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Hyperplane Sections of Determinantal Varieties

over Finite Fields and Linear Codes

Peter Beelen∗ Sudhir R. Ghorpade†

Abstract

We determine the number of Fq-rational points of hyperplane sections of classical deter-

minantal varieties defined by the vanishing of minors of a fixed size of a generic matrix, and

identify sections giving the maximum number of Fq-rational points. Further we consider

similar questions for sections by linear subvarieties of a fixed codimension in the ambient

projective space. This is closely related to the study of linear codes associated to determi-

nantal varieties, and the determination of their weight distribution, minimum distance and

generalized Hamming weights. The previously known results about these are generalized

and expanded significantly.

1 Introduction

The classical determinantal variety defined by the vanishing all minors of a fixed size in a generic
matrix is an object of considerable importance and ubiquity in algebra, combinatorics, algebraic
geometry, invariant theory and representation theory. The defining equations clearly have integer
coefficients and as such the variety can be defined over any finite field. The number of Fq-rational
points of this variety is classically known. We are mainly interested in a more challenging
question of determining the number of Fq-rational points of such a variety when intersected with
a hyperplane in the ambient projective space, or more generally, with a linear subvariety of a
fixed codimension in the ambient projective space. In particular, we wish to know which of
these sections have the maximum number of Fq-rational points. These questions are directly
related to determining the complete weight distribution and the generalized Hamming weights
of the associated linear codes, which are caledl determinantal codes. In this setting, the problem
was considered in [2] and a beginning was made by showing that the determination of the
weight distribution is related to the problem of computing the number of generic matrices of a
given rank with a nonzero “partial trace”. More definitive results were obtained in the special
case of varieties defined by the vanishing of all 2 × 2 minors of a generic matrix. Here we
settle the question of determination of the weight distribution and the minimum distance of
determinantal codes in complete generality. Further, we determine some initial and terminal
generalized Hamming weights of determinantal codes. We also show that the determinantal
codes have a very low dual minimum distance (viz., 3), which makes them rather interesting from
the point of view of coding theory. Analogous problems have been considered for other classical
projective varieties such as Grassmannians, Schubert varieties, etc., leading to interesting classes
of linear codes which have been of some current interest; see, for example, [17], [13], [14], [20],
[12], and the survey [16].

∗Partially supported by the Danish Council for Independent Research (Grant No. DFF–4002-00367).
†Partially supported by IRCC Award grant 12IRAWD009 from IIT Bombay.
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As was mentioned in [2] and further explained in the next section and Remark 3.7, the results
on the weight distribution of determinantal codes are also related to the work of Delsarte [9] on
eigenvalues of association schemes of bilinear forms using the rank metric as distance. We remark
also that a special case of these results has been looked at by Buckhiester [6].

A more detailed description of the contents of this paper is given in the next section, while the
main results are proved in the two sections that follow the next section. An appendix contains
self-contained and alternative proofs of some results that were deduced from the work of Delsarte
and this might be of an independent interest.

2 Preliminaries

Fix throughout this paper a prime power q, positive integers t, ℓ,m, and an ℓ × m matrix
X = (Xij) whose entries are independent indeterminates over Fq. We will denote by Fq[X ]
the polynomial ring in the ℓm variables Xij (1 ≤ i ≤ ℓ, 1 ≤ j ≤ m) with coefficients in Fq. As
usual, by a minor of size t or a t× t minor of X we mean the determinant of a t× t submatrix
of X , where t is a nonnegative integer ≤ min{ℓ,m}. As per standard conventions, the only 0× 0
minor of X is 1. We will be mostly interested in the class of minors of a fixed size, and this
class is unchanged if X is replaced by its transpose. With this in view, we shall always assume,
without loss of generality, that ℓ ≤ m. Given a field F, we denote by Mℓ×m(F) the set of all
ℓ × m matrices with entries in F. Often F = Fq and in this case we may simply write Mℓ×m

for Mℓ×m(Fq). Note that Mℓ×m can be viewed as an affine space A
ℓm over Fq of dimension ℓm.

For 0 ≤ t ≤ ℓ, the corresponding classical determinantal variety (over Fq) is denoted by Dt and
defined as the affine algebraic variety in A

ℓm given by the vanishing of all (t+1)× (t+1) minors
of X ; in other words

Dt(ℓ,m) = {M ∈ Mℓ×m(Fq) : rank(M) ≤ t} .

Note that D0 only consists of the zero-matrix. For t = ℓ, no (t+ 1)× (t+ 1) minors of X exist.
This means that Dℓ = Mℓ×m, which is in agreement with the above description of Dℓ as the set
of all matrices of rank at most ℓ.

It will also be convenient to define the sets

Dt(ℓ,m) := {M ∈ Mℓ×m(Fq) : rank(M) = t} ,

for 0 ≤ t ≤ ℓ as well as their cardinalities µt(ℓ,m) := |Dt(ℓ,m)|. The map that sends M ∈
Dt(ℓ,m) to its row-space is a surjection ofDt(ℓ,m) onto the spaceGt,m of t-dimensional subspaces
of Fm

q . Moreover for a given W ∈ Gt,m, the number of M ∈ Dt(ℓ,m) with row-space W is equal
to the number of ℓ×tmatrices over Fq of rank t or equivalently, the number of t-tuples of linearly
independent vectors in F

ℓ
q. Since |Gj,m| is the Gaussian binomial coefficient

[
m

j

]
q
, we find

µt(ℓ,m) = |Dt(ℓ,m)| =

[
m

t

]

q

t−1∏

i=0

(qℓ − qi) = q(
t

2)
j−1∏

i=0

(
qℓ−i − 1

) (
qm−i − 1

)

qi+1 − 1
. (1)

Using the Gaussian factorial [n]q! :=
∏n

i=1(q
i − 1), one can also give the following alternative

expressions:

µt(ℓ,m) = q(
t

2)
[
m

t

]

q

[ℓ]q!

[ℓ− t]q!
= q(

t

2) [m]q![ℓ]q!

[m− t]q![t]q![ℓ− t]q!
= q(

t

2)
[
ℓ

t

]

q

[m]q!

[m− t]q!
.

