of edges of G whose removal results in a graph G1 with χ(G1) = χ(G)− 1.

The chromatic edge-stability number was introduced in [13], where esχ was bounded from
the above for regular graphs in terms of the size of a given graph. Somehow surprisingly, this
natural coloring concept only recently received some of the deserved attention. In [7] the edge-
stability number was compared with the chromatic bondage number and bounded for several
graph operations. In [1], among other results, several bounds on esχ are proved and a Nordhaus-
Gaddum type inequality derived. We also mention here the concept of edge-transversal number
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alias bipartite edge frustration, defined as the smallest number of edges that have to be deleted
from a graph to obtain a bipartite spanning subgraph, see [2, 3, 4, 10, 15, 16]. In particular,
if χ(G) = 3, then the two invariants coincide. A related study is concerned with the minimum
number of edges that an n-vertex graph must have so that one can reduce it to a bipartite
graph by the removal of a fixed number of edges [8].

We say that a graph G is edge-stability critical if esχ(G− e) < esχ(G) holds for every edge
e ∈ E(G). To simplify the writing in this paper, we say that a graph G is (k, ℓ)-critical, where
k, ℓ ≥ 2, if G is an edge-stability critical graph with χ(G) = k and esχ(G) = ℓ. A graph G

is (k, 2)-critical if and only if for every edge e we have χ(G − e) = χ(G) = k and there exists
an edge e′ ∈ E(G) such that χ(G − {e, e′}) = k − 1. From this point of view we recall that a
double-critical graph is a connected graph in which the deletion of any pair of adjacent vertices
decreases the chromatic number by two. The Erdős-Lovász Tihany conjecture asserts that Kk

is the only double-critical k-chromatic graph [5]. For recent results on this problem see [12, 14].
Note that (2, 2)-critical graphs are precisely the graphs with two edges. Hence, if we restrict

to isolate-free graphs, then there are only two (2, 2)-critical graphs, P3 and 2K2. Since isolated
vertices play no role in this study, we assume that all graphs considered in the rest of the paper
are isolate-free.

To formulate our main result, we introduce the following four families of graphs, where
G +H denotes the disjoint union of graphs G and H . Let A = {C2k+1 + C2ℓ+1 | k, ℓ ≥ 1} and
let B be the family of graphs that are obtained from C2k+1 + C2ℓ+1, k, ℓ ≥ 1, by identifying a
vertex of C2k+1 with a vertex of C2ℓ+1. Let xi, yi be the endvertices of the paths Qi, i ∈ [4],
exactly two of the Qi are odd, and at most one of them is of length 1. The family C consists of
the graphs that are obtained from such four paths, by identifying the vertices x1, x2, x3, and
x4 and also identifying the vertices y1, y2, y3, and y4. The family D consist of the following
subdivisions of the graph K4: (i) all the subdivided paths are of odd length, (ii) exactly three
of the paths are odd, and these three paths induce an odd cycle, and (iii) exactly two of the
paths are odd, and these two paths are vertex disjoint. Our main result now reads as follows.

Theorem 1.1 A ∪ B ∪ C ∪ D is the family of (3, 2)-critical graphs (without isolated vertices)
that contain at most four odd cycles.

In the next section we prove Theorem 1.1. In Section 3, we prove that the problem of
deciding whether a graph G is critical for the chromatic number and χ(G) = k can be reduced
in polynomial time to the problem of deciding whether a graph is (k, 2)-critical. We end the
paper with concluding remarks concerning a possible characterization of (3, 2)-critical graphs.
In particular, we find one more family of (3, 2)-critical graphs, and pose a problem whether the
discovered families contain all (3, 2)-critical graphs.

2 Proof of Theorem 1.1

It is clear that graphs with only one odd cycle cannot be (3, 2)-critical. To describe (3, 2)-critical
graphs with exactly two odd cycles, we first show the following general fact about such graphs.

Lemma 2.1 If G is a graph that has exactly two odd cycles, and these cycles share no edge,
then the cycles intersect either in a single vertex or not at all.

Proof. Let C and D be the odd cycles of G and assume that they have more than one common
vertex. Let u and v be vertices from V (C) ∩ V (D) such that dC(u, v) is smallest possible. Let
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P be a u, v-subpath on C of length dC(u, v), and let P ′ be the other u, v-path on C. Let Q be
a u, v-path on D, which is internally disjoint from C. If the length of Q is of the same parity as
the length of P , then Q ∪ P ′ is an odd cycle, different from C and D. Otherwise, if the length
of Q is of different parity as the length of P , then Q ∪ P is a third odd cycle in G, again a
contradiction. �

Theorem 2.2 The (3, 2)-critical graphs that contain exactly two odd cycles are precisely the
graphs of the families A and B.

