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Abstract

For a fixed set of positive integers R, we say H is an R-uniform hypergraph, or R-
graph, if the cardinality of each edge belongs to R. An R-graph H is covering if every
vertex pair of H is contained in some hyperedge. For a graph G = (V,E), a hypergraph
H is called a Berge-G, denoted by BG, if there exists an injection f : E(G) → E(H) such
that for every e ∈ E(G), e ⊆ f(e). In this note, we define a new type of Ramsey number,
namely the cover Ramsey number, denoted as R̂R(BG1, BG2), as the smallest integer
n0 such that for every covering R-uniform hypergraph H on n ≥ n0 vertices and every
2-edge-coloring (blue and red) of H , there is either a blue Berge-G1 or a red Berge-G2

subhypergraph. We show that for every k ≥ 2, there exists some ck such that for any
finite graphs G1 and G2, R(G1, G2) ≤ R̂[k](BG1, BG2) ≤ ck · R(G1, G2)

3. Moreover, we
show that for each positive integer d and k, there exists a constant c = c(d, k) such that
if G is a graph on n vertices with maximum degree at most d, then R̂[k](BG,BG) ≤ cn.

1 Introduction

A hypergraph is a pair H = (V,E) where V is a vertex set and E ⊆ 2V is an edge set.
For a fixed set of positive integers R, we say H is an R-uniform hypergraph, or R-graph for
short, if the cardinality of each edge belongs to R. If R = {k}, then an R-graph is simply
a k-uniform hypergraph or a k-graph. Given an R-graph H = (V,E) and a set S ∈

(

V
s

)

, let
deg(S) denote the number of edges containing S and δs(H) be the minimum s-degree of H,
i.e., the minimum of deg(S) over all s-element sets S ∈

(V
s

)

. When s = 2, δ2(H) is also called
the minimum co-degree of H. Given a hypergraph H, the 2-shadow(or shadow) of H, denoted
by ∂2(H), is a simple 2-uniform graph G = (V,E) such that V (G) = V (H) and uv ∈ E(G)
if and only if {u, v} ⊆ h for some h ∈ E(H). Note that δ2(H) ≥ 1 if and only if ∂2(H) is a
complete graph. In this case, we say H is covering.

There are several notions of a path or a cycle in hypergraphs. A Berge path of length
t is a collection of t hyperedges h1, h2, . . . , ht ∈ E and t + 1 vertices v1, . . . , vt+1 such that
{vi, vi+1} ⊆ hi for each i ∈ [t]. Similarly, a k-graph H = (V,E) is called a Berge cycle
of length t if E consists of t distinct edges h1, h2, . . . , ht and V contains t distinct vertices
v1, v2, . . . , vt such that {vi, vi+1} ⊆ hi for every i ∈ [t] where vt+1 ≡ v1. Note that there
may be other vertices than v1, . . . , vt in the edges of a Berge cycle or path. Gerbner and
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Palmer [10] extended the definition of Berge paths and Berge cycles to general graphs. In
particular, given a simple graph G, a hyperge graph H is called Berge-G if there is a bijection
f : E(G) → E(H) such that for all e ∈ E(G), we have e ⊆ f(e).

We say an R-graphH on n vertices contains a Hamiltonian Berge cycle (path) if it contains
a Berge cycle (path) of length n (or n − 1). We say H is Berge-Hamiltonian if it contains
a Hamiltonian Berge cycle. Bermond, Germa, Heydemann, and Sotteau [2] showed a Dirac-
type theorem for Berge cycles. We showed in [16] that for every finite set R of positive
integers, there is an integer n0 = n0(R) such that every covering R-uniform hypergraph H
on n (n ≥ n0) vertices contains a Berge cycle Cs for any 3 ≤ s ≤ n. In particular, every
covering R-graph on sufficiently large n vertices is Berge-Hamiltonian.