Note that µ0(ℓ,m) = 1. Next we define

νt(ℓ,m) :=

t∑

s=0

µs(ℓ,m).
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Since Dt(ℓ,m) is the disjoint union of D0(ℓ,m), . . . ,Dt(ℓ,m), we have

νt(ℓ,m) =

t∑

s=0

µs(ℓ,m) = |Dt(ℓ,m)|. (2)

The affine variety Dt(ℓ,m) is, in fact, a cone; in other words, the vanishing ideal It+1 (which
is precisely the ideal of Fq[X ] generated by all (t + 1)× (t + 1) minors of X) is a homogeneous
ideal. Also it is a classical (and nontrivial) fact that It+1 is a prime ideal (see, e.g., [10]). Thus
Dt(ℓ,m) can also be viewed as a projective algebraic variety in P

ℓm−1, and viewed this way, we

will denote it by D̂t(ℓ,m). We remark that the dimension of D̂t(ℓ,m) is t(ℓ + m − t) − 1 (cf.
[10]). Moreover

|D̂t(ℓ,m)| =
|Dt(ℓ,m)| − 1

q − 1
=

1

q − 1

t∑

s=1

µs(ℓ,m).

We are now ready to define the codes we wish to study. Briefly put, the determinantal code
Ĉdet(t; ℓ,m) is the linear code corresponding to the projective system D̂t(ℓ,m) →֒ P

ℓm−1(Fq) =

P(Mℓ×m). An essentially equivalent way to obtain this code is as follows: Denote n̂ = |D̂t(ℓ,m)|

and choose an ordering P1, · · · , Pn̂ of the elements of D̂t(ℓ,m). Further choose representatives
Mi ∈ Mℓ×m for Pi. Then consider the evaluation map

Ev : Fq[X ]1 → F
n̂
q defined by Ev(f) = ĉf := (f(M1), . . . , f(Mn̂)) ,

where Fq[X ]1 denotes the space of homogeneous polynomials in Fq[X ] of degree 1 together
with the zero polynomial. The image of this evaluation map can directly be identified with
Ĉdet(t; ℓ,m). A different choice of representatives or a different ordering of these representatives
gives in general a different code, but basic quantities like minimum distance, weight distribution,
and generalized Hamming weights are independent on these choices.

In [2], also another code Cdet(t; ℓ,m) was introduced. It can be obtained by evaluating
functions in Fq[X ]1 in all elements of Dt(ℓ,m). The parameters of Cdet(t; ℓ,m) determine those

of Ĉdet(t; ℓ,m) and vice-versa, see [2, Prop. 1]. It is therefore sufficient to study either one of

these two codes. In the remainder of this article, we will focus on Ĉdet(t; ℓ,m) and determine
some of its basic parameters. It is in a sense also a more natural code to study, since the code
Cdet(t; ℓ,m) is degenerate, whereas Ĉdet(t; ℓ,m) is nondegenerate [2]. We quote this and some
other useful facts from [2, Prop.1, Lem. 1, Cor. 1]:

Fact 2.1 The code Ĉdet(t; ℓ,m) is a nondegenerate code of dimension k̂ = ℓm and length n̂ =

|D̂t(ℓ,m)|. For f =
∑ℓ

i=1

∑m

j=1 fijXij ∈ Fq[X ]1, denote by F = (fij) the coefficient matrix of

f . Then the Hamming weight of the corresponding codeword ĉf of Ĉdet(t; ℓ,m) depends only on
rank(F ). Consequently, if r = rank(F ), then

wH(ĉf ) = wH(ĉτr), where τr := X11 + · · ·+Xrr.

As a result, the code Ĉdet(t; ℓ,m) has at most ℓ + 1 distinct weights, ŵ0(t; ℓ,m), . . . , ŵℓ(t; ℓ,m),
given by ŵr(t; ℓ,m) = wH(ĉτr) for r = 0, 1, . . . , ℓ.

We call the function τr the rth partial trace. Note that ŵ0(t; ℓ,m) = 0, since τ0 = 0. To
determine the other weights ŵr(t; ℓ,m), one would need to count the number of M ∈ Mℓ×m(Fq)
of rank at most t with nonzero r-th partial trace. Delsarte [9] used the theory of association
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schemes to solve an essentially equivalent problem of determining the number wr(t; ℓ,m) of
M ∈ Dt(ℓ,m) with τr(M) 6= 0, and showed:

wr(t; ℓ,m) =
q − 1

q

(
µt(ℓ,m)−

ℓ∑

i=0

(−1)t−iqim+(t−i

2 )
[
ℓ− i

ℓ− t

]

q

[
ℓ− r

i

]

q

)
.

The case r = ℓ = m was already dealt with by Buckhiester in [6]. In the appendix of this
paper, we obtain using different methods an alternative formula for wr(t; ℓ,m), which may be of
independent interest. For future use, we define ŵr(t; ℓ,m) := wr(t; ℓ,m)/(q − 1) for 0 ≤ r ≤ ℓ
and 1 ≤ t ≤ ℓ. From Delsarte’s result it follows that

ŵr(t; ℓ,m) =
1

q

(
µt(ℓ,m)−

ℓ∑

i=0

(−1)t−iqim+(t−i

2 )
[
ℓ− i

ℓ− t

]

q

[
ℓ− r

i

]

q

)
, (3)

In fact, Delsarte considered codes obtained by evaluating elements from Fq[X ]1 in all ℓ ×m
matrices of rank t. Therefore his code can be seen as the projection of Cdet(t; ℓ,m) on the
coordinates corresponding to matrices of rank t.

Using Equation (3), we see that the nonzero weights of Ĉdet(t; ℓ,m) are given by

ŵr(t; ℓ,m) =

t∑

s=1

ŵr(s; ℓ,m) (4)

=
t∑

s=1

1

q

(
µt(ℓ,m)−

ℓ∑

i=0

(−1)t−iqim+(t−i

2 )
[
ℓ− i

ℓ− t

]

q

[
ℓ− r

i

]

q

)
,

for r = 1, . . . , ℓ. However, for a fixed t, it is not obvious how ŵ1(t; ℓ,m), . . . , ŵℓ(t; ℓ,m) are
ordered or even which among them is the least. We will formulate a conjecture based (among
others) on the following examples.

