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Between clique-width and linear clique-width

of bipartite graphs∗

Bogdan Alecu, Mamadou Moustapha Kanté, Vadim Lozin, Viktor Zamaraev

Abstract

We consider hereditary classes of bipartite graphs where clique-width is bounded,
but linear clique-width is not. Our goal is identifying classes that are critical with
respect to linear clique-width. We discover four such classes and conjecture that this
list is complete, i.e. a hereditary class of bipartite graphs of bounded clique-width that
excludes a graph from each of the four critical classes has bounded linear clique-width.

1 Introduction

Clique-width is a graph parameter which is of primary importance in algorithmic graph
theory, because many problems in this area that are generally NP-hard can be solved
efficiently when restricted to graphs of bounded clique-width. This parameter generalizes
tree-width in the sense that bounded tree-width implies bounded clique-width but not
necessarily vice versa.

Recently, many classes of graphs have been shown to be of bounded clique-width, and
for many others, the clique-width was shown to be unbounded, see e.g. [7, 8, 10, 22, 24].
Most of these studies concern hereditary classes, i.e. classes closed under taking induced
subgraphs. This restriction is justified by the fact that the clique-width of a graph G
can never be smaller than the clique-width of an induced subgraph of G. An important
feature of hereditary classes is that they admit a description in terms of minimal forbidden
induced subgraphs, i.e. minimal graphs that do not belong to the class.

In a similar way, in the study of clique-width of particular importance are minimal
classes of graphs of unbounded clique-width. The first two hereditary classes of this type
have been identified in [20] and only recently it was shown in [10] that the number of such
classes is infinite. What is interesting is that all the classes found in [10] and in [20] are
also minimal hereditary classes of unbounded linear clique-width.

Linear clique-width is a restricted version of clique-width and the relationship between
these two parameters is similar to the relationship between tree-width and path-width.
The notion of linear clique-width became an important ingredient in the proof of hardness
of computing clique-width [12] and received considerable attention in recent years in the
literature [2, 9, 16, 17, 18]. Nevertheless, our knowledge of this parameter is still restricted.
In particular, we know very little about the behaviour of this parameter on graphs of
bounded clique-width. In this respect, the recent paper [9] is of particular interest. It

∗Some results presented in this paper appeared in the extended abstract [3] published in the proceedings
of the 29th International Workshop on Combinatorial Algorithms, IWOCA 2018.
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deals with the class of complement reducible graphs, also known as cographs, where the
clique-width is known to be bounded, while the linear clique-width is not [16]. The authors
of [9] show that there exist precisely two minimal hereditary subclasses of cographs of
unbounded linear clique-width. These two subclasses are complement to each other and
are known in the literature under various names, such as trivially perfect [14] or quasi-
threshold graphs [26].

In Section 3, we study a bipartite analogue of cographs, known as bi-complement
reducible graphs [13] (bi-cographs for short), where the clique-width is also known to be
bounded. We prove that the linear clique-width is unbounded in the class of bi-cographs
and, similarly to [9], show that there exist precisely two minimal hereditary subclasses of
bi-cographs of unbounded linear clique-width. However, our solution differs from that in
[9] in two important aspects.

Firstly, the two classes we discover in this paper had never been studied before and
are of independent interest. We characterize them in terms of minimal forbidden induced
subgraphs.

Secondly, and most importantly, we develop an entirely new approach to prove our
results. In particular, to prove unboundedness of clique-width we introduce an auxiliary
graph parameter which bounds the linear clique-width from below and provides a more
flexible tool to prove results of this type. To show minimality of our classes we develop
a straightforward approach, which avoids the notion of well-quasi-ordering used by the
authors of [9]. Their approach is applicable only to classes well-quasi-ordered by induced
subgraphs, which is not the case, for instance, for forests, where clique-width is bounded
and linear clique-width is not, similarly to cographs and bi-cographs.

In the presence of infinite antichains, minimal classes may not exist, and this is precisely
what happens in the class of forests, as we show in Section 4. To overcome this difficulty,
we apply the notion of boundary classes, which is a relaxation of the notion of minimal
classes. We identify a subclass S of forests, which is boundary for linear clique-width in the
sense that a subclass X of forests defined by finitely many forbidden induced subgraphs
has unbounded linear clique-width if and only if S is a subclass of X.

In Section 5 we review various other classes of bipartite graphs of bounded clique-width
with the aim of identifying other obstacles for bounding linear clique-width. Our analysis
suggests a conjecture that in the world of bipartite graphs of bounded clique-width the
two subclasses of bi-cographs, the class S and the class of bipartite complements of graphs
in S are the only critical classes for bounding linear clique-width.

2 Preliminaries

This section introduces basic terminology and notation used in the paper, as well as a
number of preliminary results.

2.1 Graphs

Throughout the paper, we will be working with undirected graphs, with no loops or
multiple edges. The vertex set and the edge set of a graph G are denoted by V (G) and
E(G), respectively. For a vertex x ∈ V (G) we denote by N(x) the neighbourhood of x,
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i.e. the set of vertices of G adjacent to x. A subgraph of G induced by a subset of vertices
U ⊆ V (G) is denoted by G[U ]. We use the following notation for specific graphs:

• Pn is the chordless path on n vertices.

• Cn is the chordless cycle on n vertices.

• Kn,m is the complete bipartite graph with parts of size n and m. The graph K1,n is
known as a star.

• The domino is the graph obtained from a C6 by adding an edge between one pair of
antipodal vertices.

• Sunn is the graph obtained from a Cn by adding a pendant vertex to each vertex of
the cycle. Sun4 is shown in Figure 1.

• Si,j,k is the graph represented in Figure 1.
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Figure 1: The graphs Si,j,k (left) and Sun4 (right)

We will be studying bipartite graphs in particular. We will distinguish between coloured
and uncoloured classes of bipartite graphs. In a coloured class, all bipartite graphs come
with a bipartition of their vertex set into two independent sets B and W that we will refer
to as black and white vertices, respectively.

For a coloured bipartite graph G = (B,W,E), we define the bipartite complement of G
to be the coloured bipartite graph G̃ = (B,W,E′), where for any two vertices x ∈ B and
y ∈ W we have xy ∈ E if and only if xy 6∈ E′. Also, given two coloured bipartite graphs
G1 = (B1,W1, E1) and G2 = (B2,W2, E2), we denote by

• G1∪G2 the disjoint union of G1 and G2, i.e. G1∪G2 = (B1∪B2,W1∪W2, E1∪E2).

• G1 ×G2 the bipartite join of G1 and G2, i.e. the bipartite complement of G̃1 ∪ G̃2.
With a slight abuse of notation, when G1 consists of only one black vertex v, we will
write v ×G2 instead of G1 ×G2.

To each coloured class corresponds an uncoloured class that we obtain by simply forgetting
the colouring of all the graphs.
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2.2 Linear clique-width

The linear clique-width of a graph G, denoted by lcw(G), is the smallest number of labels
needed to construct G by means of the following three operations:

• add a new vertex with label i (we denote this operation simply by i),

• add all edges between vertices labelled i and vertices labelled k, for i 6= k (denoted
by i× k),

• relabel vertices labelled i to k (denoted by i→ k).

