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The formula for Turán number of spanning linear forests
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Abstract

Let F be a family of graphs. The Turán number ex(n;F) is defined to be the

maximum number of edges in a graph of order n that is F -free. In 1959, Erdős and

Gallai determined the Turán number of Mk+1 (a matching of size k + 1) as follows:

ex(n;Mk+1) = max

{(

2k + 1

2

)

,

(

n

2

)

−

(

n− k

2

)}

.

Since then, there has been a lot of research on Turán number of linear forests.

A linear forest is a graph whose connected components are all paths or isolated

vertices. Let Ln,k be the family of all linear forests of order n with k edges. In this

paper, we prove that

ex(n;Ln,k) = max

{(

k

2

)

,

(

n

2

)

−

(

n−
⌊

k−1

2

⌋

2

)

+ c

}

,

where c = 0 if k is odd and c = 1 otherwise. This determines the maximum number

of edges in a non-Hamiltonian graph with given Hamiltonian completion number and

also solves two open problems in [22] as special cases.

Moreover, we show that our main theorem implies Erdős-Gallai Theorem and also

gives a short new proof for it by the closure and counting techniques. Finally, we

generalize our theorem to a conjecture which implies the famous Erdős Matching

Conjecture.

Mathematics Subject Classification (2010): 05C50, 05C45; 05C90
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1 Introduction

A graph G is a pair G = (V,E), where V is a finite vertex set and E is a family of 2-element

subsets of V . Let F be a family of graphs. A graph G is called F-free if for any F ∈ F ,

there is no subgraph of G isomorphic to F . The Turán number ex(n;F) is defined to be

the maximum number of edges in a graph on n vertices that is F-free. Turán introduced

this problem in [21], and we recommend [12,20] for surveys on Turán problems for graphs

and hypergraphs.

A matching M in a graph G is a collection of disjoint edges of G. We denote by ν(G)

the number of edges in a maximum matching of G. For an integer s, Ks, Ms and Es
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denote the complete graph on s vertices, the matching of s edges, and the empty graph

on s vertices, respectively. The symbol “∨” means the join operation. In 1959, Erdős

and Gallai [4] determined the Turán number ex(n;Mk+1). The constructions K2k+1 and

Kk ∨ En−k show that the bound given below is tight.

Theorem 1.1 (Erdős and Gallai [4]). Let G be a graph on n vertices. If ν(G) ≤ k, then

e(G) ≤ max

{(

2k + 1

2

)

,

(

n

2

)

−

(

n− k

2

)}

.

A matching can also be viewed as a forest of paths with length one. Let Pt be a

path on t vertices and k · Pt be k vertex-disjoint copies of Pt. Confirming a conjecture

of Gorgol [10], Bushaw and Kettle [2] determined the exact values of ex(n; k · Pt) for

n appropriately large relative to k and t. Later, Yuan and Zhang [23] determined the

values of ex(n; k · P3) and characterized all extremal graphs for all k and n. Denote by

L(s1, . . . , sk) a linear forest consisting of k vertex-disjoint paths with s1, . . . , sk edges.

Lidicky, Liu and Palmer [16] determined Turán number ex(n;L(s1, . . . , sk)) when n is

sufficiently large. But, the number of vertices in the forbidden linear forest is independent

of the order n.

Compared with the shortest path, i.e., an edge, the possible longest path is a Hamil-

tonian path. Ore [17] proved that ex(n;Cn) =
(n−1

2

)

+1, where Cn is the cycle of order n.

By Ore’s theorem, it is easy to prove that ex(n;Pn) =
(n−1

2

)

. The Hamiltonian completion

number of a graph G, denoted by h(G), is defined to be the minimum number of edges

we have to add to G to make it Hamiltonian. This type of parameter was introduced by

Goodman and Hedetniemi in the 1970s, and was studied in the algorithmic and structural

aspects, see [8, 9, 13]. In the view of extremal graph theory, a natural generalization of

Ore’s theorem is the following.