Example 2.2 If t = 0 the code Cdet(t; ℓ,m) is trivial (containing only the zero word), while the

code Ĉdet(t; ℓ,m) is not defined. Therefore the easiest nontrivial case occurs for t = 1. This case
was considered in [2], where is was shown that

ŵr(1; ℓ,m) = qℓ+m−2 + qℓ+m−3 + · · ·+ qℓ+m−r−1 = qℓ+m−r−1 (q
r − 1)

q − 1
.

These formulae also follow fairly directly from Equations (3) and (4). It follows directly that
ŵ1(1; ℓ,m) < ŵ2(1; ℓ,m) < · · · < ŵℓ(1; ℓ,m) and that ŵ1(1; ℓ,m) = qℓ+m−2 is the minimum

distance of Ĉdet(1; ℓ,m).

Example 2.3 In this example we consider the determinantal code Ĉdet(t; 4, 5) in case q = 2 and
1 ≤ t ≤ 5. Using the formulae in Equations (3) and (4), we find the following table:

r 1 2 3 4
ŵr(1; ℓ,m) 128 192 224 240
ŵr(2; ℓ,m) 13568 16256 16576 16480
ŵr(3; ℓ,m) 201728 212480 211712 211840
ŵr(4; ℓ,m) 524288 524288 524288 524288

One sees that it is not true in general that ŵr(t; ℓ,m) < ŵs(t; ℓ,m) whenever r < s. However,
in this example it is true that for a given t, the weight ŵ1(t; ℓ,m) is the smallest among all
nonzero weights ŵr(t; ℓ,m).
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Example 2.4 In case t = ℓ in the previous example, all weights ŵ1, . . . , ŵℓ were the same. This
holds in general: If t = ℓ, then D̂t = P

ℓm−1 and Ĉdet(t; ℓ,m) is a first order projective Reed-
Muller code (cf. [15]). All nonzero codewords in this code therefore have weight qℓm−1. Note
that combining this with Equations (3) and (4) we obtain for 1 ≤ r ≤ ℓ the following identity

qℓm−1 =
ℓ∑

s=1

1

q

(
µs(ℓ,m)−

ℓ∑

i=0

(−1)s−iqim+(s−i

2 )
[
ℓ− i

ℓ− s

]

q

[
ℓ− r

i

]

q

)
.

Using Equation (2) with t = ℓ, we see that for 1 ≤ r ≤ ℓ apparently the following identity holds

ℓ∑

s=1

ℓ∑

i=0

(−1)s−iqim+(s−i

2 )
[
ℓ− i

ℓ− s

]

q

[
ℓ− r

i

]

q

= −1.

This identity may readily be shown using for example [1, Thm 3.3] after interchanging the sum-
mation order. In any case, it is clear that Equations (3) and (4) may not always give the easiest
possible expression for the weights.

While for t = 1 and t = ℓ all weights ŵr(t; ℓ,m) are easy to compare with one another, the
same cannot be said in case 1 < t < ℓ. We formulate the following conjecture.

Conjecture 2.5 Let ℓ ≤ m be positive integers and t an integer satisfying 1 < t < ℓ. The the
following hold:

1. All weights ŵ1(t; ℓ,m), . . . , ŵℓ(t; ℓ,m) are mutually distinct.

2. We have ŵ1(t; ℓ,m) < ŵ2(t; ℓ,m) < · · · < ŵℓ−t+1(t; ℓ,m).

3. For all ℓ− t+2 ≤ r ≤ ℓ, the weight ŵr(t; ℓ,m) lies between ŵr−2(t; ℓ,m) and ŵr−1(t; ℓ,m).

3 Minimum distance of determinantal codes

Recall that in general for a linear code C of length n, i.e., for a linear subspace C of Fn
q , the

Hamming weight of a codeword c = (c1, . . . , cn), denoted wH(c) is defined by

wH(c) := |{i : ci 6= 0}|.

The minimum distance of C, denoted d(C), is defined by

d(C) := min{wH(c) : c ∈ C, c 6= 0}.

A consequence of Conjecture 2.5 would also be that ŵ1(t; ℓ,m) is the minimum distance of

Ĉdet(t; ℓ,m). We will now show that this is indeed the case. We start by giving a rather compact
expression for ŵ1(t; ℓ,m).

Proposition 3.1 Let t, ℓ, and m be integers satisfying 1 ≤ t ≤ ℓ ≤ m. Then

ŵ1(t; ℓ,m) = qℓ+m−2νt−1(ℓ− 1,m− 1).

5



Proof. First suppose that t = 1. In this case Example 2.2 implies that ŵ1(1; ℓ,m) = qm+ℓ−2. On
the other hand, using Equations (1) and (2), we see that |Dt−1(ℓ−1,m−1)| = µ0(ℓ−1,m−1) = 1,
so the proposition holds for t = 1.

From now on we assume that t > 1 (implying that also ℓ > 1). We will show that

ŵ1(t; ℓ,m) = qℓ+m−2µt−1(ℓ− 1,m− 1). (5)

Once we have shown this, the proposition follows using Equations (2) and (4). Let M = (mij) ∈
Dt(ℓ,m) and suppose that τ1(M) = m11 6= 0. In that case, we may find uniquely determined
square matrices

A =




1 0

a1 1
...

. . .

aℓ−1 0 1


 and B =




1 b1 · · · bm−1

1 0

. . .

0 1


 ,

such that

AMB =




m11 0 · · · 0
0

0 M̃
0


 . (6)

The matrices A and B are indeed uniquely determined, since for 2 ≤ i ≤ ℓ and 2 ≤ j ≤ m we
have

0 = (AMB)i1 = ai−1(MB)11 + (MB)i1 = ai−1m11 +mi1

and
0 = (AMB)1j = (AM)11bj−1 + (AM)1j = m11bj−1 +m1j .

These equations determine the values of a1, . . . , bm given the matrix M . The association of
φ(M) = M̃ therefore is a well-defined map

φ : {M ∈ Dt(ℓ,m) |m11 6= 0} → Dt−1(ℓ− 1,m− 1).