When talking about the linear clique-width of a coloured graph, we mean the linear
clique-width of the graph we obtain by forgetting the colouring.

A linear clique-width expression A for a graph G is an ordered sequence of these three
operations that constructs G. For instance, the following sequence constructs a path Pk
with three different labels, showing that lcw(Pk) ≤ 3 for any value of k:

1, 2, 1× 2, (3, 2× 3, 2→ 1, 3→ 2)k−2. (1)

This example can be extended to S2,2,2-free trees, also known as caterpillars, without
increasing the number of labels. We record this fact together with one more useful obser-
vation in the following claim, the proof of which is left to the reader as an exercise.

Claim 1. The linear clique-width of S2,2,2-free trees is at most 3 and the linear clique-width
of the graph Si,j,k is at most 5 for any values of i, j, k.

2.3 Classes of graphs

All classes in this paper are hereditary, i.e. closed under taking induced subgraphs. Ev-
ery hereditary class X can be characterized by a set M of minimal forbidden induced
subgraphs, in which case we say that graphs in X are M -free and write X = Free(M).

One of the main objects in this paper is the class of bi-complement reducible graphs
that have been introduced in [13] and can be defined as follows.

Definition 1. A bi-complement reducible graph (or bi-cograph for short) is a bipartite
graph defined recursively as follows:

(i) A graph on a single black or white vertex is a bi-cograph.

(ii) If G1, G2 are bi-cographs, then so is their disjoint union G1 ∪G2.

(iii) If G is a bi-cograph, then so is its bipartite complement G̃.

It is not difficult to see that (iii) in the above definition could be replaced by:

(iii’) If G1, G2 are bi-cographs, then so is their bipartite join G1 ×G2.

In [13], an induced subgraph characterisation for bi-cographs is also shown:

Proposition 1. A bipartite graph is a bi-cograph if and only if it is (P7, S1,2,3, Sun4)-free.
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2.4 Lemmas

Lemma 1. If G is a bipartite graph, then lcw(G̃) ≤ 2 · lcw(G) + 1.

Proof. We start with a linear clique-width expression A for G that uses lcw(G) labels,
then modify it to obtain an expression A′ using 2 · lcw(G) labels such that each label is
reserved for only one part of the graph.

We now claim that we can modify A′ to find a linear clique-width expression that uses
2·lcw(G)+1 labels, in which the additional label i is reserved for inserting new vertices, and
such that vertices are connected to all of their already constructed neighbours immediately
as they are inserted. Indeed, say that a new vertex v is inserted in A′ with label l. Whether
an already constructed vertex w is a neighbour of v only depends on its label, so we can
say that the set of already constructed neighbours of v is a union

⋃
k∈Λ{w : w has label

k}, where Λ is a set of labels. In A′, the label l might already be in use, so if we tried to
connect v to all its already constructed neighbours right away, we might inadvertently add
some extra edges (that do not appear in G) to the already constructed graph, between
vertices labelled l and some other vertices. However, using a new, reserved label to insert
v allows us to go around this. We can immediately connect it to all of its neighbours
without changing the already constructed graph, and afterwards change the reserved label
to the original label used for inserting v in A′. Proceeding inductively allows us to modify
A′ to an expression giving G with the desired properties.

A linear clique-width expression for G̃ can be obtained from this modified expression
by instead connecting newly inserted vertices to their non-neighbours in G of opposite
colour that have already been inserted.

For a class of graphs Y , we denote by [Y ]k the class of graphs G such that G − U
belongs to Y for a subset U ⊆ V (G) of cardinality at most k.

Lemma 2. If the linear clique-width of graphs in a class Y is bounded by p, then the
linear clique-width of graphs in [Y ]k is at most p+ k + 1.

Proof. Let G ∈ [Y ]k and let U be a set of at most k vertices of G such that G − U ∈ Y .
Let F be a linear clique-width expression for G[U ] that uses labels from the set {1, . . . , k}
such that all vertices are assigned distinct labels that never change. Let F ′ be a linear
clique-width expression of G− U that uses labels from the set {k + 1, . . . , k + p}. Now a
desired expression for G consists of two parts, where the first part is F and the second part
is obtained from F ′ as follows. Whenever a new vertex v with label l is created in F ′ we
instead create vertex v with a special label k + p+ 1, then connect v to all its neighbours
in U , and relabel v to l. Clearly, this is a linear clique-width expression of G and it uses
at most p+ k + 1 labels

One more lemma deals with the notion of modular decomposition. To define this
notion, consider a graph G, a subset U ⊂ V (G) and a vertex v ∈ V (G) not in U . We say
that v distinguishes U if it has both a neighbour and a non-neighbour in U . A module in
G is a subset of vertices indistinguishable by the vertices outside of the subset. A module
is trivial if it consists of a single vertex or includes all the vertices of the graph. A graph
G is prime if every module of G is trivial.

It is known that the clique-width of graphs in a hereditary class X is bounded if
and only if it is bounded for prime graphs in X. Unfortunately, this is not true for linear
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clique-width, as the example of cographs shows, because this class contains only two prime
graphs: K2 and its complement. However, if we restrict ourselves to bipartite graphs, the
reduction to prime graphs is valid as well.

Lemma 3. Let X be a hereditary class of bipartite graphs. The linear clique-width is
bounded for graphs in X if and only if it is bounded for prime graphs in X.

Proof. It is not difficult to see that a bipartite graph G with at least three vertices is
prime if and only if it is connected and has no twin vertices, i.e. vertices with the same
neighbourhood. Clearly, adding twins to some vertices of G does not increase its linear
clique-width. Finally, it is not difficult to see that the linear clique-width of a discon-
nected graph does not exceed the maximum of the linear clique-widths of its connected
components plus 1. This proves the lemma.

3 Linear clique-width of bi-cographs

3.1 Bi-quasi-threshold graphs

The class of bi-quasi-threshold graphs is a subclass of bi-cographs:

Definition 2. A (coloured) bi-quasi-threshold graph is a bipartite graph defined induc-
tively as follows:

i. A graph on a single black or white vertex is bi-quasi-threshold.

ii. If G1, G2 are bi-quasi-threshold, then so is their disjoint union G1 ∪G2.

iii. If G is a bi-quasi-threshold graph, then the bipartite join of G with a single black
vertex is a bi-quasi-threshold graph.

Remark. Note the asymmetry in this definition: we do not allow white dominating
vertices while constructing a bi-quasi-threshold graph. However, once we have finished
constructing it, we can forget the colouring, thus getting the uncoloured class of bi-quasi-
threshold graphs. We will refer to both notions as simply bi-quasi-threshold graphs, but
unless otherwise specified, we will be working with the coloured version.
Throughout the remainder of the paper, we denote by L the class of all bi-quasi-threshold
graphs.

We now give a forbidden induced subgraph characterisation of the class L. We start
with a characterisation of coloured graphs in L.