Proof. Suppose that G contains exactly two odd cycles. If the two odd cycles have a common
edge, then esχ(G) = 1, hence G is not (3, 2)-critical. Thus, by Lemma 2.1, the two cycles are
either disjoint or intersect in a single vertex. There are no other edges in G but the edges of
these two cycles, for otherwise, removing an edge e that is not in any of these two cycles gives
esχ(G− e) ≥ 2, a contradiction. �

Lemma 2.3 If G is a graph that has exactly three odd cycles, then the intersection of every
two odd cycles is either empty or is a path.

Proof. Let C = v1, . . . , vk, v1 (k odd) be one of the three odd cycles in G. Suppose that D is
an odd cycle in G such that the intersection C ∩D is neither empty nor a path. This implies
that C ∩ D is a union of at least two paths on C. We may assume without loss of generality
that one of these paths is induced by vertices v1, . . . , vt, where t ∈ [k − 1]. Hence, there is a
path P between vt and a vertex vr in V (C) \ {v1, . . . , vt}, which is internally in D \ C (that
is, except for its endvertices vt and vr, all edges and eventual other vertices of P are not in
C). Analogously, there is a path P ′ between v1 and a vertex vs of V (C) \ {v1, . . . , vt}, which
is internally in D \C (that is, except for its endvertices v1 and vs all edges and eventual other
vertices of P ′ are not in C). Note that P and P ′ are either disjoint or their intersection consists
only of vertex v1 (if t = 1) or vertex vr (if r = s) or both.

Let Q and Q′ be the two paths on C between vt and vr. If P has the same parity as Q,
then P ∪Q′ is an odd cycle. Otherwise, P ∪Q is an odd cycle. Note that any of these cycles is
distinct from C and D. Now, an analogous argument for P ′ implies that there is an odd cycle
F that involves the path P ′ and a subpath of C between v1 and vs. Clearly, since P and P ′

are distinct, also F is different from P ∪ Q and P ∪Q′. We derive that there are at least four
odd cycles in G, a contradiction. �

Theorem 2.4 There are no (3, 2)-critical graphs that contain exactly three odd cycles.

Proof. Suppose that there is (3, 2)-critical graph G that contains exactly three odd cycles, C,
D, and E. By Lemma 2.3, the intersections of pairs of cycles are either empty or they are paths.
If one of the intersections, say C ∩D, has no edges, then removing an edge of E, which does
not belong to C ∪D, yields a graph G′ with esχ(G

′) > 1, hence G is not (3, 2)-critical. Also, if
there exists an edge e that belongs to all three odd cycles, we infer that χ(G− e) = 2, again a
contradiction. From these two observations we infer that C ∩D is a path P , that C ∩ E is a
path P ′, and that D ∩ E is a path P ′′, where the three paths are non-trivial and are pairwise
edge disjoint. The cycle E is not equal to the cycle C · D, which is the cycle obtained from
C ∪D by removing the internal vertices of P , since C ·D is an even cycle. From this we derive
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that there exists a path Q from a vertex x in C \D to a vertex y in D \ C, all of which edges
and all eventual internal vertices are not in C ∪D. Note that the union of the cycles C and D

and the path Q yields a subgraph of G, which is a subdivision of K4.
To complete the proof we are going to show that the cycles C and D together with the

path Q in any case yield two odd cycles in addition to C and D. For this sake we introduce
some more notation. Let z and z′ be the endvertices of the path P , let P1 be the x, z-path on
C not passing through z′ and let P ′

1 be the x, z′-path on C not passing through z, see Fig. 1.
Similarly, let P2 be the y, z-path on D not passing through z′ and let P ′

2 be the y, z′-path on
D not passing through z. Let pi be the length of Pi, i ∈ [2], and let q be the length of Q. We
distinguish the following cases.

z

z′

x y

PC D

Q

P1 P2

P ′

1 P ′

2

Figure 1: Situation from the proof of Theorem 2.4.