The map φ is clearly surjective (one can for example choose M as in the right hand side of

Equation (6)), while the preimage of any matrix M̃ ∈ Dt−1(ℓ − 1,m − 1) consist of the (q −
1)qℓ+m−2 matrices of the form A−1MB−1, with A and B as above and againM chosen as in the
right-hand-side of Equation (6). Equation (5) (and hence the proposition) then follows, since

w1(t; ℓ,m) = |{M ∈ Dt(ℓ,m) |m11 6= 0}|

=
∑

M̃∈Dt−1

|φ−1(M̃)| = |Dt−1(ℓ− 1,m− 1)|(q − 1)qℓ+m−2.

Equation (5), and hence the proposition, follows directly from this. ✷

Note that the expression for w1(t; ℓ,m) from Equation (3) is considerably more involved that

the expression obtained in the proof of Proposition 3.1. We now turn our attention to proving
that ŵ1(t; ℓ,m) actually is the minimum distance of the code Ĉdet(t; ℓ,m). The proof involves
several identities concerning ŵ(t; ℓ,m) and ŵ(t; ℓ,m). The key is the following theorem in which
the following quantity occurs:

A(r, t) := qtŵr−1(t; ℓ− 1,m− 1) + qt−1 (µt(ℓ− 1,m)− µt(ℓ − 1,m− 1) ) , for 0 ≤ t < ℓ.

6



Theorem 3.2 Let 1 ≤ r ≤ ℓ ≤ m and 1 ≤ t < ℓ, then

ŵr(t; ℓ,m) = A(r, t)−A(r, t− 1) + qm−1µt−1(ℓ− 1,m).

Proof. Given a matrix M = (mij) ∈ Dt(ℓ,m), we denote by ψ(M) the matrix obtained from
M by deleting its r-th row. Since either ψ(M) ∈ Dt(ℓ − 1,m) or ψ(M) ∈ Dt−1(ℓ − 1,m), this
defines a map ψ : Dt(ℓ,m) → Dt(ℓ − 1,m)

⊔
Dt−1(ℓ − 1,m). It is not hard to see that ψ is

surjective. In fact:

|ψ−1(N)| =

{
qt if N ∈ Dt(ℓ− 1,m)
qm − qt−1 if N ∈ Dt−1(ℓ− 1,m)

, (7)

since if N ∈ Dt(ℓ− 1,m) we obtain all elements of ψ−1(N) by adding a row from the rowspace
of N , while if N ∈ Dt−1(ℓ− 1,m) we obtain all elements of ψ−1(N) by adding any row not from
the rowspace of N .

We will now prove the theorem by carefully counting the number of matrices M ∈ Dt(ℓ,m)
such that τr(M) 6= 0, thus computing wr(t; ℓ,m). The theorem then follows easily, since
wr(t; ℓ,m) = (q − 1)ŵr(t; ℓ,m). We distinguish four cases:

Case 1: The r-th column of ψ(M) is zero and ψ(M) has rank t,

Case 2: The r-th column of ψ(M) is zero and ψ(M) has rank t− 1,

Case 3: The r-th column of ψ(M) is non zero and ψ(M) has rank t,

Case 4: The r-th column of ψ(M) is non zero and ψ(M) has rank t− 1.

Case 1: The r-th column of ψ(M) is zero and ψ(M) has rank t. In this case mrr = 0, since
otherwise rank(ψ(M)) 6= rank(M). Therefore τr(M) 6= 0 if and only if τr−1(ψ(M)) 6= 0. By
Equation (7), we find the following contribution to wr(t; ℓ,m):

qtwr−1(t; ℓ− 1,m− 1). (8)

Case 2: The r-th column of ψ(M) is zero and ψ(M) has rank t − 1. If mrr = 0, then by a
similar reasoning as in case 1, we find a contribution to wr(t; ℓ,m) of magnitude

(qm−1 − qt−1)wr−1(t− 1; ℓ− 1,m− 1). (9)

If mrr 6= 0, the situation is more complicated. If namely τr−1(ψ(M)) = 0, then τr(M) 6= 0 if and
only if mrr 6= 0. Since rank(ψ(M)) = t− 1 and the r-th column of ψ(M) is zero, all qm−1(q− 1)
matrices with nonzero (r, r)-th entry are in ψ−1(ψ(M)). This gives a contribution to wr(t; ℓ,m)
of magnitude

qm−1(q − 1) (µt−1(ℓ − 1,m− 1)−wr−1(t− 1; ℓ− 1,m− 1)) . (10)

If on the other hand τr−1(ψ(M)) 6= 0, then τr(M) 6= 0 if and only if mrr 6= τr−1(ψ(M)). Since
we already assumed that mrr 6= 0, we find a contribution to wr(t; ℓ,m) of magnitude

qm−1(q − 2)wr−1(t− 1; ℓ− 1,m− 1). (11)

Case 3: The r-th column of ψ(M) is non zero and ψ(M) has rank t. Since the r-th column of
φ(M) is non zero, the r-th coordinates of elements from the row space of ψ(M) are distributed
evenly over the elements of Fq. This implies that regardless of the value of τr−1(ψ(M)), a

7



(q− 1)/q-th fraction of the matrices in ψ−1(ψ(M)) contribute to wr(t; ℓ,m). In total we find the
contribution:

qt−1(q − 1) (µt(ℓ− 1,m)− µt(ℓ − 1,m− 1)) . (12)

Case 4: The r-th column of ψ(M) is non zero and ψ(M) has rank t − 1. Just as in case 3,
since the r-th column of ψ(M) is non zero, the r-th coordinates of elements from the row space
of ψ(M) are distributed evenly over the elements of Fq. Therefore also the r-th coordinates of
elements not from the row space of ψ(M) are distributed evenly over the elements of Fq. By a
similar reasoning as in case 3, we find a contribution to wr(t; ℓ,m) of magnitude:

(qm−1 − qt−2)(q − 1) (µt−1(ℓ− 1,m)− µt−1(ℓ − 1,m− 1)) . (13)

Adding all contributions to wr(t; ℓ,m) from Equations (8),(9),(10),(11),(12), and (13), the the-
orem follows. ✷

Corollary 3.3 Let 1 ≤ r ≤ ℓ ≤ m and 1 ≤ t < ℓ. Then

ŵr(t; ℓ,m) = A(r, t) + qm−1νt−1(ℓ− 1,m− 1).