Lemma 4. The following are equivalent for a coloured bipartite graph G:

(a) G ∈ L;

(b) G contains no induced P5 with white centre;

(c) any two black vertices of G have either comparable or disjoint neighbourhoods.

Proof.

(a)⇒(b): A P5 with white centre is not in L, since it is not a disjoint union, and it does
not have a black dominating vertex. Moreover, from the definition, L is hereditary, hence
no graph in L contains a P5 with white centre.
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(b)⇒(c): If two black vertices x and y have incomparable and non-disjoint neighbourhoods,
then x, y together with a private neighbour of each and with a common neighbour induce
a P5 with white centre.

(c)⇒(a): We want to show that, assuming (c), either G is disconnected, or it has a black
dominating vertex (then use induction, and the fact that the condition (c) is hereditary).
Suppose G is connected, and let b be a black vertex with a maximal (under set inclusion)
neighbourhood. Let w be a white vertex non-adjacent to b (which exists because we
assume that b is not a black dominating vertex), and consider a shortest path P from b to
w (which exists, since G is connected). Write its vertices as b = b0, w1, b1, . . . , bk−1, wk = w
(where the vertices wi are white, and the vertices bi are black). If k > 1, then w1 is a
common neighbour to b and b1, hence by (c) and maximality of the neighbourhood of b,
N(b1) ⊆ N(b). In particular, w2 and b are adjacent, and we have a shorter path between b
and w, contradicting the choice of P . This shows k = 1, i.e. b and w are in fact adjacent,
so b must be a dominating vertex.

Forgetting the colours, we obtain the class of uncoloured bi-quasi-threshold graphs,
which admits the following characterisation in terms of minimal forbidden induced sub-
graph.

Theorem 1. A bipartite graph G is bi-quasi-threshold if and only if G is (P6, C6, domino,
Sun4)-free.

Proof. The “only if” direction comes from the fact that any colouring of one of the four
graphs in black and white contains a P5 with white centre, hence by the previous lemma,
none of the four graphs is bi-quasi-threshold.

Conversely, suppose G is (P6, C6, domino, Sun4)-free. We show that there is a colouring
of G in black and white such that there is no P5 with white centre. This is clear if G is
P5-free, so assume it is not. Without loss of generality, we can assume, in addition, that
G is connected. Now find a P5 induced by a, b, c, d and e such that the neighbourhood of
its middle vertex is maximal among all P5’s. Denote by S the part of G containing a, c
and e, and by T the other part.

Let x ∈ T be a neighbour of a. Then x is not a neighbour of e, otherwise a, b, c, d, e, x
induce either a C6 or a domino (depending on whether c and x are adjacent). Additionally,
x must be a neighbour of c, otherwise the six vertices induce a P6. With this in mind, let B
be the set of neighbours of a and c, let D be the set of neighbours of e and c (in particular,
b ∈ B and d ∈ D), and let Nc be the set of neighbours of c that are not neighbours of a
or e.

Suppose now that a vertex y in T is a non-neighbour of c (i.e. y /∈ B ∪ Nc ∪D, and
then y is also a non-neighbour of a and e). Find a path from y to c. Such a path must
pass through B ∪Nc ∪D = N(c). Let c′ be the vertex of the path just before N(c), and
assume without loss of generality that y is adjacent to c′. Let z′ ∈ N(c) be a neighbour of
c′.

If c′ has a non-neighbour b′ in B, then a, b, c, z′, c′, y is a P6, contradicting that G is
P6-free. Symmetrically, if c′ has a non-neighbour d′ in D, then y, c′, z′, c, d′, e is a P6,
contradicting again that G is P6-free. Therefore, B ∪ D ⊆ N(c′). We also have that
Nc ⊆ N(c′), otherwise if z ∈ Nc \N(c′), then G[{a, b, c, d, e, z, c′, y}] induces a Sun4. We
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can therefore conclude that N(c) ⊂ N(c′), contradicting the choice of the P5 a, b, c, d, e
because a, b, c′, d, e is also a P5.

We can thus conclude that S has a vertex c dominating T . If there was another P5 with
its centre in T , then that other P5 cannot contain c and would induce with c a domino.
Hence if we colour S black and T white, we obtain a colouring of G with no P5’s with
white centre, and by Lemma 4, we can conclude that G is bi-quasi-threshold.

3.2 Unboundedness of linear clique-width

The main result of this section is the unboundedness of linear clique-width in the classes of
bi-quasi-threshold graphs and of their bipartite complements. To prove the result we will
use an auxiliary graph parameter which provides a lower bound for linear clique-width.

Let G be a graph and A a linear clique-width expression for G. Clearly, A defines a
linear order of the vertex set of G, i.e. a permutation π in the symmetric group S(V (G)).
Let us denote by Sπ,i the set consisting of the first i elements of the permutation, and by
Ai the maximal prefix of A containing only the vertices of this set. If two vertices in Sπ,i
have different neighbourhoods outside of the set, then they must have different labels in
Ai, since otherwise in the rest of the expression we would not be able to add a neighbour to
one of them without adding it to the other. Therefore, denoting by µπ,i(G) the maximum
number of vertices in Sπ,i with pairwise different neighbourhoods outside of this set, we
conclude that A uses at least

µπ(G) := max
i
µπ,i(G)

different labels to construct G. As a result, the linear clique-width is bounded from below
by

µ(G) := min
π∈S(V (G))

µπ(G).

Therefore, to prove the main result of the section, it suffices to show that µ(G) is un-
bounded in the classes under consideration. In order to do that, we will need a technical
lemma describing the behaviour of µ(G) in some situations.

We introduce some notation for the coming part. Given a graph G and a linear order
π of its vertices, we will write v < w if v appears before w in the order, and v < S if v
appears before every vertex of a set S. Notice that the order on a graph induces an order
on all of its subgraphs in the obvious way.

Every i ∈ {1, . . . , n} corresponds to a cut in G with respect to π, which separates the
first i vertices in π from the rest of V (G). It will be useful to mark cuts for which µπ,i(G)
is large. We will insert symbols α, β, . . . into our ordered list of vertices to mark such cuts.
If α marks a cut with µπ,i(G) ≥ t, then a set of t vertices in Sπ,i with pairwise different
neighbourhoods outside of Sπ,i will be called a diversity witness of size t for α. The largest
t such that there exists a diversity witness of size t for α will be called the diversity of (the
cut at) α.

Let H be a connected bi-quasi-threshold graph with µ(H) = t ≥ 2. Since H is
connected and has at least two vertices, it contains both white and black vertices. Let
G = v × (H ∪H ∪H) for a black vertex v, and label the vertices of the three copies of H
by A = {ai : 1 ≤ i ≤ n}, B = {bi : 1 ≤ i ≤ n}, and C = {ci : 1 ≤ i ≤ n}, respectively.