Problem 1.2. What is the maximum number of edges in a graph G on n vertices with

h(G) ≥ k ≥ 1?

Throughout the left part, we define a linear forest to be a graph consisting of vertex-

disjoint paths or isolated vertices. This type of linear forests is also well studied (see Hu

et al. [11]). Let Ln,≥k
1 be the set of all linear forests of order n with at least k edges, and

Ln,k be the set of all linear forests of order n with exactly k edges. By the definitions, one

can see that “Ln,≥k-free” is equivalent to “Ln,k-free”, and so ex(n;Ln,≥k) = ex(n;Ln,k).

In [22], the second author and Yang have pointed out that the solution to Problem 1.2 is

equivalent to determining the Turán number ex(n;Ln,k). In the same paper, the authors

proved that when n ≥ 3k,

ex(n;Ln,n−k) =

(

n− k

2

)

+O(k2).

They also asked the Turán number ex(n;Ln,k) for some special cases.

1The symbol used here is somewhat different from the one in [22]. But we think it is more natural.
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Problem 1.3 (Problem 4.1 in [22]). Determine the exact value of ex(n;Ln,n−k+1) for

k = o(n).

Problem 1.4 (Problem 4.2 in [22]). Let c be a constant satisfying 0 < c < 1. Determine

the value of ex(n;Ln,n−k+1) for k = cn.

In this paper, we completely determine the Turán number ex(n;Ln,k), which solves all

these problems above.

Theorem 1.5. For any integers n and k with 1 ≤ k ≤ n− 1, we have

ex(n;Ln,k) = max

{(

k

2

)

,

(

n

2

)

−

(

n−
⌊

k−1
2

⌋

2

)

+ c

}

,

where c = 0 if k is odd, and c = 1 otherwise.

We first show that Theorem 1.5 implies Theorem 1.1. Let G be a graph on n vertices

with ν(G) ≤ k. Obviously, a linear forest with at least 2k+1 edges has a matching of size

at least k + 1. Thus, G is Ln,2k+1-free. Therefore, by Theorem 1.5 we have

e(H) ≤ ex(n;Ln,2k+1) = max

{(

2k + 1

2

)

,

(

n

2

)

−

(

n− k

2

)}

.

The second immediate corollary is Ore’s theorem by putting k = n − 1 in Theorem

1.5.

Theorem 1.6 (Ore [17]). ex(n;Pn) = ex(n;Ln,n−1) =
(n−1

2

)

.

Notations Let G be a graph. For any S ⊂ V (G), let e(S) be the number of edges with

two endpoints in S. Let S̄ = V (G) − S and e(S, S̄) be the number of edges with one

endpoint in S and the other endpoint in S̄. For any x ∈ V (G) and S ⊂ V (G), let dS(x)

be the number of neighbours of x in S. Let H1 and H2 be two disjoint graphs. The join

of H1 and H2, denoted by H1 ∨ H2, is defined as V (H1 ∨ H2) = V (H1) ∪ V (H2) and

E(H1 ∨H2) = E(H1) ∪ E(H2) ∪ {xy : x ∈ V (H1), y ∈ V (H2)}.

The rest of the paper is organized as follows. In Section 2, we determine the exact

Turán number of Ln,k. In Section 2.1, we give a new proof of Theorem 1.1. In the last

section, we give a conjecture which implies the famous Erdős Matching Conjecture.

2 The exact Turán number of Ln,k

Our proof of Theorem 1.5 is mainly based on the closure technique, which is initiated

by Bondy and Chvátal [3] in 1976. But, the key ingredient is motivated by the counting

technique from [15]. For more references on closure technique, we refer to [14,15,18,19].