Extremal problems related to Berge hypergraphs have been receiving increasing attention
lately. For Turan-type results, Győri, Katona and Lemons [12] showed that for a k-graph H
containing no Berge path of length t, if t ≥ k + 2 ≥ 5, then e(H) ≤ n

t

(t
k

)

; if 3 ≤ t ≤ k, then

e(H) ≤ n(t−1)
k+1 . The remaining case of t = k + 1 was settled by Davoodi, Győri, Methuku

and Tompkins [5]. For long cycles, Füredi, Kostochka and Luo [7] showed that for k ≥ 3
and t ≥ k + 3, if H is an n-vertex k-graph with no Berge cycle of length at least t, then
e(H) ≤ n−1

t−2

(t−1
k

)

. The equality is achieved if and only if ∂2(H) is connected and for every

block D of ∂2(H), D = Kt−1 and H[D] = Kk
t−1. The cases for t ∈ {k + 1, k + 2} are settled

by Ergemlidze et al. [6]. The case when t = k is recently settled by Győri et al [13]. For
general results on the maximum size of a Berge-G-free hypergraph for an arbitrary graph G,
see for example [9, 11, 17].

For Ramsey-type results, define Rk
c (BG1, . . . , BGc) as the smallest integer n such that for

any c-edge-coloring of a complete k-uniform hypergraph on n vertices, there exists a Berge-Gi

subhypergraph with color i for some i. Salia, Tompkins, Wang and Zamora [20] showed that
R3

2(BKs, BKt) = s+ t− 3 for s, t ≥ 4 and max(s, t) ≥ 5. For higher uniformity, they showed
that R4(BKt, BKt) = t + 1 for t ≥ 6 and Rk

2(BKt, BKt) = t for k ≥ 5 and t sufficiently
large. Independently and more generally, Gerbner, Methuku, Omidi and Vizer [8] showed
that Rk

c (BKn) = n if k > 2c; Rk
c (BKn) = n+1 if k = 2c and obtained bounded on Rk

c (BKn)
when k < 2c. They also determined the exact value of R3

2(BT1, BT2) for every pair of trees.
Similar investigations have also been started independently by Axenovich and Gyárfás [1]
who focus on the Ramsey number of small fixed graphs where the number of colors may go
to infinity.

Although it is pleasant to see that the Ramsey number of Berge cliques is linear when the
number of colors are not too big relative to the uniformity, the result is also not surprising due
to the fact that Kk

n has much more edges than BKt. This motivates us to define a new type of
Ramsey number such that the host graph has relatively small number of edges. In particular,
inspired by the results in [16], we realize that the covering property of a hypergraph is closely
related to finding Berge subhypergraphs. Hence we define a new type of Ramsey number,
namely cover Ramsey number, denoted as R̂R(BG1, BG2), as the smallest integer n0 such
that for every covering R-uniform hypergraph H on n ≥ n0 vertices and every 2-edge-coloring
of H with blue and red, there is either a blue Berge-G1 or a red Berge-G2 subhypergraph in
H. Note that when R = {2}, R̂R(BG1, BG2) is exactly the classical Ramsey number. For
ease of reference, we use R̂k(BG1, BG2) to denote R̂{k}(BG1, BG2). It is easy to see that
R̂k(BG1, BG2) ≤ R̂[k](BG1, BG2).

Let Rc(G1, . . . , Gc) denote the classical multi-color Ramsey number, i.e., the smallest
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integer n such that any c-edge-coloring of Kn contains a monochromatic Gi in the i-th color
for some i ∈ [c]. When c = 2, we simply write R2(G1, G2) as R(G1, G2). We first show the
following theorem.

Theorem 1. For every k ≥ 2, there exists some constant ck such that for any two non-empty
finite graphs G1 and G2,

R(G1, G2) ≤ R̂[k](BG1, BG2) ≤ ck ·R(G1, G2)
3.