Lemma 5. µ(G) ≥ t+ 1
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Proof. To prove the lemma, we fix an arbitrary permutation π of V (G) and show that
µπ(G) ≥ t + 1. Let α, β, and γ be the three cuts of diversity of at least t in the three
copies of H with respect to the restrictions of π into A, B, and C, respectively. Without
loss of generality we assume that α ≤ β ≤ γ in π. Let B′ ⊂ B be a diversity witness
of size t for β in B, i.e. B′ < β, |B′| = t, and the vertices of B′ have pairwise different
neighbourhoods in the subset of B to the right of β.

Assume first that a vertex a of A appears after β. Since µ(H) ≥ 2, there exist vertices
of A before α (and in particular before β). Therefore, since H is connected, there must
be an edge aiaj such that ai < β < aj . Since, by the definition of G, none of the vertices
in B′ is adjacent to aj , the set B′ ∪ {ai} is a diversity witness of size t + 1 for β, i.e.
µπ(G) ≥ t+ 1. This conclusion allows us to assume, from now on, that

• A < β and, by a similar argument, β < C (we need t ≥ 2 to make sure we do indeed
have vertices of C after γ, and hence after β).

Suppose v < β. Since C has at least one white vertex, v has a neighbour in C and
hence B′ ∪ {v} is a diversity witness of size t+ 1 for β, i.e. µπ(G) ≥ t+ 1. Therefore, in
the rest of the proof we assume that

• v > β.

Assume B′ contains a vertex bi with no neighbour bj > β in B (observe that if such
a vertex exists, then it is unique in B′, since otherwise B′ is not a diversity witness). If
bi is white, then for any black vertex ak ∈ A, the set B′ ∪ {ak} is a diversity witness of
size t + 1 for β, because bi is adjacent to v, while ak is not (by the definition of G), and
every vertex of B′ different from bi has a neighbour to the right of β, while ak does not.
Similarly, if bi is black, then for any white vertex ak ∈ A, the set B′ ∪ {ak} is a diversity
witness of size t + 1 for β in G, because bi is not adjacent to v, while ak is, and every
vertex of B′ different from bi has a neighbour in B to the right of β, while ak does not.
In both cases, we have µπ(G) ≥ t+ 1.

The above discussion allows us to assume that every vertex of B′ has a neighbour in the
subset of B to the right of β. Then for any vertex ak ∈ A, the set B′ ∪ {ak} is a diversity
witness of size t+ 1 for β in G, since ak has no neighbours in B, i.e. µπ(G) ≥ t+ 1.

Theorem 2. Linear clique-width is unbounded in the class L of bi-quasi-threshold graphs
and in the class L̃ of their bipartite complements.

Proof. Let G2 ' P4. It is easy to see that G2 is a connected bi-quasi-threshold graph with
µ(G2) ≥ 2. Defining Gk = v × (Gk−1 ∪Gk−1 ∪Gk−1) for k > 2, we conclude by Lemma 5
that Gk is a connected bi-quasi-threshold graph with µ(Gk) ≥ k. Therefore, for each k,
class L contains a graph of linear clique-width at least k. For class L̃, a similar conclusion
follows from Lemma 1.

3.3 Minimality and uniqueness

The goal of this section is to show that the two classes of unbounded linear clique-width
identified in the previous section are minimal hereditary classes where this parameter is
unbounded. Moreover, we prove a more general result showing that the class of bi-quasi-
threshold graphs and the class of their bipartite complements are the only two minimal
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hereditary classes of bi-cographs where the linear clique-width is unbounded. To prove
this result we will use a modification of linear clique-width defined as follows.

Definition 3. The bipartite linear clique-width (or bi-linear clique-width, for short) of
a coloured bipartite graph G, denoted by blcw(G), is the minimum number of labels
necessary to construct G via a linear clique-width expression, but only allowing any given
label to be used for either black or white vertices (we will call those labels black or white
respectively).

It is clear from the definition that lcw(G) ≤ blcw(G) ≤ 2lcw(G), so boundedness of
one of the parameters in a class of coloured bipartite graphs is equivalent to boundedness
of the other. We start with a simple lemma describing how this bi-linear clique-width
behaves when taking bipartite unions or joins.

Lemma 6. If G1, . . . , Gr are bipartite graphs with bi-linear clique-widths at most k1, . . . , kr

respectively, then their union
r⋃
i=1

Gi and their join
r∏
i=1

Gi have bi-linear clique-width at most

max{k1, k2 + 2, k3 + 2, . . . , kr−1 + 2, kr + 2}.

Proof. We will prove the statement for the join
r∏
i=1

Gi. The case of the union is similar

and we omit the details.
First, we construct G1 using labels 1, 2, . . . , k1 in such a way that no vertices of different

colour ever receive the same label, then we relabel all black vertices to 1 and all white
vertices to 2. Next, we construct G2 using labels 3, 4, . . . , k2+2 (which are now unused). To
construct the bipartite join, we then connect vertices labelled by 1 to all vertices labelled
by white labels, except 2, and we connect vertices labelled 2 to all vertices labelled by
black labels, except 1. Finally, we relabel all black vertices to 1 and all white vertices to
2. In this way we construct G1 × G2 using at most max{k1, k2 + 2} labels where in the
end all black vertices are labelled 1 and all white vertices are labelled 2. Proceeding in the

same way with G3, G4, . . . , Gr we will construct the join
r∏
i=1

Gi with at most max{k1, k2 +

2, k3 + 2, . . . , kr−1 + 2, kr + 2} labels.

For a coloured bipartite graph G = (B,W,E), it will sometimes be useful to work with
the coloured graph we obtain by swapping the colours. To this end, we define the reflection
GR = (B′,W ′, E) of G as the coloured bipartite graph isomorphic to G (as uncoloured
graphs) where B′ = W and W ′ = B.

In order to prove the main result of the section, we will use the notion of bi-cotrees,
the bipartite analogues of cotrees:

Definition 4. Let G be a coloured bi-cograph. The bi-cotree TG of G is the rooted labelled
tree constructed as follows:

• Start with the root, which corresponds to G.

• For any internal node, label it by 0 if the corresponding subgraph is disconnected,
and by 1 if its bipartite complement is disconnected. The children of the node then
correspond to connected components, respectively bi-co-components.
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• For any leaf, label it by 0 if the corresponding vertex in the graph is white, and by
1 if the corresponding vertex in the graph is black.

Note that the bi-cotree TGR of GR is obtained from the bicotree TG of G by changing
the labels of the leaves from 0 to 1 and from 1 to 0. Furthermore, by definition, for any
graph H in L, its bi-cotree TH has the property that every 1–node has at most one non-leaf
child. Similarly, for any graph K ∈ L̃, its bi-cotree TK has the property that every 0–node
has at most one non-leaf child.

Over the next few lemmas, we will be talking about the presence of certain trees in
the bi-cotrees of bi-cographs. We will use the following definition of tree containment:

Definition 5. Let S and T be two rooted trees. We say S is contained or appears in a
tree T , if there is an embedding φ : S ↪→ T with the following properties:

• If x, y ∈ V (S) and x is an ancestor of y, then φ(x) is an ancestor of φ(y).

• If x, y, z ∈ V (S) and x is the lowest common ancestor of y and z, then φ(x) is the
lowest common ancestor of φ(y) and φ(z).