Proof. By Equation (4) and Theorem 3.2 we have

ŵr(t; ℓ,m) =

t∑

s=1

ŵr(s; ℓ,m)

=

t∑

s=1

(
A(r, s)−A(r, s− 1) + qm−1µs−1(ℓ− 1,m)

)

= A(r, t)−A(r, 0) + qm−1
t∑

s=1

µs−1(ℓ− 1,m).

The corollary now follows by the definition of A(r, t) and Equation (2). ✷

Corollary 3.4 Let 1 ≤ s ≤ r ≤ ℓ and 1 ≤ t < ℓ, then

ŵr(t; ℓ,m)− ŵs(t; ℓ,m) = qt (ŵr−1(t; ℓ− 1,m− 1)− ŵs−1(t; ℓ− 1,m− 1)) .

In particular
ŵr(t; ℓ,m)− ŵ1(t; ℓ,m) = qtŵr−1(t; ℓ− 1,m− 1).

Proof. Using the previous corollary, we see that

ŵr(t; ℓ,m)− ŵs(t; ℓ,m) = A(r, t)−A(s, t)

= qt (ŵr−1(t; ℓ− 1,m− 1)− ŵs−1(t; ℓ− 1,m− 1)) .

This yields the first part of the corollary. The second part follows directly by choosing s = 1. ✷

We are now ready to prove our main theorem on the minimum distance.

Theorem 3.5 Let 1 ≤ r ≤ ℓ ≤ m and 1 ≤ t ≤ ℓ. Then the minimum distance d̂ of the code
Ĉdet(t; ℓ,m) is given by

d̂ = qℓ+m−2νt−1(ℓ − 1,m− 1).
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Proof. We already know that the only ℓ nonzero weights occurring in code Ĉdet(t; ℓ,m) are
ŵ1(t; ℓ,m), . . . , ŵℓ(t; ℓ,m). Moreover, in case t = ℓ, we already know from Example 2.4 that the
minimum distance is given by

ŵ1(ℓ; ℓ,m) = qℓm−1 = qℓ+m−2νt−1(ℓ− 1,m− 1).

Therefore we may assume t < ℓ. However, in this case the second part of Corollary 3.4 implies
that ŵ1(t; ℓ,m) cannot be larger than any of the other weights, since

ŵr(t; ℓ,m)− ŵ1(t; ℓ,m) = qtŵr−1(t; ℓ− 1,m− 1) ≥ 0.

The theorem then follows from Proposition 3.1. ✷

The above theorem gives a start to proving Conjecture 2.5. Exploring the above methods,
we can do a little more as well as gain some information about codewords of minimum weight in
Ĉdet(t; ℓ,m).

Proposition 3.6 Let 1 ≤ t < ℓ, then ŵ1(t; ℓ,m) < ŵr(t; ℓ,m). The code Ĉdet(t; ℓ,m) has exactly
µ1(ℓ,m) codewords of minimum weight and these codewords generate the entire code. More

precisely, any codeword in Ĉdet(t; ℓ,m) is the sum of at most ℓ minimum weight codewords.

Proof. Choosing s = 1 in Corollary 3.4 and r ≥ 2, we obtain that

ŵr(t; ℓ,m)− ŵ1(t; ℓ,m) = qtŵr−1(t; ℓ− 1,m− 1),

so the first part of the proposition follows once we have shown that ŵr−1(t; ℓ− 1,m− 1) > 0. In
order to this, it is sufficient to produce one ℓ−1×m−1matrixM of rank t such that τr−1(M) 6= 0.
However, this is easy to do: Let P = (pij) be a t × t permutation matrix corresponding to a
permutation on t elements that fixes 1, but does not have other fixed points. Then p11 = 1,
while any other diagonal element is zero. Now take M = (mij) to be the ℓ − 1 ×m− 1 matrix
such that mij = pij if i < ℓ and j < m, while mij = 0 otherwise. Then for any r ≥ 2, we have
τr−1(M) = 1, which is exactly what we wanted to show.

Now that we know that ŵ1(t; ℓ,m) is strictly smaller than all other nonzero weights, the
minimum weight codewords are exactly those ĉf such that f has a coefficient matrix of rank 1.

This gives exactly µ1(ℓ,m) possibilities for f and hence for ĉf . Now let ĉf ∈ Ĉdet(t; ℓ,m) be
given. Assume that f has coefficient matrix F = (fij) of rank r. Since any matrix of rank r
can be written as the sum of r matrices of rank 1, we can write f = g1 + · · · + gr for certain
g1, . . . , gr ∈ Fq[X ]1 all having a coefficient matrix of rank 1. This implies that ĉf = ĉg1 + · · ·+ ĉgr ,
implying the second part of the proposition. ✷

The case t = ℓ is not covered by the above proposition. However, in that case it follows
directly from Example 2.4 that ŵ1(t; ℓ,m) = ŵr(t; ℓ,m) for any r ≥ 2. The number of codewords
of minimum weight is therefore given by qℓm−1 − 1 and they clearly generate the code.

Remark 3.7 If Conjecture 2.5 is true, then Corollary 3.4 implies that the quantities wr(t; ℓ,m)
would have a similar behaviour. More precisely, let 1 ≤ t ≤ ℓ, then it would hold that:

(i) All weights w1(t; ℓ,m), . . . ,wℓ(t; ℓ,m) are mutually distinct.

(ii) w1(t; ℓ,m) < w2(t; ℓ,m) < · · · < wℓ−t+1(t; ℓ,m).

(iii) For ℓ− t+ 2 ≤ r ≤ ℓ, the weight wr(t; ℓ,m) lies between wr−2(t; ℓ,m) and wr−1(t; ℓ,m).
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We remark that these assertions have a bearing on the eigenvalues of the association scheme of
bilinear forms (using the rank metric as distance) [3, Section 9.5.A]. Indeed, the eigenvalues of
this association scheme are precisely given by the expressions

Pt(r) :=

ℓ∑

i=0

(−1)t−iqim+(t−i

2 )
[
ℓ− i

ℓ− t

]

q

[
ℓ − r

i

]

q

(14)

occurring in Equation (3). For a general association scheme, it is not known how its eigenvalues
are ordered or if they are all distinct. See [4] for a study of the nondistinctness of some of such
eigenvalues. It is known in general that the eigenvalues exhibit sign changes (see for example [5,
Prop. 11.6.2]), which is in consonance with the conjectured behaviour of the wr(t; ℓ,m) in part
(iii) above.