Let G be a graph of order n, P a property defined on G, and k a positive integer. A

property P is said to be k-stable, if wheneverG+uv has the property P and dG(u)+dG(v) ≥

k, then G itself has the property P . We define the k-closure of G, denoted by clk(G), to

be the graph H obtained by iteratively joining non-adjacent vertices with degree sum at
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least k until dH(u) + dH(v) < k for all uv /∈ E(H). Then it is easy to see that: if P is

k-stable and clk(G) has P then G has P . Since the Turán number ex(n;F) is defined to

be the maximum number of edges in all graphs with the property F-free, if “F-free” is

k-stable for some F , then we can determine ex(n;F) by finding the maximum number of

edges in all k-closures. We call this approach the closure technique for Turán problems. In

the rest of this section, we determine the Turán number of Ln,k by this approach exactly.

2.1 The property Ln,k-free is k-stable

In this subsection, we prove that the property Ln,k-free is k-stable. For simplicity, we view

isolated vertices as paths of length zero, whose end vertices are the same.

Lemma 2.1 (Wang and Yang [22]). Suppose that G is a graph that contains a linear forest

F with k − 1 edges. If u and v are vertices that are endpoints of different paths in F and

d(u) + d(v) ≥ k, then G contains a linear forest with k edges.

Lemma 2.2. Let G be a graph on n vertices. Suppose that u, v ∈ V (G) with d(u)+d(v) ≥

k. Then G is Ln,k-free if and only if G+ uv is Ln,k-free.

Proof. If G+uv is Ln,k-free, then clearly G is Ln,k-free. Therefore we only need to verify

the other direction.

Suppose G+ uv is not Ln,k-free. Then G+ uv contains a linear forest F with k edges.

If uv is not in F , then F is also a linear forest in G, which contradicts the fact that G is

Ln,k-free. If uv is in F , then F − uv is a linear forest with k − 1 edges in G. Moreover, u

and v are endpoints of different paths in F −uv. Since d(u)+ d(v) ≥ k, by Lemma 2.1 we

can find a linear forest with k edges in G, completing the proof.

2.2 The proof of Turán number of Ln,k

Kk

v1

v2

v3

vn−k

(a) Kk ∪ En−k

K(k−1)/2

v1

v2

v3

vn−(k−1)/2

(b) K(k−1)/2 ∨ En−(k−1)/2 for odd k

Kk/2

v1

v2

v3

vn−k/2+1

(c) Kk/2−1 ∨ (En−k/2−1 ∪K2) for even k

Fig. 1. Extremal graphs for the Turán number of Ln,k.

Proof of Theorem 1.5. It is easy to see that when k is odd, Kk ∪ En−k and K(k−1)/2 ∨

En−(k−1)/2 are two extremal graphs for the Turán number of Ln,k, as shown in Fig. 1.

(a) and (b). When k is even, Kk ∪En−k and Kk/2−1 ∨ (En−k/2−1 ∪K2) are two extremal

graphs for the Turán number of Ln,k, as shown in Fig. 1. (a) and (c). Thus, we only need

to show that the result is the upper bound.

Let G be an Ln,k-free graph on n vertices and G′ the k-closure of G. By Lemma 2.2,

G′ is also Ln,k-free. Let C be the set of all vertices in G′ with degree at least ⌈k2⌉. Then

4



C forms a clique in G′. Let S be the set of vertices in a maximal clique that contains C

in G′. Denote s = |S|. It is easy to see that s ≤ k; otherwise G′ contains a linear forest

with k edges, which contradicts the fact that G′ is Ln,k-free.

Let S̄ = V (G′) − S. For any x ∈ S̄, we want to give an upper bound on dG′(x). On

one hand, since x is not in C , we have dG′(x) ≤ ⌈k2⌉ − 1. On the other hand, since S is a

maximal clique and x is not in S, there must exist a vertex v ∈ S such that xv /∈ E(G′).

It follows that dG′(x) + dG′(v) ≤ k − 1. As dG′(v) ≥ s − 1, we have that dG′(x) ≤ k − s.

Consequently, dG′(x) ≤ min{⌈k2⌉ − 1, k − s}. The proof splits into two cases, depending

on the size of s.