• If S and T are labelled, then φ preserves labels.

We say that S is contained in T internally if no vertex of S is mapped to a leaf of T .

Our proof strategy for minimality and uniqueness is as follows: we first show that the
bi-cotrees of bi-cographs of large bi-linear clique-width must contain large perfect binary
trees. We then show that, in particular, certain labelled perfect binary trees must appear
in those bi-cotrees in a very specific way. Finally, we show that the latter implies that a
family of bi-cographs of unbounded bi-linear clique-width contains either L or L̃.

For h ∈ N, let Bh denote the unlabelled perfect binary tree of height h (i.e. the binary
tree where every internal node has two children, and all leaves have the same depth h).
Let Bh,0 and Bh,1 further denote perfect binary trees of height h, with all vertices labelled
0 or 1 respectively.

Lemma 7. Let G be a bi-cograph and h be a natural number. If TG does not contain Bh,
then the bi-linear clique-width of G is at most 2h.

Proof. We prove the lemma by induction on h. The result holds for h = 1, since forbidding
B1 means no node has two children, and G is trivial. Suppose the statement holds for
some h ≥ 1. We will prove that the bi-linear clique-width of any graph G whose bi-cotree
TG does not contain Bh+1 is at most 2h+ 2. We proceed by induction on the height of the
bi-cotree. Clearly, the statement holds for any graph with the bi-cotree of height at most
h− 1, as in this case the bi-cotree does not contain Bh, and the bi-linear clique-width of
the graph is at most 2h ≤ 2h + 2 by the induction hypothesis for h. Assume now that
the statement holds of any graph with bi-cotree of height at most r ≥ 0 and suppose that
the height of TG is r + 1. Let x be the root of TG. Then at most one of the subtrees
rooted at the children of x contains Bh, otherwise TG would contain a Bh+1. If none of
those subtrees do, we are done, since by the inductive hypothesis for h, the subgraphs
corresponding to each child of x have bi-linear clique-width at most 2h, and their join
or disjoint union can be constructed using two additional labels. Otherwise, let b be the

11



bi-linear clique-width of G, let x1 be the child whose induced subtree contains a Bh, and
b1 the bi-linear clique-width of the graph corresponding to x1. Then, by Lemma 6, we
have b ≤ max{b1, 2h + 2}. Since the height of the tree rooted at x1 is at most r − 1, by
the inductive hypothesis for r we have b1 ≤ 2h + 2, which implies b ≤ 2h + 2, and hence
the lemma.

We next consider Bh,0 and Bh,1. We first show that if one of those trees appears in
a certain way in the bi-cotree of a bi-cograph, then that bi-cograph contains either all
bi-quasi-threshold graphs up to a certain size, or their bipartite complements.

Definition 6. Let G be a coloured bi-cograph, h be a natural number, and i ∈ {0, 1}.
We say Bh,i is meaningfully embedded in TG, if the following hold:

• Bh,i is internally contained in TG with embedding φ.

• Let x be a node in Bh,i and let y be a child of x. Let P be the path in TG between φ(x)
and φ(y). Then there exists a vertex z on P labelled by 1− i such that the subtree
rooted at z excluding the branch containing φ(y) has a leaf in TG corresponding to
a black vertex (i.e. a leaf labelled 1).

Lemma 8. Let G be a bi-cograph, let h be a natural number, and i ∈ {0, 1}. Furthermore,
suppose that Bh,i is meaningfully embedded in TG. Then if i = 0, G contains every graph
in L on at most h vertices as an induced subgraph, and if i = 1, G contains every graph
in L̃ on at most h vertices as an induced subgraph.

Proof. We assume that i = 0. The case of i = 1 is analogous and we omit the details.
We will prove by induction on h that G contains every coloured bi-quasi-threshold

graph on at most h vertices as a coloured induced subgraph. If B1,0 is meaningfully
embedded in TG, write x for the embedding of the root and y1, y2 for the embeddings of
its two children. By definition, there is a vertex labelled 1 on the path between x and y1,
and that vertex is not a leaf. It follows that G has at least one edge, and hence it contains
both a black and a white vertex, i.e. it contains every coloured bi-quasi-threshold graph
on 1 vertex as a coloured induced subgraph.

Assuming the statement holds for some h ≥ 1, suppose that Bh+1,0 is meaningfully
embedded in TG. Like before, write x for the embedding of the root, and write y1, y2

for the embeddings of its two children. Each of the subtrees of TG rooted at y1 and y2

have a meaningfully embedded Bh,0, so the corresponding induced subgraphs of G contain
all coloured bi-quasi-threshold graphs on h vertices. Since x is labelled 0, G contains
the disjoint union of any two such subgraphs, and the second condition in the definition
of meaningful embeddings implies that G contains the join of any such subgraph with a
single black vertex. The recursive construction of bi-quasi-threshold graphs then implies,
as required, that G contains every coloured bi-quasi-threshold graph on h+1 vertices.

The next two lemmas give a Ramsey type result on the presence of large meaningfully
embedded Bh,i.

Lemma 9. Let r ≥ 1. There exists n = n(r) ∈ N such that any red-blue colouring of Bn
contains internally a monochromatic Br.
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Proof. We will show by induction on r that the recursion n(r+1) = n(r)+r+2, n(1) = 3,
defines a desired function.

To prove the base case r = 1, let x be the root of a coloured B3, y1, y2 its children, and
zj (1 ≤ j ≤ 4) its grandchildren (z1 and z2 are the children of y1, and z3 and z4 are the
children of y2). All of those nodes are internal, since they all have descendants (the nodes
on the last level of the B3). Without loss of generality, we may assume that x is red. If a
vertex in {y1, z1, z2} and a vertex in {y2, z3, z4} are also red, we are done, so assume not.
Then in one of the two triples, all vertices are blue, and we are also done.

For the induction step, assume that for some r ≥ 1 any red-blue colouring of Bn(r)

contains internally a monochromatic Br, and consider Bn(r+1) = Bn(r)+r+2. By the in-
duction hypothesis, the top n(r) levels of the Bn(r+1) contain without loss of generality a
red internal Br. The leaves of the red Br are embedded at level at most n(r)− 1, so their
children are at level at most n(r), and the subtrees rooted at those children have height
at least r + 2. Either those subtrees each contain a red internal node, in which case we
have a red internal Br+1, or there is one such subtree with all internal nodes being blue,
in which case we have a blue internal Br+1.

Lemma 10. Let r ≥ 1, and let G be a coloured bi-cograph. There exists m = m(r) ∈ N
such that if TG contains Bm, then either TG or TGR contains a meaningfully embedded
Br,0 or Br,1.

Proof. The proof consists of two applications of Lemma 9. First, we colour red the nodes
of TG labelled 0 and blue the nodes labelled 1. Since containment is transitive, this
guarantees that if TG contains Bn(r), then it contains an internal monochromatic Br, i.e.
a Br,i for some i ∈ {0, 1}.