Theorem 1 implies R̂R(BG1, BG2) is always finite, thus well-defined. In fact, let k be the
greatest integer in R. We have R ⊆ [k] and

R̂R(BG1, BG2) ≤ R̂[k](BG1, BG2) ≤ ck · R(G1, G2)
3.

Note that Theorem 1 doesn’t give a lower bound for R̂k(BG1, BG2). For complete graphs
Kt, we show that the cover Ramsey number of Berge cliques is at least exponential in t. Note
that this is very different from the hypergraph Ramsey number of Berge cliques (see [20] and
[8]), which is linear.

Theorem 2. For every k ≥ 2 and sufficiently large t, we have that

R̂k(BKt, BKt) > (1 + o(1))

√
2

e
t2t/2.

Remark 1. For a fixed t and R ⊆ [k], let N(t) be the set of integers n such that for every
covering R-uniform hypergraph H on n vertices and every 2-edge-coloring of H, there is a
monochromatic Berge-Kt. We remark that N(t) may not be a single interval. However, by
Theorem 1, there exists some n0 such that [n0,∞) ⊆ N(t).

For a graph G with bounded maximum degree, Chvátal, Rödl, Szemerédi and Trotter
showed in [4] that for each positive integer d, there exists a constant c = c(d) such that if
G is a graph on n vertices with ∆(G) ≤ d, then R(G,G) ≤ cn. In this note, we show that
the cover Ramsey number of Berge bounded-degree graphs is also linear. The proof uses a
modification of the proof of Chvátal, Rödl, Szemerédi and Trotter in [4] that allows for more
than two colors.

Theorem 3. For each positive integer d and k, there exists a constant c = c(d, k) such that
if G is a graph on n vertices with maximum degree at most d, then

R̂[k](BG,BG) ≤ cn.

Theorem 3 implies that for fixed integers k and d, there is a constant c := c(d, k) such
that R̂[k](BG,BG) ≤ cR(G,G) holds for any graph G with maximum degree at most d. It is

an interesting question whether lim
t→∞

R̂[k](BKt, BKt)

R(Kt,Kt)
= ∞ for all k ≥ 3.
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2 Proof of Theorem 1

Proof of Theorem 1. The lower bound that R̂[k](BG1, BG2) ≥ R(G1, G2) is clear from the
definition since R(G1, G2) = R̂{2}(BG1, BG2) ≤ R̂[k](BG1, BG2).

For the upper bound, given k ≥ 2, set ck = k3/12. Let H = (V,E) be a 2-edge-colored
R-graph on n = ckR(G1, G2)

3 vertices. Assume further that H is edge-minimal with respect
to the covering property. Suppose E = {h1, h2, . . . , hm} where m = |E|. Since H is edge-
minimal and covering, it follows that

(n
2

)

/
(k
2

)

≤ m ≤
(n
2

)

.
Now let S ⊆ V be a uniformly and randomly chosen subset of V of size s = R(G1, G2).

For each i ∈ [m], let Bi be the event that |hi ∩ S| ≥ 3. It is not hard to see that

Pr (Bi) ≤
(

k

3

)

(

n−3
s−3

)

(

n
s

) .

Taking a union bound over all Bi, we have that

Pr (B1 ∨ . . . ∨Bm) ≤
(

n

2

)(

k

3

)

(n−3
s−3

)

(

n
s

)

= 3

(k
3

)(s
3

)

n− 2

< 1.

The last step is due to the following inequality:

n =
k3

12
s3 ≥ 3

((

k

3

)

+ 1

)((

s

3

)

+ 1

)

> 3 + 3

(

k

3

)(

s

3

)

for any k ≥ 2 and s ≥ 2. Hence with positive probability, there exists S ⊆ V with |S| =
R(G1, G2) such that every hyperedge intersects S in at most 2 points. Now consider the trace
of H on S, denoted by G = HS. By the covering property and the choice of S, G is a complete
graph (ignoring edges of cardinality 1). Recall that by definition, E(G) = {h∩S : h ∈ E(H)}.
Hence for each edge e ∈ G, there exists some h = φ(e) ∈ E(H) such that e = h∩S. Moreover,
for e1 6= e2, φ(e1) 6= φ(e2) due to the choice of S. Now for each edge e ∈ E(G), color the
edge e with the same color of φ(e) in H. Since |S| = R(G1, G2), it follows that there exists
either a blue G1 or a red G2 in G, which corresponds to a blue Berge G1 or a red Berge G2

in H. This shows that R̂[k](BG1, BG2) ≤ k3/12 ·R(G1, G2)
3.