Case 1. s ≤ ⌈k−1
2 ⌉.

For any x ∈ S̄, it follows that dG′(x) ≤ ⌈k2⌉ − 1. Since S is a maximal clique, we have

dS(x) ≤ s − 1. The following equality depends on a trick to estimate the edges outside

the clique S, which will be used for several times in the following:

e(S̄) + e(S̄, S) =
∑

x∈S̄

dS(x) +
1

2

∑

x∈S̄

dS̄(x)

=
1

2

∑

x∈S̄

dS(x) +
1

2

∑

x∈S̄

(dS(x) + dS̄(x))

=
1

2

∑

x∈S̄

(dS(x) + dG′(x)) .

Thus, the number of edges in G′ can be bounded as follows:

e(G′) = e(S) + e(S̄) + e(S̄, S)

= e(S) +
1

2

∑

x∈S̄

(dS(x) + dG′(x))

≤

(

s

2

)

+
1

2

(

s− 1 +

⌈

k

2

⌉

− 1

)

(n− s).

Let f(s) =
(

s
2

)

+ 1
2

(

s− 1 +
⌈

k
2

⌉

− 1
)

(n− s). Then

f ′(s) =
n+ 1

2
−

1

2

⌈

k

2

⌉

> 0.

It follows that the function f(s) is monotonically increasing. Thus we get

e(G′) ≤ f

(⌈

k − 1

2

⌉)

=

(
⌈

k−1
2

⌉

2

)

+

(

1

2

(⌈

k

2

⌉

+

⌈

k − 1

2

⌉)

− 1

)(

n−

⌈

k − 1

2

⌉)

.

If k is odd, then

e(G′) ≤

(k−1
2

2

)

+

(

k

2
− 1

)(

n−
k − 1

2

)

<

(k−1
2

2

)

+
k − 1

2

(

n−
k − 1

2

)

.

If k is even, then

e(G′) ≤

(k
2

2

)

+

(

k

2
− 1

)(

n−
k

2

)

=

(k
2 − 1

2

)

+

(

k

2
− 1

)(

n−
k

2
+ 1

)

.
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Case 2. ⌈k+1
2 ⌉ ≤ s ≤ k.

It follows that dG′(x) ≤ k − s for x ∈ S̄. Therefore,

e(G′) ≤ e(S) +
∑

x∈S̄

dG′(x) ≤

(

s

2

)

+ (k − s)(n− s).

Let f(s) =
(

s
2

)

+ (k − s)(n− s). Since f ′′(s) = 3 ≥ 0, f(s) is a convex function. Thus, we

can bound the number of edges of G′ as follows:

e(G′) ≤ max

{

f(k), f

(⌈

k + 1

2

⌉)}

= max

{(

k

2

)

,

(
⌈

k+1
2

⌉

2

)

+

⌊

k − 1

2

⌋(

n−

⌈

k + 1

2

⌉)}

.

If k is odd, then

e(G′) ≤ max

{(

k

2

)

,

(k+1
2

2

)

+
k − 1

2

(

n−
k + 1

2

)}

= max

{(

k

2

)

,

(k−1
2

2

)

+
k − 1

2

(

n−
k − 1

2

)}

.

If k is even, then

e(G′) ≤ max

{(

k

2

)

,

(k
2 + 1

2

)

+

(

k

2
− 1

)(

n−
k

2
− 1

)}

= max

{(

k

2

)

,

(k
2 − 1

2

)

+

(

k

2
− 1

)(

n−
k

2
+ 1

)

+ 1

}

.

Combining the two cases above, we complete the proof of Theorem 1.5.

3 A short proof of Turán number of matchings

In [1], Akiyama and Frankl gave a short proof of Theorem 1.1 by using the shifting method.

Here we shall give a short and new proof for it. Our motivation is to focus on the powerful

closure technique.

The proof of the following lemma is easy and short, see [3].