4 Generalized Hamming weights of determinantal codes

We now turn our attention to the computation of several of the generalized Hamming weights
of the determinantal code Ĉdet(t; ℓ,m). Given that it was not trivial to compute the minimum
distance, this may seem ambitious, but it turns out that we can use the work carried out in
the previous section and compute the first m generalized Hamming weights without much extra
effort.

For a linear code C of length n and dimension k the support weight of any D ⊆ C, denoted
‖D‖, is defined by

‖D‖ := |{i : there exists c ∈ D with ci 6= 0}|.

For 1 ≤ s ≤ k the sth generalized Hamming weight of C, denoted ds(C), is defined by

ds(C) := min{‖D‖ : D is a subcode of C with dimD = s}.

We have d1(C) = d(C), the minimum distance of the code C, while dk(C) = n if the code C is
nondegenerate.

Theorem 4.1 For s = 1, . . . ,m, the s-th generalized Hamming weight d̂s of Ĉdet(t; ℓ,m) is given
by

d̂s = qℓ+m−s−1νt−1(ℓ− 1,m− 1).

Proof. Fix s ∈ {1, . . . ,m} and let Ls be the s-dimensional subspace of Fq[X ]1 generated by

X11, . . . , X1s. Also let Ds = Ev(Ls) be the corresponding subcode of Ĉdet(t; ℓ,m). Since Ev is
injective and linear, dimDs = s. Moreover, since the coefficient matrix of any f ∈ Ls different
from zero has rank one, it follows from Fact 2.1 that wH(ĉf ) = ŵ1(t; ℓ,m). Using the formula for
the support weight of an s-dimensional subcode given in for example [11, Lemma 12], we obtain

‖Ds‖ =
1

qs − qs−1

∑

c∈Ds

wH(c) =
qs − 1

qs − qs−1
ŵ1(t; ℓ,m).

On the other hand, since ŵ1(t; ℓ,m) is the minimum distance of Ĉdet(t; ℓ,m), it holds for any

subspace D ⊂ Ĉdet(t; ℓ,m) of dimension s that

‖D‖ =
1

qs − qs−1

∑

c∈Ds

wH(c) ≥
qs − 1

qs − qs−1
ŵ1(t; ℓ,m).
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Using Theorem 3.5, we obtain the stated formula. ✷

Though more involved, it is possible to obtain the m+ 1-th generalized Hamming weight as
well:

Proposition 4.2 Suppose that ℓ ≥ 2, then the (m+ 1)-th generalized Hamming weight d̂m+1 of

Ĉdet(t; ℓ,m) is given by

d̂m+1 = d̂m + qℓ−2νt−1(ℓ− 1,m− 1) + (qm−1 − 1)qℓ+t−1µt−1(ℓ − 1,m− 1).

Proof. Let Lm+1 ⊂ Fq[X ]1 be the m+1-dimensional space generated by X11, . . . , X1m, X21 and
write Dm+1 = Ev(Lm+1). As in the proof of [2, Lem. 2] ome readily sees that Lm+1 contains 1
function with coefficient matrix of rank 0 (namely the zero function) and exactly qm + q2− q− 1
(resp. (q − 1)(qm − q) = qm+1 − qm + q2 + q) functions with coefficient matrix of rank 1 (resp.
rank 2). Therefore we obtain that

d̂m+1 ≤
1

qm+1 − qm

∑

c∈Dm+1

wH(c)

=
1

qm+1 − qm
(
(qm + q2 − q − 1)ŵ1(t; ℓ,m) + (q − 1)(qm − q)ŵ2(t; ℓ,m)

)

= d̂m +
ŵ1(t; ℓ,m)

qm
+
qm−1 − 1

qm−1
(ŵ2(t; ℓ,m)− ŵ1(t; ℓ,m))

= d̂m + qℓ−2νt−1(ℓ− 1,m− 1) + (qm−1 − 1)qℓ+t−1µt−1(ℓ − 1,m− 1).

Where in the last equality we used Proposition 3.1, Corollary 3.4 and Equation (5). On the
other hand, in [2, Lem. 4] it is stated that any m+1-dimensional subspace of Mℓ×m contains at
most qm + q2 − q− 1 matrices of rank 1 and at least (qm − q) (q− 1) matrices of rank ≥ 2. This
implies the desired result. ✷

Finally, we will determine the final tm generalized Hamming weights. While before, we have
mainly used the description of Ĉdet(t; ℓ,m) as evaluation code, it turns out to be more convenient

now to use the geometric description of Ĉdet(t; ℓ,m) as projective system coming from D̂t. The
approach is similar to the one given Appendix A in [7], though there a completely different class
of codes was considered. The following lemma holds the key:

Lemma 4.3 The projective variety D̂t(ℓ,m) ⊂ P
ℓm−1 contains the projective space P

tm−1.

Proof. Since any matrix M ∈ Mℓ×m with at most t nonzero rows is in Dt(ℓ,m), we see that

{(mij) |mij = 0 for 1 ≤ i ≤ ℓ− t, 1 ≤ j ≤ m} ⊂ Dt(ℓ,m).

Passing to homogeneous coordinates, the lemma follows. ✷

In the language of projective systems, the s-th Generalized Hamming weight can be described
rather elegantly. If C is a code of length n and dimension k described by a projective system
X ⊂ P

k−1, then
ds(C) = n− max

codimL=s
|X ∩ L|, (15)

where the maximum is taken over all planes L ⊂ P
k−1 of codimension s (see [18, 19] for more

details). This description, combined with the previous lemma, gives the following result.
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Theorem 4.4 Let 1 ≤ t ≤ ℓ ≤ m be given integers and (ℓ − t)m ≤ s ≤ ℓm, then d̂s, the s-th

generalized Hamming weight of Ĉdet(t; ℓ,m), is given by

d̂s = n̂−
ℓm−s−1∑

i=0

qi.