For the second application of the lemma, we start with an internal copy of Bn(r),i in
TG. It follows from the definition of the bi-cotree, that for any internal node labelled by i,
any of its internal children is labelled by 1− i. This implies that for a node x ∈ Bn(r),i and
a child y of x, the path P between φ(x) and φ(y) contains at least one node labelled 1− i,
and for every such node, the subtree rooted at it has leaves outside the branch containing
φ(y). Now, for each non-root node y ∈ Bn(r),i with parent x, pick a vertex z labelled
1 − i on the path between φ(x) and φ(y); if at least one of the leaves in the tree rooted
at z excluding the branch containing φ(y) is black, colour y red. Otherwise colour it blue.
Colour the root arbitrarily. It can be checked that a red internal Br corresponds to a Br,i
meaningfully embedded in TG, while a blue internal Br corresponds to a Br,i meaningfully
embedded in TGR .

Thus putting m(r) = n(n(r)) completes the proof.

We are ready to prove the main result of the section.

Theorem 3. Let H ∈ L, K ∈ L̃ be uncoloured graphs. The class of (H,K)–free bi-
cographs has bounded bi-linear clique-width.

Proof. Suppose G is a (H,K)–free bi-cograph, and let r = max{|V (H)|, |V (K)|}. By
Lemma 8, there is no meaningfully embedded Br,i in TG or in TGR . By Lemma 10, TG
contains no Bm(r). Finally, by Lemma 7, blcw(G)≤ 2m(r).
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4 Linear clique-width of forests

Forests constitute one more class of bipartite graphs, where clique-width is bounded, but
linear clique-width is not. Unboundedness of linear clique-width can be shown similarly
to Lemma 5, using the parameter µ(G) introduced in Section 3.2. Alternatively, the
reader can refer to [27] where it is proved that the tree Bh has path-width dh/2e, and this
combined with the following allows us to state Corollary 1.

Theorem 4 ([2]). Let T be any tree. Then linear rank- and path-width of T are equal.
Moreover, lcw(T ) = lrw(T ) + 2, unless the maximum vertex degree of T is at most 1, in
which case lcw(T ) = lrw(T ) + 1.

Corollary 1. Linear clique-width is unbounded in the set of binary trees.

It is known that the (linear) rank-width of a vertex minor of a graph G is never larger
than the linear rank-width ofG, where a vertex minor ofG is any graph obtained fromG by
deleting vertices and/or complementing the neighbourhoods of vertices. If G′ is obtained
from G by subdividing an edge, then clearly G is a vertex minor of G′. Therefore, we
obtain the following conclusion.

Claim 2. A subdivision of an edge of a graph G does not decrease the (linear) rank-width
of G.

Now we use the above discussion to prove the following result, where by Hi we denote
the tree represented in Figure 2. Notice that we allow index i to be equal to 0, in which
case Hi coincides with the star K1,4. We call any graph of the form Hi an H-graph.

s s s ` ` ` s ss
s

s
s

1 2 i

Figure 2: Graph Hi

Lemma 11. For each positive integer k, the class of (H0, H1, . . . ,Hk)-free forests has
unbounded linear clique- and rank-width.

Proof. For each h and `, let B`
h be obtained from Bh by subdividing each edge ` times.

We denote by T k the set {Bk
h : h ≥ 2}. From Corollary 1, Theorem 4 and Claim 2

we know that linear clique- and rank-width are unbounded in the set T k. We claim now
that graphs in T k are (H0, H1, . . . ,Hk)-free. Indeed, if for some ` ≤ k, H` is an induced
subgraph of some Bk

h, then Bk
h contains two nodes of degree 3 and an induced path of

length ` between both. However, any path between two degree-3 nodes of Bk
h has length

at least k + 1.
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For k tending to infinity, the sequence of classes of (H0, H1, . . . ,Hk)-free forests con-
verges to the class of forests containing no H-graphs, i.e. to the class of (H0, H1, . . .)-free
forests. We denote this class by S.

Clearly, all graphs in S have vertex degree at most 3, since otherwise a forbidden H0

arises. Also, every connected component of a graph from S contains at most one vertex of
degree 3, since otherwise a forbidden Hi with i > 0 arises. Therefore, S contains graphs
every connected component of which is an induced subgraph of some Si,j,k represented in
Figure 1. We call graphs in S tripods.

By Claim 1 the linear clique-width of connected tripods is bounded. Therefore, by
Lemma 3, it is bounded for all graphs in S. As a result, we obtain an infinite sequence
of hereditary subclasses of forests and in the limit, linear clique-width jumps from infinity
to a finite value without meeting any minimal class of unbounded linear clique-width.

To overcome this difficulty, we will employ the notion of boundary classes. This notion
is a relaxation of the notion of minimal classes and it plays a similar role in the universe
of classes defined by finitely many forbidden induced subgraphs (finitely defined classes,
for short). In recent years, the notion of boundary classes was applied to various problems
of both algorithmic [1, 21] and combinatorial [19, 25] nature. Now we introduce it in the
context of linear clique-width.

4.1 Boundary classes of graphs

To simplify our discussion, we will call any hereditary class of unbounded linear clique-
width bad and any hereditary class of bounded linear clique-width good.

Definition 7. Given a sequence X1 ⊇ X2 ⊇ X3 ⊇ . . . of graph classes, we will say that
the sequence converges to a class X if X is the intersection of classes of the sequence. A
class X of graphs is a limit class if there is a sequence of bad classes converging to X.

Observe that we do not require the class in the sequence X1 ⊇ X2 ⊇ X3 ⊇ . . . to be
distinct. This means that any bad class is a limit class. The converse statement is false,
as the example of classes converging to tripods shows.

The above definition provides a relaxation for the notion of bad classes, replacing it
with limit classes. Now we relax the notion of minimal bad classes, replacing it with
minimal limit classes, which we call boundary.

Definition 8. A minimal limit class, i.e. a limit class that does not properly contain any
other limit class, is called a boundary class.

The power of this notion comes from the fact that every limit class contains a minimal
limit class. This can be shown through a series of short lemmas that are standard in the
theory of boundary classes. To make the paper self-contained, we prove them below.

Lemma 12. A finitely defined class is a limit class if and only if it is bad.

Proof. Every bad class is a limit class by definition. Now let X = Free(G1, . . . , Gk) be
a limit class and let X1 ⊇ X2 ⊇ X3 ⊇ . . . be a sequence of bad classes converging to X.
There must exist a number n such that Xn is (G1, . . . , Gk)-free. But then for each i ≥ n,
we have Xi = X and therefore X is bad.
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Lemma 13. If a class Y contains a limit class X, then Y is also a limit class.

Proof. Let X1 ⊇ X2 ⊇ X3 . . . be a sequence of bad classes converging to X. Then the
sequence (X1 ∪ Y ) ⊇ (X2 ∪ Y ) ⊇ (X3 ∪ Y ) . . . consists of bad classes and it converges to
Y .

Lemma 14. If a sequence X1 ⊇ X2 ⊇ X3 . . . of limit classes converges to a class X, then
X also is a limit class.