3 Proof of Theorem 2

The construction comes from a random 2-edge-coloring of a covering k-unifrom hypergraph
that is obtained from a combinatorial design.

A resolvable BIBD, denoted as BIBD(n, k, λ), is a collection P1, . . . , Pm of partitions of
an underlying n-element set into k-element subsets such that every 2-element subset of the
n-element set is contained by exactly λ of the mn

k k-element sets listed in the partitions. We
restrict ourselves to λ = 1, that is, each 2-element subset of the n-element set is contained in
one and only one of the k-element sets listed in the partitions.
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Note that the existence of such a design implies that |Pi| = n
k and mn

k

(k
2

)

=
(n
2

)

, i.e.
m = n−1

k−1 , which gives the well known necessary condition that n ≡ k (mod k(k− 1)) for the
existence of such a resolvable BIBD. For the k = 3 case (which is commonly called a Kirkman
triple system to honor Kirkman [15] who posed the problem) it is also a sufficient condition
[19], and for k = 4 the corresponding n ≡ 4 (mod 12) is also a sufficient condition [14]. For
every k, the congruence is also a sufficient condition for all n > n0(k) [18]. Also, for every
even k ≥ 4, the congruence implies existence for n > exp{exp{k18k2}} [3].

Proof of Theorem 2. For a fixed k ≥ 2, let t0 be sufficiently large such that for all n ≥
(1 + o(1)) t0

√
2

e 2t0/2 and n ≡ k (mod k(k − 1)), a resolvable BIBD (n, k, 1) exists.

Let t ≥ t0 and n = (1 + o(1)) t
√
2

e 2t/2. Assume that n is an integer such that a resolvable
BIBD (n, k, 1) exists. LetH = (V,E) be a k-uniform hypergraph such that V is the underlying
n-element set of the resolvable BIBD (n, k, 1) and E is the collection of k-element sets listed
in the partitions P1, . . . , Pm. Note that by the definition of (n, k, 1), H is a covering k-graph
with

(n
2

)

/
(k
2

)

edges and every vertex pair of H is contained in exactly one hyperedge.
Our goal is to construct a coloring of H with no monochromatic BKt as subhypergraph.

Color each hyperedge of H in blue and red uniformly and randomly with probability 1/2.
For any set S of t vertices, let AS be the bad event that S induces a monochromatic BKt.
We will apply the Lovasz Local Lemma to show that we can avoid all bad events {AS : S ⊆
V and |S| = t}.

Note that by the definition of (n, k, 1), for each vertex pair of S, there exists a unique
hyperedge containing that vertex pair. Hence there is at most one Berge-Kt with S as the
underlying vertex set. Furthermore, if there is a Berge-Kt with S as the underlying vertex
set, then the hyperedges containing the vertex pairs of S are all distinct. Hence

Pr (AS) =

{

21−(
t

2
) if there is no h ∈ E(H) such that |h ∩ S| ≥ 3,

0 otherwise.

Two bad events AS and AT are independent if there is no edge f intersecting both S and T
on exactly two vertices. For a fixed event AS , the number d of bad events AT dependent on
AS satisfies

d ≤
(

t

2

)(

k

2

)(

n− 2

t− 2

)

− 1.