Case 1. q is even.
Assume p1 and p2 are both even. Then Q ∪ P1 ∪ P ∪ P ′

2 is an odd cycle because the length of
the subpath P ∪ P ′

2 is odd. Similarly, Q ∪ P2 ∪ P ∪ P ′

1 is an odd cycle.
Assume p1 and p2 are both odd. Then the same two cycles as in the previous subcase are

odd, but this time because the length of P − P ′

2 is even.
In the last subcase assume that p1 is odd and p2 is even. (The case when p1 is even and

p2 is odd is symmetric.) Now the extra odd cycles we are searching for are Q ∪ P1 ∪ P2 and
Q ∪ P ′

1 ∪ P ′

2. The first cycle is clearly odd, while the second is odd because the cycle C ·D is
even and hence the length of the subpath P ′

1 ∪ P ′

2 is odd.

Case 2. q is odd.
If p1 and p2 are both even, or if p1 and p2 are both odd, then the extra odd cycles are again
Q ∪ P1 ∪ P2 and Q ∪ P ′

1 ∪ P ′

2.
Assume that p1 is odd and p2 is even. (Again the case when p1 is even and p2 is odd is

symmetric.) Then Q∪P ′

1 ∪P ∪P2 are Q∪P1 ∪P ∪P2 are the required odd cycle. For instance,
the latter cycle is odd because each of the subpaths Q, P1 and P ∪ P2 has odd length. �

Lemma 2.5 If G is a (3, 2)-critical graph that contains at least three odd cycles, then there
exist two odd cycles whose intersection is a path with at least one edge.

Proof. Since G is (3, 2)-critical, any two odd cycles intersect in at least two vertices. (Indeed,
if odd cycles C and D intersect in one vertex or not at all, then there exists at least one edge e
which is not in C ∪D, and so esχ(G− e) ≥ 2, a contradiction.) Let C and D be two odd cycles
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in G, and suppose that their intersection is not a path. Among vertices from C ∩ D between
which there is no path lying in C ∩ D, let x and y be chosen to be closest on D. Therefore,
there is an x, y-path P on D, which is internally disjoint with C, and also an x, y-path Q on C,
which is internally disjoint with D. Now, either P ∪Q or (C −Q) ∪ P is an odd cycle; in any
case the intersection of this odd cycle with C is a path. �

Lemma 2.6 If G is a (3, 2)-critical graph that contains at least three odd cycles, then every
two distinct odd cycles intersect in more than one vertex.

Proof. Suppose that D1 and D2 are odd cycles in G, which either intersect in one vertex or
they are disjoint. Since the edges of D1∪D2 induce a graph with exactly two odd cycles, and G

has more than two odd cycles, there must exist an edge e in G, which is not in D1 ∪D2. Now,
G−e still has the cycles D1 and D2 (having no edge in their intersection), and so esχ(G−e) ≥ 2,
a contradiction. �

We denote by K
(4)
2 the multigraph on two vertices connected by four parallel edges, by

K
(2,2,1)
3 the multigraph on three vertices two pairs of which are connected by two parallel edges

and the third pair with a single edge, and by C
(2,1,2,1)
4 the multigraph on four vertices obtained

from the graph C4 by duplicating two of its non-consecutive edges. See Fig. 2.

K
(4)
2 K

(2,2,1)
3 C

(2,1,2,1)
4

Figure 2: Multigraphs K
(4)
2 , K

(2,2,1)
3 , and C

(2,1,2,1)
4

Proposition 2.7 If G is a (3, 2)-critical graph that contains at least three odd cycles, then G

contains as a subgraph a subdivision of one of the multigraphs K
(4)
2 , K4, K

(2,2,1)
3 , or C

(2,1,2,1)
4 .

Moreover, each of the subdivisions contains at least two odd cycles.

Proof. By Lemma 2.5, there exist two odd cycles D1 and D2 in G whose intersection is a
path with at least one edge. We claim that there is a path P connecting two distinct vertices
from D1 ∪ D2, which is internally disjoint with D1 ∪ D2. Since the edges of D1 ∪ D2 induce
only two odd cycles, that is D1 and D2, a third odd cycle D3 must have an edge e, which is
not in D1 ∪ D2. If both endvertices of e are in D1 ∪ D2, then the claim is true, since e itself
induces a desired path P . Suppose exactly one of the endvertices of e = xy is in D1 ∪D2, say
x ∈ V (D1 ∪D2). By Lemma 2.6, D3 intersects with Di, i ∈ [2], in at least two vertices, hence
there exists a path on D3 from y to D1 ∪D2, which confirms the claim in this case. Finally, if
both x and y are not in D1 ∪D2, by Lemma 2.6 we again infer that there is path on D3 from x
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C
(2,1,2,1)
4 K

(2,2,1)
3 K4

K4 K
(4)
2

K
(2,2,1)
3 C

(2,1,2,1)
4

Figure 3: Situations leading to subdivisions of K
(4)
2 , of K

(2,2,1)
3 , of C

(2,1,2,1)
4 , and of K4

to D1 ∪D2 and also a path on D3 from y to D1 ∪D2. These two paths together with the edge
e = xy yield a desired path P .