Proof. Let {G1, G2, . . .} be the set of minimal forbidden induced subgraphs of X. For
each natural k, define X(k) to be the class Free(G1, . . . , Gk). Clearly, for every k, there
must exist an n such that Xn does not contain G1, . . . , Gk, implying that Xn ⊆ X(k).
Therefore, by Lemma 13, X(k) is a limit class, and by Lemma 12, X(k) is bad. This is
true for all natural k, and therefore, X(1) ⊇ X(2) ⊇ X(3) . . . is a sequence of bad classes
converging to X, i.e. X is a limit class.

Lemma 15. Every limit class X contains a minimal limit class.

Proof. Let X be a limit class. To reveal a minimal limit class contained in X, let us fix an
arbitrary linear order L of the set of all graphs and let us define a sequence X1 ⊇ X2 ⊇ . . .
of graph classes as follows. We define X1 to be equal to X. For i > 1, let G be the first
graph in the order L such that G belongs to Xi−1 and Xi−1 ∩ Free(G) is a limit class. If
there is no such graph G, we define Xi := Xi−1. Otherwise, Xi := Xi−1 ∩ Free(G).

Denote by Y the intersection of classes X1 ⊇ X2 ⊇ X3 . . .. Clearly, Y ⊆ X. By
Lemma 14, Y is a limit class. Let us show that Y is a minimal limit class contained in X.
For contradiction, assume there exists a limit class Z which is properly contained in Y . Let
H be a graph in Y which does not belong to Z. Then Z ⊆ Y ∩Free(H) ⊆ Xk ∩Free(H)
for each k. Therefore, by Lemma 13, Xk ∩ Free(H) is a limit class for each k. For some
k, the graph H becomes the first graph in the order L such that Xk ∩ Free(H) is a limit
class. But then Xk+1 := Xk ∩ Free(H), and H belongs to no class Xi with i > k, which
contradicts the fact that H belongs to Y .

The importance of the notion of boundary classes is due to the following theorem.

Theorem 5. A finitely defined class is bad if and only if it contains a boundary class.

Proof. From Lemma 15, we know that every bad class contains a boundary class. To
prove the converse, consider a finitely defined class X containing a boundary class. Then,
by Lemma 13, X is a limit class, and therefore, by Lemma 12, X is bad.

From Lemma 11 we conclude that the class S of tripods is a limit class. In the next
section, we show that S is a minimal limit, i.e. a boundary class. Moreover, we show that
S is the only boundary subclass of forests.

4.2 Minimality and uniqueness

To prove the minimality and the uniqueness of the class S of tripods, we will show that
any hereditary subclass of forests excluding at least one tripod has bounded linear clique-
width. We consider forbidden tripods of the form pSi,i,i only, because any tripod is an
induced subgraph of pSi,i,i for some values of p and i. We start with the base case, p = 1,
in Lemma 16 and then complete the proof in Theorem 6.
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Lemma 16. For each positive integer i, the class of Si,i,i-free forests has bounded linear
clique-width.

Proof. As in Lemma 3, we need to prove boundedness only for connected Si,i,i-free forests.
Let T be an Si,i,i-free tree and let P = (1, 2, . . . , k) be a longest path in T . If k ≤ 2i, then it
is not hard to prove that the path-width and hence the linear clique-width of T is bounded
by a function of i. So assume k > 2i and denote by Tj the subtree of T − (V (P ) \ {j})
rooted at vertex j of P . Then each Tj has height at most i − 1. For the first i and the
last i vertices of P , this is because P is a longest path, and for the remaining vertices of
P this is because T is Si,i,i-free. Therefore, each Tj has path-width bounded by p(i) for
some function p, and hence its linear clique-width is bounded by p(i) + 2. As a result, an
expression that builds T can be obtained by analogy with the expression (1) that builds
Pk by replacing each operation of creating a vertex with an expression that creates a tree
rooted at this vertex.

Theorem 6. For positive integers i and p, the class of pSi,i,i-free forests has bounded
linear clique-width.

Proof. By Lemma 3 we need only to prove it for trees. We prove it by induction on p and
claim that the linear clique-width of any pSi,i,i-free tree T is bounded by fi + 4(p − 1),
where fi is a constant bounding the linear clique-width of Si,i,i-free forests. The base case
p = 1 follows from Lemma 16. For larger values of p, we prove separately the case p = 2
and p > 2.

Let p = 2 and let T be a 2Si,i,i-free tree. If T is Si,i,i-free, we are done by Lemma 16.
Otherwise, take any vertex r as a root in T and let v be a farthest vertex from r such that
the subtree Tv rooted at v contains a copy of Si,i,i. Then, by assumption, for any child u
of v, the tree Tu rooted at u is Si,i,i-free. By Lemma 16, Tu has linear clique-width at most
fi for each child u of v. Also, if w is a parent of v, then in the graph T −w every connected
component not containing v is Si,i,i-free, since otherwise an induced 2Si,i,i arises. Then,
each connected component of T \ {v, w} has linear clique-width at most fi. Applying
Lemmas 2 and 3, we conclude that T has linear clique-width bounded by fi + 4.

Now let p > 2 and let T be a pSi,i,i-free tree. If T is 2Si,i,i-free, we are done by the
previous paragraph. If T contains an induced 2Si,i,i, then let v be any internal vertex of
the path connecting the two copies of Si,i,i. Then every connected component of T − v is
(p − 1)Si,i,i-free, since otherwise an induced pSi,i,i arises. Therefore, by induction, each
of these subtrees has linear clique-width bounded by fi + 4(p − 2). Applying Lemmas 2
and 3 once again, we conclude that T has linear clique-width bounded by fi + 4p − 5 ≤
fi + 4(p− 1).

5 Towards other classes with a disparity between clique-
width and linear clique-width

In the previous sections, we analyzed two classes of bipartite graphs where clique-width
is bounded but linear clique-width is not, and identified three critical classes, i.e. three
minimal obstacles for bounding linear clique-width. Two of them are minimal classes and
the third is a boundary class. According to Lemma 1, the class of bipartite complements
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of forests (co-forests, for short) is one more class with a disparity between clique-width
and linear clique-width, and the bipartite complements of graphs in S constitute one more
obstacle for bounding linear clique-width. The class of bi-cographs is self-complementary
in the bipartite sense, and hence the complementary arguments do not lead to new critical
classes.

Clearly, any extension of forests, co-forests or bi-cographs of bounded clique-width
possesses the same sort of disparity, in which case it is natural to ask whether these
extensions contain new minimal or boundary classes for linear clique-width. Another
line of research is identifying new classes with the disparity between clique-width and
linear clique-width, i.e. classes containing neither bi-cographs, nor forests or co-forests,
and looking for new critical classes. In this section, we review some classes of bipartite
graphs of bounded clique-width with the aim of identifying new candidates exhibiting the
disparity and new candidates for critical classes. As a result of our review, we form a
conjecture that in case of bipartite graphs there are no more obstacles for bounding linear
clique-width.