Proof. First of all note that if s = ℓm, we have d̂s = n̂, since the code Ĉdet(t; ℓ,m) is nonde-
generate (see Fact 2.1). Therefore, we assume that (ℓ − t)m ≤ s < ℓm. If (ℓ − t)m ≤ s ≤ ℓm,

there exists a subplane L = Ls of codimension ℓm− s− 1 contained in D̂t(ℓ,m) by Lemma 4.3.
Clearly this choice of L in Equation (15) leads directly to the s-th generalized Hamming weight,

since in this case D̂t(ℓ,m) ∩ Ls = Ls. Since |Ls| = |Pℓm−1−s| =
∑ℓm−s−1

i=0 qi, the expression for

d̂s follows. ✷

Corollary 4.5 The minimum distance of Ĉdet(t; ℓ,m)⊥ equals 3.

Proof. From Theorem 4.4, we see that dℓm−2 = n̂ − q − 1, dℓm = n̂ − 1, and dℓm = n̂. By

duality this implies that the first generalized Hamming weights of Ĉdet(t; ℓ,m)perp (that is to say

its minimum distance) is given by d̂⊥1 = 3. ✷

Corollary 4.6 In case t = ℓ−1 all generalized Hamming weights of Ĉdet(t; ℓ,m) are known and
given by

ds =





qℓ+m−s−1νℓ−2(ℓ − 1,m− 1), if 1 ≤ s ≤ m,

n̂−
∑ℓm−s−1

i=0 qi, otherwise.

Proof. This follows by combining Theorems 4.1 and 4.4. ✷

Also in case t = ℓ Theorem 4.4 gives all generalized Hamming weights of Ĉdet(t; ℓ,m). How-

ever, in this case Ĉdet(t; ℓ,m) is simply a first order projective Reed–Muller code for which all
generalized Hamming weights are well known.
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Appendix

In this appendix we give a self-contained computation of the quantity wr(t; ℓ,m). The method
we use is different from the one Delsarte used in [9] and consequently gives rise to an alternative
formula to the one Delsarte obtained. Essentially our methods concerns the study of a refined
description of the sets Dt(ℓ,m) as the union of disjoint subsets. For M ∈ Mℓ×m, and 1 ≤ r ≤ ℓ,
we denote by M r the r ×m matrix obtained by taking the first r rows of M . We use this to
define the following quantities:
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Definition 4.7 Let 1 ≤ t ≤ ℓ ≤ m, 1 ≤ r ≤ ℓ and 1 ≤ s ≤ t. Then we define

Dt(ℓ,m; r, s) = {M ∈ Dt(ℓ,m) | rank(M r) = s}.

Further we define
w

(s)
r (t; ℓ,m) = wH((τr(M))M∈Dt(ℓ,m;r,s)),

with as before τr = X11 + · · ·+Xrr.

Note that

wr(t; ℓ,m) =

r∑

s=1

w
(s)
r (t; ℓ,m). (16)

Proposition 4.8 Let r, s, t, ℓ, and m be integers satisfying 1 ≤ t ≤ ℓ ≤ m, 1 ≤ r ≤ ℓ, and
1 ≤ s ≤ t. Then we have

|Dt(ℓ,m; r, s)| =
[m]q!

[m− t]q!
qs(ℓ−r)q(

s

2)q(
t−s

2 )
[
r

s

]

q

[
ℓ− r

t− s

]

q

.

Proof. We choose r arbitrarily and treat it as a fixed constant from now on. If ℓ < r, then
|Dt(ℓ,m; r, s)| = 0, which fits with the formula. Therefore we suppose from now on that ℓ ≥ r
and we will prove the proposition with induction on ℓ for values ℓ ≥ r.

Induction basis: If ℓ = r, thenDt(ℓ,m; r, s) = Dt(ℓ,m) if s = t, while otherwiseDt(ℓ,m; r, s) =
∅. In the latter case the proposed formula gives the correct value 0, while if s = t also the correct
value from Equation (1) is recovered. This completes the induction basis.

Induction step: Suppose ℓ > r. Let A ∈ Dt(ℓ,m; r, s). Then Aℓ−1 is an element of Dt(ℓ −
1,m; r, s) or of Dt−1(ℓ− 1,m; r, s). Conversely, a matrix from Dt(ℓ− 1,m; r, s) can be extended
(by adding a row from the rowspace of the matrix) to an element of Dt(ℓ,m; r, s) in exactly qt

ways, while a matrix from Dt−1(ℓ − 1,m; r, s) can be extended (by adding a row not from the
rowspace of the matrix) to an element of Dt(ℓ,m; r, s) in exactly qm − qt−1 ways. Therefore

|Dt(ℓ,m; r, s)| = qt|Dt(ℓ− 1,m; r, s)|+ (qm − qt−1)|Dt−1(ℓ− 1,m; r, s)|.

Using the induction hypothesis, this equation implies:

|Dt(ℓ,m; r, s)| =
[m]q!

[m− t]q!
qs(ℓ−r)q(

s

2)q(
t−s

2 )
[
r

s

]

q

[
ℓ− r

t− s

]

q

·

(
qtq−s q

ℓ−r−t+s − 1

qℓ−r − 1
+ (qm − qt−1)

1

qm−t+1
q−sq−(t−1−s) q

t−s − 1

qℓ−r − 1

)
.

However, the term between the brackets is easily seen to be equal to 1, concluding the inductive
proof. ✷

The key argument in the induction step above can also be used to prove the following.

Lemma 4.9 Let r, s, t, ℓ, and m be integers satisfying 1 ≤ t ≤ ℓ ≤ m, 1 ≤ r ≤ ℓ, and 1 ≤ s ≤ t.
Then we have

w
(s)
r (t; ℓ,m) = qtw(s)

r (t; ℓ− 1,m) + (qm − qt−1)w(s)
r (t− 1; ℓ− 1,m), if ℓ > r

and
wr(t; ℓ,m) = qtwr(t; ℓ− 1,m) + (qm − qt−1)wr(t− 1; ℓ− 1,m), if ℓ > r.
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Proof. In the proof of Proposition 4.8, we have seen that any matrix fromDt(ℓ−1,m; r, s) can be
extended to an element ofDt(ℓ,m; r, s) in exactly qt ways, while a matrix from Dt−1(ℓ−1,m; r, s)
can be extended to an element of Dt(ℓ,m; r, s) in qm − qt−1 ways. If ℓ > r the value of τr is the
same for the original matrix and its extension. This immediately implies the first equation in
the lemma. The second one follows from the first one using Equation (16). ✷

Remark 4.10 By interchanging the roles of rows and columns, one can also show that

w
(s)
r (t; ℓ,m) = qtw(s)

r (t; ℓ,m− 1) + (qℓ − qt−1)w(s)
r (t− 1; ℓ,m− 1), if m > r,

and
wr(t; ℓ,m) = qtwr(t; ℓ− 1,m) + (qℓ − qt−1)wr(t− 1; ℓ,m− 1), if m > r.