All the described possibilities for the position of P in D1 ∪D2 are schematically shown in
Fig. 3. We infer that G contains as a subgraph a subdivision of one of the following graphs:

K
(4)
2 , K4, K

(2,2,1)
3 , or C

(2,1,2,1)
4 . Since the odd cycles D1 and D2 are a part of this subdivision,

the last sentence of the statement of the proposition is also clear. �

Theorem 2.8 The (3, 2)-critical graphs, which contain exactly four odd cycles are precisely the
graphs of the families C and D.

Proof. Let G be a (3, 2)-critical graph, which contains exactly four odd cycles D1, D2 , D3,
and D4. We start with the following claim.

Claim. Every edge of G is contained in at least two odd cycles.

Proof (of Claim). Suppose e is an edge which is contained only in one of the cycles, say D4.
Hence, since esχ(G − e) = 1, there exists an edge f in D1 ∩ D2 ∩ D3. By Lemma 2.3, the
intersection of every two odd cycles in G − e is a path. Then, D1 ∩ D2 ∩ D3 is also a path
(containing f), and let us denote it by P . Note that for two of the cycles among D1, D2, D3

their intersection is the path P . Without loss of generality, let D1 ∩ D2 = P . There are two
cases: either D1 (resp. D2) has D1 ∩D3 = P (resp. D2 ∩D3 = P ), or, (D1 ∩D3)− P 6= ∅ and
(D2 ∩D3)− P 6= ∅; see Fig. 4 for the second case.

Case A. D1 ∩D3 = P .
Note that E(D4 ∩ P ) = ∅, that is, E(D4) ∩ E(D1 ∩ D2) = ∅ = E(D4) ∩ E(D1 ∩ D3). Since
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P

D1 D2

D3

Figure 4: Case B from the proof of Claim in the proof of Theorem 2.8

D4 contains an edge which does not lie in D1 ∪D2 ∪D3, there is an edge g in the (even) cycle
(D2 ∪D3)− (D2 ∩D3), which is not in D4. Note that g also does not lie in D1. Now, we claim
that esχ(G − g) ≥ 2. Indeed, if an edge in P is removed from G − g, then D4 is still an odd
cycle in the resulting graph. On the other hand, if an edge in D1 − P is removed from G− g,
then either D2 or D3 remains in the resulting graph (depending on whether g is in D2 or D3).
Otherwise, D1 remains in the resulting graph obtained by the removal of two edges, which is
the final contradiction in this case.

Case B. (D1 ∩D3)− P 6= ∅ and (D2 ∩D3)− P 6= ∅.
Note that ((D1 ∪D2 ∪D3)− ((D1 ∩D3) ∪ (D2 ∩D3))) ∪ P induces an odd cycle. Since G has
exactly four odd cycles, this cycles must be D4. This is in a contradiction to the assumption
that e is an edge of D4, not contained in the other three cycles.

Both cases lead to a contradiction, hence every edge of G indeed lies in at least two odd
cycles, as claimed. (✷)

By Proposition 2.7, since G contains at least three odd cycles, it contains a subgraph, which

is a subdivision of one of the multigraphs K
(4)
2 , K4, K

(2,2,1)
3 , or C

(2,1,2,1)
4 . In all the cases let

G′ denote the respective subgraph, a subdivision of the corresponding multigraph.

Case 1. G contains a subdivision of K
(4)
2 .

Let x and y be the vertices in G, whose degree in G′ is 4, and let Pi, i ∈ [4], be the corresponding
x, y-paths in G′, having lengths pi, respectively. If exactly two of the lengths pi are odd, then
G′ is clearly a (3, 2)-critical graph. If E(G) − E(G′) 6= ∅, then the removal of an edge in
E(G) − E(G′) yields a graph with esχ ≥ 2. Therefore, G = G′, and G is in C. If an integer
pj is of different parity than the other three, then G′ contains exactly three odd cycles, all of
which contain the path Pj . Hence esχ(G

′) = 1. By Claim, every edge of G lies in at least two
odd cycles, thus the fourth odd cycle of G contains all the edges of E(G′) − E(Pj), which is
not possible. Therefore in this case, G is not (3, 2)-critical. In the other two cases for parities
of integers pi, G

′ is bipartite, which is not a relevant case according to Proposition 2.7.