5.1 Subclasses of chordal bipartite graphs

A graph G is chordal bipartite if it is (C3, C5, C6, C7, . . .)-free. Clique-width is known to
be unbounded in the class of chordal bipartite graphs, because it is unbounded even for
bipartite permutation graphs [8], which form a proper subclass of chordal bipartite graphs.
On the other hand, clique-width is bounded for

• chordal bipartite graphs excluding a bi-clique Kp,p [11],

• domino-free chordal bipartite graphs, since this is a subclass of distance-hereditary
graphs [15],

• Fk-free chordal bipartite graphs [22], where an Fk is a k-fork, i.e. a graph obtained
from a star K1,k+1 by subdividing one of its edges exactly once.

The class of Kp,p-free chordal bipartite graphs extends the class of forests for each p ≥ 2
and hence linear clique-width is unbounded in this class. We conjecture that if additionally
we exclude a tripod, then we obtain a class of graphs of bounded linear clique-width, i.e.
Kp,p-free chordal bipartite graphs do not contain any obstacles for bounding linear clique-
width different from the class S of tripods.

The class of domino-free chordal bipartite graphs contains all forests and all bi-quasi-
threshold graphs, and hence it contains two critical classes. But, again, we conjecture that
no new obstacles for bounding linear clique-width can be found in this class.

The class of Fk-free chordal bipartite graphs generalizes K1,k+1-free chordal bipartite
graphs, i.e. chordal bipartite graphs of vertex degree at most k. For k = 2, this class
consists of graphs every connected component of which is either a path or an almost
complete bipartite graph, i.e. a graph in which every vertex has at most one non-neighbour
in the opposite part. Therefore, for k = 2 the linear clique-width of Fk-free chordal
bipartite graphs is bounded. For larger values of k, the linear clique-width is unbounded,
since in this case the class contains all binary trees. Once again, we conjecture that
by excluding a tripod (in addition to Fk) we obtain a class of graphs of bounded linear
clique-width.
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5.2 Monogenic classes of bipartite graphs

A class of bipartite graphs is called monogenic if it is defined by a single forbidden induced
bipartite subgraph. In [24], it was shown that if H is a bipartite graph with both parts
being non-empty, then the clique-width of H-free bipartite graphs is bounded if and only
if H is an induced subgraph of one of the following four graphs (see Figure 3): S1,2,3,
K1,3 + 3K1, K1,3 + e, S1,1,3 + v.
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Figure 3: Graphs K1,3 + 3K1 (left), K1,3 + e (middle) and S1,1,3 + v (right)

The class of S1,2,3-free bipartite graphs extends the class of bi-cographs, but we con-
jecture that this extension does not introduce any new obstacle for bounding linear clique-
width, i.e. a subclass of S1,2,3-free bipartite graphs has bounded linear clique-width if and
only if it excludes a bi-quasi-threshold graph and the bipartite complement of a bi-quasi-
threshold graph.

In the other three cases, we conjecture that the linear clique-width is bounded. We
prove it for the class of K1,3 + 3K1-free bipartite graphs and leave the remaining two
classes for future research, since the proof is more involved for these classes.

Theorem 7. The linear clique-width of (K1,3 + 3K1)-free bipartite graphs is bounded.

Proof. Let G = (W,B,E) be a (K1,3 + 3K1)-free bipartite graph. Denote by Wl and Bl
the sets of white and black vertices of degree at most 2 (low degree) and by Wh and Bh
the remaining vertices in W and B, respectively (high degree).

Clearly, every vertex of G has at most two neighbours or at most two non-neighbours
in the opposite part, since otherwise a forbidden induced subgraph arises. Therefore, the
number of edges of G between Wl and Bh is at most 2|Wl| and at least |Bh|(|Wl|−2). Thus
|Bh|(|Wl| − 2) ≤ 2|Wl|, which implies that either |Wl| ≤ 4 or |Bh| ≤ 4. Similarly, either
|Bl| ≤ 4 or |Wh| ≤ 4. Therefore, by deleting from G at most 8 vertices, one can obtain a
graph G′ such that either G′ or its bipartite complement is of vertex degree at most 2. In
either case, the linear clique-width of G′ is bounded, and so is the linear clique-width of
G by Lemma 2.

5.3 Bigenic classes of bipartite graphs

We say that a class of bipartite graphs is bigenic if it is defined by two forbidden induced
bipartite subgraphs. We are aware of only two bigenic classes of bounded clique-width,
which are not subclasses of monogenic classes. In both classes, one of the two forbidden
graphs is the graph obtained from Sun4 by deleting two consecutive vertices of degree 1,
i.e. two vertices of degree 1 of distance 3 from each other. We denote this graph by A.

One of bigenic classes of bounded clique-width is the class of (S2,2,2, A)-free bipartite
graphs. A structural characterization of graphs in this class was proposed in [6] as follows,
where a long circular caterpillar is a graph that becomes a cycle of length more than 4
after removing the pendant vertices.
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Theorem 8. A connected prime (S2,2,2, A)-free bipartite graph is either a caterpillar or a
long circular caterpillar or the bipartite complement of a graph of vertex degree at most 1.

Corollary 2. The linear clique-width of (S2,2,2, A)-free bipartite graphs is bounded.

Proof. By Lemma 3 it suffices to prove the result for caterpillar, long circular caterpillars
and bipartite complements of graphs of vertex degree at most 1.

Caterpillars are S2,2,2-free trees and hence have bounded linear clique-width by Claim 1.
A long circular caterpillar becomes a caterpillar after removing any vertex on the cycle.
Together with Lemma 2 this implies that these graphs also have bounded linear clique-
width. Finally, graphs of vertex degree at most 1 have linear clique-width bounded by
3 and hence the bipartite complements of these graphs have bounded linear clique-width
too by Lemma 1.

One more bigenic class of bipartite graphs of bounded clique-width is the class of
(Pk, A)-free bipartite graphs, and now we prove that linear clique-width is bounded in this
class too.

Claim 3. The linear clique-width is bounded in the class of (Pk, A)-free bipartite graphs.

Proof. It was shown in [4] that any prime A-free bipartite graph containing a C4 is the
bipartite complement of an induced matching (a 1-regular graph). Therefore, (Pk, A)-free
bipartite graphs containing a C4 have bounded linear clique-width.

Now consider a (Pk, C4)-free bipartite graph G. It was shown in [5] that for any k, p
and t, there is a constant c = c(k, p, t) such that any graph containing a path of length c
contains either an induced path Pk or an induced biclique Kp,p or a clique Kt. Since G
is K2,2- and K3-free, we conclude that G does not contain a path Pc as a (not necessarily
induced) subgraph. Therefore, path-width and hence linear clique-width is bounded for
(Pk, C4)-free bipartite graphs.

5.4 Conjecture

We summarize our review of various subclasses of bipartite graphs of bounded clique-width
in the following conjecture.

Conjecture 1. A hereditary class of bipartite graphs of bounded clique-width that ex-
cludes a tripod, the bipartite complement of a tripod, a bi-quasi-threshold graph and the
bipartite complement of a bi-quasi-threshold graph has bounded linear clique-width.
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