Applying the symmetric version of the Lovasz Local Lemma [21], if e(d+ 1)Pr (AS) < 1 for
all S, then Pr

(
∧

S AS

)

> 0.
It suffices to have

e ·
(

t

2

)(

k

2

)(

n− 2

t− 2

)

21−(
t

2
) < 1,

which is satisfied if we choose n = (1+ o(1))
√
2
e t2t/2. Hence there exists a coloring of H with

no monochromatic Berge Kt as subhypergraph. It follows by definition that R̂k(BKt, BKt) >

(1 + o(1))
√
2
e t2t/2.
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4 Proof of Theorem 3

The proof of Theorem 3 uses a modification of the proof Chvátal, Rödl, Szemerédi and Trotter
in [4] to allow for more than two colors. For the reason of self-completeness, we state and give
the details in this section. Let Rc(G) denote the multicolor Ramsey number Rc(G,G, . . . , G).

Theorem 4. [4] For each positive integer c and d, there exists a constant C = C(c, d) such
that if G is a graph on n vertices with maximum degree at most d, then Rc(G) ≤ Cn.

We first show how Theorem 4 implies Theorem 3.

Proof of Theorem 3. For fixed positive integers d and k, let C = C(2
(

k
2

)

, d) be the constant
obtained from Theorem 4. We will show that if G is a graph on n vertices with maximum
degree at most d, then R̂[k](BG,BG) ≤ Cn.

Let H = (V,E) be a 2-edged-colored covering [k]-graph on N = Cn vertices. Suppose
E = {h1, . . . , hm}. For each hi, give each vertex pair uv ⊆ hi a unique label φhi

(uv) in [
(k
2

)

].

Now consider a 2
(

k
2

)

-edge coloring of KN : for each uv ∈ E(KN ), pick an arbitrary hyperedge
h ∈ E(H) such that {u, v} ⊆ h. Such h exists since H is covering. If h is colored blue in H,
then color uv ∈ E(KN ) with a color represented by the ordered pair (1, φh(uv)); if h is red in
H, then color uv with a color represented by the ordered pair (2, φh(uv)). Note that KN is a
2
(k
2

)

-edge-colored graph. Since N = Cn, by the definition of multi-color Ramsey number, it
follows that if G is a graph on n vertices with maximum degree at most d, then KN contains
a monochromatic G as subgraph. WLOG, suppose G is colored (1, r) where 1 ≤ r ≤

(k
2

)

.
Now by our construction, for each e ∈ E(G), there exists hyperedge h = h(e) such that h is
colored blue in H. Moreover we claim that for e1 6= e2 ∈ E(G), h(e1) 6= h(e2). Suppose not,
i.e., h contains both e1 and e2. Then φh(e1) 6= φh(e2), which contradicts that e1, e2 receives
the same color in KN . Hence, it follows that we can find a monochromatic Berge copy of G
in H.

In the remaining of this section, we will give a proof of Theorem 4. We remark again that
the proof follows along the same line of [4] and we are only giving the details here for the
sake of self-completeness.

As suggested by [4], the proof requires a generalization of the regularity lemma, which is an
easy modification of the original proof in [22]. Given a graph G, let V (G) = A1∪A2∪· · ·∪Ak

be a partition of V (G) into disjoint subsets. We call such partition equipartite if ||Vi|−|Vj || ≤ 1
for all i, j ∈ [k]. Moreover, given two disjoint sets X,Y ⊆ V (G), the edge density of (X,Y ),
denoted as d(X,Y ), is defined as d(X,Y ) = |e(X,Y )|/|X||Y | where e(X,Y ) = {xy ∈ E(G) :
x ∈ X, y ∈ Y }.

Lemma 1. For every ǫ > 0 and integers c,m, there exists an M and N0 such that if the
edges of a graph G on n ≥ N0 vertices are c-colored, then there exists an equipartite partition
V (G) = A1 ∪A2 ∪ . . .∪Ak for some m ≤ k ≤ M , such that all but at most ǫk2 pairs (Ai, Aj)
are ǫ-regular: for every X ⊆ Ai and Y ⊆ Aj with |X| ≥ ǫ|Ai|, |Y | ≥ ǫ|Aj |, we have

|ds(X,Y )− ds(X,Y )| < ǫ

for each s ∈ [c] where ds is the edge-density in the s-th color.