Case 2. G contains a subdivision of K4.
In this case, G′ has six paths Pi with lengths pi that connect vertices of degree 3 in G′, and
there are seven cycles, four of which come from the triangles of K4 and three of which come
from the squares of K4. If G

′ is in D, then note that G′ has exactly four odd cycles, and every
edge of G′ lies in exactly two odd cycles. As in Case 1, we infer that G = G′, and so G is in D.
In other cases of parities of integers pi, G

′ contains exactly four odd cycles, all of which pass
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through the (common) path Pi of odd length. This implies esχ(G
′) = 1, and since G has no

more odd cycles, esχ(G) = 1. (The case when all parities are even is not relevant according to
Proposition 2.7.)

Case 3. G contains a subdivision of K
(2,2,1)
3 .

In this case, G′ consists of five (subdivision) paths, two pairs of which form cycles A and B,
and P is the path not in A ∪B; see the left graph in Fig. 5.

P

A B

Q

Q′

A B

Figure 5: For the case analysis

If both cycles A and B are odd, then by Lemma 2.6, G′ is not (3, 2)-critical. In fact,
esχ(G

′) ≥ 3, and so esχ(G) ≥ 3. If both A and B are even cycles (and G′ is not bipartite), then
G′ has four odd cycles all of which have path P in common. Hence, esχ(G

′) = 1, and since G

has no other odd cycles, also esχ(G) = 1. If one of the two cycles, say A, is odd, and B is even,
then G′ contains exactly three odd cycles, which all have a path R from A in common. Hence
esχ(G

′) = 1. Since every edge of G lies in at least two odd cycles (by Claim), the fourth odd
cycle of G contains all the edges of E(G′)−E(R), which is not possible. Therefore also in this
case, G is not (3, 2)-critical.

Case 4. G contains a subdivision of C
(2,1,2,1)
4 .

In this case, G′ consists of six paths, two pairs of which form cycles A and B, and call the other
two paths by Q and Q′; see the right graph in Fig. 5. If both cycles A and B are odd, we infer
as in the previous case that G is not (3, 2)-critical, using Lemma 2.6. If A and B are both even
cycles, then G′ has four odd cycles, which all go through Q or Q′. Without loss of generality,
assume that all four cycles pass through Q. Hence esχ(G

′) = 1. Since every edge of G lies in at
least two odd cycles, the fourth odd cycle of G contains all the edges of E(G′) − E(Q), which
is not possible. For the final case, assume that A is odd and B is even (the reversed case is
symmetric). Then G′ contains exactly three odd cycles, which are passing through one of the
paths in A. Hence esχ(G

′) = 1, and we again infer that the fourth odd cycle of G contains all
edges of G′ except those of one of the paths in A, which is not possible. �

Theorem 1.1 now follows by combining Theorems 2.2, 2.4, and 2.8.

3 On the complexity of recognizing (k, 2)-critical graphs

In this section, we investigate the computational complexity of the recognition of (k, 2)-critical
graphs for k ≥ 4. It is easy to see that (3, 2)-critical graphs can be efficiently recognized.
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Indeed, for every edge e of a given graph G one has to verify whether G − e is not bipartite
and whether there exists an edge f such that G − {e, f} is bipartite; clearly, a BFS search
can be used to check (non)bipartiteness, which yields a polynomial algorithm for recognizing
(3, 2)-critical graphs. On the other hand, the subsequent result in this section indicates that
the recognition of (k, 2)-critical graphs when k ≥ 4 is likely to be computationally hard.

Given an integer k, k ≥ 3, let F(k,2) denote the class of graphs that are (k, 2)-critical, and
let Fχ,k denote the class of graphs G with χ(G) = k that are critical for the chromatic number.
That is, G is in Fχ,k when χ(G) = k and χ(H) < k for each proper subgraph H of G. Since
we consider only graphs G with no isolated vertices, the latter condition is equivalent to the
statement that χ(G− e) = k− 1 for every edge e in G. For more information on graphs critical
for the chromatic number see Chapter 5 in the book [6], recent papers [9, 11], and references
therein.