We will now derive a closed expression for the quantities ws(r, t; ℓ,m). Like in the proof of
Proposition 4.8, we will use an inductive argument with base r = ℓ. This explains why we first
settle this case separately.

Proposition 4.11 Let s, t, ℓ, and m be integers satisfying 1 ≤ ℓ ≤ m and 1 ≤ s ≤ t. Then we
have

w
(s)
ℓ (t; ℓ,m) = 0, if t 6= s,

while

w
(t)
ℓ (t; ℓ,m) = wℓ(t; ℓ,m) =

q − 1

q

(
µt(ℓ,m)− (−1)tq(

t

2)
[
ℓ

t

]

q

)
.

Proof. We have already seen thatDt(ℓ,m; r, s) = Dt(ℓ,m) if s = t, while otherwiseDt(ℓ,m; r, s) =

∅. Therefore the first part of the proposition follows, as well as the identity w
(t)
ℓ (t; ℓ,m) =

wℓ(t; ℓ,m). Now we prove that

wℓ(t; ℓ,m) =
q − 1

q

(
µt(ℓ,m)− (−1)tq(

t

2)
[
ℓ

t

]

q

)

with induction on ℓ.

Induction basis: if ℓ = 1 (implying that t = 1 as well), Proposition 3.1 (or a direct computa-
tion) implies that w1(t; 1,m) = (q − 1)qm−1, which fits with the formula we wish to show.

Induction step: Assume that the formula holds for ℓ − 1. Using Theorem 3.2 in the special
case that r = ℓ, we see that

wℓ(t; ℓ,m) = qtwℓ−1(t; ℓ− 1,m− 1)− qt−1
wℓ−1(t− 1; ℓ− 1,m− 1) +A,

where A is easily seen to be equal to

A =
q − 1

q

(
µt(ℓ,m)− qtµt(ℓ− 1,m− 1) + qt−1µt−1(ℓ− 1,m− 1)

)
,
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using the identity µt(ℓ,m) = qtµt(ℓ−1,m)+(qm−qt−1)µt−1(ℓ−1,m). The induction hypothesis
now implies that

wℓ(t; ℓ,m) =
q − 1

q

(
µt(ℓ,m)− qt(−1)tq(

t

2)
[
ℓ− 1

t

]

q

+ qt−1(−1)t−1q(
t−1

2 )
[
ℓ− 1

t− 1

]

q

)

=
q − 1

q

(
µt(ℓ,m)− (−1)tq(

t

2)

(
qt
[
ℓ− 1

t

]

q

+

[
ℓ− 1

t− 1

]

q

))

=
q − 1

q

(
µt(ℓ,m)− (−1)tq(

t

2)
[
ℓ

t

]

q

)
,

which is what we wanted to show. ✷

Now that the case r = ℓ is settled, we deal with the general case.

Theorem 4.12

w
(s)
r (t; ℓ,m) =

q − 1

q
q(

s

2)
(

[m]q!

[m− t]q!
− (−1)s

[m− s]q!

[m− t]q!

)
qs(ℓ−r)q(

t−s

2 )
[
r

s

]

q

[
ℓ− r

t− s

]

q

.

Proof. We prove the theorem by induction on ℓ. If ℓ < r, w
(s)
r (t; ℓ,m) = 0, which is consistent

with the formula. If ℓ = r, we have w
(s)
r (t; ℓ,m) = 0 if s 6= t and w

(s)
r (t; ℓ,m) = wr(t; ℓ,m) if

s = t. Using Proposition 4.11 we see that the case ℓ = r of the theorem is valid.

Now suppose ℓ > r. We may then apply Lemma 4.9 and apply the induction hypothesis.
Performing very similar computations as in the proof of Proposition 4.8, the induction step
follows. ✷

We can now state our alternative formula for wr(t; ℓ,m).

Theorem 4.13 We have

wr(t; ℓ,m) =
q − 1

q

r∑

s=1

q(
s

2)
(

[m]q!

[m− t]q!
− (−1)s

[m− s]q!

[m− t]q!

)
qs(ℓ−r)q(

t−s

2 )
[
r

s

]

q

[
ℓ− r

t− s

]

q

=
q − 1

q

(
µt(ℓ,m)−

r∑

s=0

q(
s

2)(−1)s
[m− s]q!

[m− t]q!
qs(ℓ−r)q(

t−s

2 )
[
r

s

]

q

[
ℓ− r

t− s

]

q

)
.

Proof. The first equation is a direct consequence of Equation (16) and Theorem 4.12. For the
second equation, note that

r∑

s=0

q(
s

2) [m]q!

[m− t]q!
qs(ℓ−r)q(

t−s

2 )
[
r

s

]

q

[
ℓ − r

t− s

]

q

=

r∑

s=0

|Dt(ℓ,m; r, s)| = |Dt(ℓ,m)|,

since Dt(ℓ,m) is the disjoint union of the sets Dt(ℓ,m; r, s), 0 ≤ s ≤ r. ✷

The above theorem in particular implies that

Pt(r) =

r∑

s=0

q(
s

2)(−1)s
[m− s]q!

[m− t]q!
qs(ℓ−r)q(

t−s

2 )
[
r

s

]

q

[
ℓ− r

t− s

]

q

, (17)
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where Pt(r) is the expression from Equation (14). It is not immediately clear that these two
expressions for Pt(r) are in fact equal. However, in [8, Eq. (15)] the generalized Krawtchouk
polynomial F (x, k, n) is defined (involving parameters x, k, n as well as a parameter c). If one
chooses c = qm−ℓ, n = ℓ, k = t, and x = r one obtains the polynomial Pt(r) from Equation (14).
A second and a third alternative expression for F (x, k, n) are then given in [8, Section 5.1]. The
second one (with the same choice for the parameters n, k, x, and c as before), precisely yields
Equation (17).
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