Lemma 3.1 (Bondy and Chvátal [3]). Let G be a graph on n vertices. For any two

nonadjacent vertices u, v ∈ V (G), if whenever ν(G+uv) = k+1 and dG(u)+dG(v) ≥ 2k+1,

then ν(G) = k + 1.

A new proof of Theorem 1.1. Let G be a graph on n vertices with ν(G) = k and G′ the

(2k + 1)-closure of G. By Lemma 3.1, we have ν(G′) = k. Let C be the set of all vertices

in G′ with degree at least k + 1, and let S be the set of vertices in a maximal clique that

contains C in G′. Denote s = |S|. Obviously, s ≤ 2k + 1; otherwise v(G′) ≥ k + 1, a

contradiction.

Let S̄ = V (G′) − S. For any x ∈ S̄, on one hand, dG′(x) ≤ k since x is not in C.

On the other hand, as S is a maximal clique and x /∈ S, there exists a vertex v ∈ S

6



such that xv /∈ E(G′). It follows that dG′(x) + dG′(v) ≤ 2k. As dG′(v) ≥ s − 1, we have

dG′(x) ≤ 2k− s+1. Consequently, dG′(x) ≤ min{k, 2k− s+1}. The proof is divided into

two cases.

Case 1. s < k + 1.

Recall that dG′(x) ≤ k. For any x ∈ S̄, since S is a maximal clique, we also have

dS(x) ≤ s− 1. Thus

e(G′) = e(S) + e(S̄) + e(S̄, S) ≤

(

s

2

)

+
1

2

∑

x∈S̄

(dS(x) + dG′(x)) ≤

(

s

2

)

+
1

2
(s− 1 + k)(n − s).

Let f(s) =
(

s
2

)

+ 1
2(s− 1 + k)(n− s). As f(s) is monotonically increasing, we obtain

e(G′) < f(k + 1) =

(

k

2

)

+ k(n− k).

Case 2. k + 1 ≤ s ≤ 2k + 1.

Recall dG′(x) ≤ 2k − s+ 1 for x ∈ S̄. Thus

e(G′) ≤ e(S) +
∑

x∈S̄

dG′(x) ≤

(

s

2

)

+ (2k − s+ 1)(n − s).

Let f(s) =
(

s
2

)

+ (2k − s+ 1)(n − s). As f(s) is a convex function, we can obtain

e(G′) ≤ max {f(2k + 1), f(k + 1)} = max

{(

2k + 1

2

)

,

(

k

2

)

+ k(n− k)

}

.

Combining these two cases, we complete the proof of Theorem 1.1.

4 Concluding remarks

Let M
(r)
k be an r-graph with exact k disjoint edges. The famous Erdős Matching Conjec-

ture can be expressed as a Turán function as follows:

exr(n;M
(r)
k+1) = max

{(

rk + r − 1

r

)

,

(

n

r

)

−

(

n− k

r

)}

.

The case k = 1 is the classic Erdős-Ko-Rado Theorem [5]; the case r = 1 is trivial and the

case r = 2 is the Erdős-Gallai Theorem [4]. The current best record on Erdős Matching

Conjecture is due to Frankl, see [7]. For references on this topic, see ones within [7].

Define a tight linear forest to be an r-graph consisting of vertex-disjoint tight paths or

isolated vertices. When r = 2, it reduced to the linear forest in graphs. Let Lr
n,k be the

family of all tight linear forests of order n with at least k edges.

We can view the tight linear forest as an intermediate concept between matching and

Hamilton tight cycle. Motivated by this fact, the second author proposed the following

conjecture which implies Erdős Matching Conjecture.

Conjecture 4.1 (Wang). Let Lr
n,k be the set of all r-linear forests of order n with at least

k edges. For k = mr + 1 and m ≥ 1,

exr(n;L
(r)
n,k) = max

{(

k + r − 2

r

)

,

(

n

r

)

−

(

n− (k − 1)/r

r

)}

.
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Our main result in this paper shows that Conjecture 4.1 is true for r = 2.
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