In the next result we show that the problem of deciding whether a graph is in Fχ,k can be
reduced in polynomial time to the problem of deciding whether a graph is in F(k,2). In particular,
the existence of a polynomial algorithm for recognizing the graphs from F(k,2) implies that there
exists a polynomial algorithm for recognizing the graphs is in Fχ,k. Since the latter seems very
unlikely, we believe that recognizing the graphs in F(k,2) is computationally hard.

Let G be a connected graph and u ∈ V (G). We denote with Gu ⊲⊳ Kk the graph obtained
from G and K = Kk by identifying u with a vertex of K. Let further Ku be the k-clique of
Gu ⊲⊳ Kk obtained in the construction from K.

Theorem 3.1 Let G be a graph and let u ∈ V (G). If k ≥ 3, then G ∈ Fχ,k if and only if
Gu ⊲⊳ Kk ∈ F(k,2).

Proof. Let G ∈ Fχ,k. Clearly, χ(Gu ⊲⊳ Kk) = k. To prove that Gu ⊲⊳ Kk ∈ F(k,2), consider
two cases for an edge e in Gu ⊲⊳ Kk. If e is in Ku, then clearly χ((Gu ⊲⊳ Kk) − e) = k, since
G is a subgraph of (Gu ⊲⊳ Kk) − e. In addition, for an arbitrary edge f ∈ E(G), we have
χ((Gu ⊲⊳ Kk)− {e, f}) = k − 1, and so esχ(G − e) = 1. The other case for an edge e (that is,
e ∈ E(G)) is similar. Indeed, we have χ((Gu ⊲⊳ Kk)− e) = k, yet for an arbitrary edge f from
Ku we have χ((Gu ⊲⊳ Kk)− {e, f}) = k − 1. Thus, Gu ⊲⊳ Kk ∈ F(k,2).

For the reversed implication, let Gu ⊲⊳ Kk ∈ F(k,2). Since χ((Gu ⊲⊳ Kk) − e) = k for an
edge e ∈ E(Ku), this implies that χ(G) = k. To prove that G is in Fχ,k, let e be an arbitrary
edge in E(G). Note that χ((Gu ⊲⊳ Kk) − e) = k. Since esχ((Gu ⊲⊳ Kk) − e) = 1, there exists
an edge f ∈ E(Gu ⊲⊳ Kk) such that χ((Gu ⊲⊳ Kk) − {e, f}) = k − 1. This edge f cannot lie
in E(G) for otherwise (Gu ⊲⊳ Kk)− {e, f} contains the k-clique Ku as a subgraph, and so the
chromatic number of this graph is k. So f ∈ E(Ku) and hence χ(G− e) = k − 1. �

4 Concluding remarks on (3, 2)-critical graphs

We could find only one more family of (3, 2)-critical graphs. They can be described as specific
subdivisions of a multigraph obtained from a cycle whose edges are duplicated. More precisely,
a graph from E is obtained from the disjoint union of k even cycles C2n1

, . . . , C2nk
as follows.

For each i ∈ [k], let xi and yi be any two distinct vertices of C2ni
, where we only require that

k∑

i=1

dC2ni
(xi, yi)

9



is odd. A graph G ∈ E is obtained by identifying yi with xi+1 for i ∈ [k− 1], and identifying yk
with x1. It is easy to see that graphs G ∈ E are (3, 2)-critical. We pose the following problem
for which we suspect it has a positive answer.

Problem 4.1 Is it true that A ∪ B ∪ C ∪ D ∪ E is the family of (3, 2)-critical graphs (without
isolated vertices)?

Solving Problem 4.1 remains a challenge. One way how to approach it is by using Propo-
sition 2.7, which shows that a (3, 2)-critical graph with at least three odd cycles contains one
of the four subdivisions described in the proposition as a subgraph. Now, assuming that a
(3, 2)-critical graph G has at least five odd cycles, one should examine each of the four possible
subdivisions appearing as a proper subgraph H of G, and each possibility of which are the odd

cycles in these subdivisions. Cases of H being a subdivision of K
(4)
2 and K4 should yield a con-

tradiction, while K
(2,2,1)
3 and C

(2,1,2,1)
4 should either yield a contradiction or that G belongs to

E . The described approach is probably very technical, hence applying some related work from
the literature in an efficent way would be desirable. Among the known results about smallest
sets of edges that hit all odd cycles we encountered papers of Berge and Reed [2] and Král and
Voss [10] whose main concern are planar graphs, and cannot be applied for this purpose.
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