6



Proof of Theorem 4. Let d be any positive integer. Let N be large enough so that if we define
ǫ = 1/N , then 1

c log(2c) log
(

1
2ǫ

)

≥ d + 1. Observe that with this choice of N , we also have

1/(2c)d > 2d2ǫ. Let M,N0 be the constants given by Lemma 1 when c is the number of colors
and m = 1/ǫ. Set C = C(c, d) = max{N0,M/d2ǫ}.

Now let G be a graph on n vertices x1, . . . , xn and maximum degree at most d. Consider
an arbitrary c-coloring of KCn. Let H1, . . . ,Hc denote the subgraphs of G induced by each
of the c colors respectively. By Lemma 1, there exists an equipartite partition V (KCn) =
A1 ∪ A2 ∪ . . . ∪ Ak that satisfies the regularity condition for each color class, i.e., for each
i ∈ [c], V (Hi) = A1 ∪A2 ∪ . . . ∪Ak gives an equipartite ǫ-regular partition.

Let H∗ denote the graph whose vertex set is {Ai : i ∈ [k]} and AiAj is an edge if and only

(Ai, Aj) is ǫ-regular in H. By Lemma 1, |E(H)| ≥ (1 − ǫ)
(k
2

)

. Hence by Turan’s theorem,
there exists a complete subgraph H∗∗ of H∗ of size at least 1/2ǫ. WLOG (with relabeling),
assume that V (H∗∗) = {Ai : 1 ≤ i ≤ 1/2ǫ}. Now for each Ai, Aj ∈ V (H∗∗), color the edge
AiAj with color s if ds(Ai, Aj) is the largest among all colors in [c] (break arbitrarily if the
same). Recall that Rc(Kt) ≤ cct and 1

c log(2c) log
(

1
2ǫ

)

≥ d + 1 by our assumption. Hence

we have that 1/2ǫ ≥ Rc(Kd+1). Then it follows from Ramsey’s theorem that there is a
monochromatic complete subgraph H∗∗∗ with d + 1 vertices. WLOG, H∗∗∗ is in color 1.
Then we can relabel the sets in the partition so that

(i) (Ai, Aj) is ǫ-regular, and

(ii) d1(Ai, Aj) ≥ 1
c

for all i, j with 1 ≤ i < j ≤ d+ 1. We then claim that H1 contains a copy of G. Recall that
V (G) = {xi : i ∈ [n]}. We will choose y1, y2, . . . , yn ∈ V (H1) inductively so that the map
φ : xi → yi is an embedding of G in H1. In particular, the points are chosen so that for each
i ∈ [n], the following are satisfied:

(a) yt ∈ Aj for some j ∈ [d+ 1] for each t ∈ [i].

(b) For t1, t2 ∈ [i], if xt1xt2 ∈ E(G), then yt1 , yt2 are adjacent in H1 and are in different
partition.

(c) For i < t ≤ n, define V (t, i) = {yj : j ∈ [i], xjxt ∈ E(G)}. For each r ∈ [d + 1] such
that Ar ∩ V (t, i) = ∅, Ar contains a subset A′

r having at least |A′
r|/(2c)|V (t,i)| so that

every point in A′
r is adjacent to every point in V (t, i).

Suppose that for some i ∈ [n], the points {yt : t ≤ [i]} are already chosen so that the
conditions (a)-(c) above are satisfied. We will then pick yi+1 so that conditions (a)-(c) remain
true.

First pick some r0 ∈ [d+1] so that Ar0 ∩V (i+1, i) = ∅. This is possible since the degree
of xi+1 is at most d. By condition (c), there exists A′

r0 ⊆ Ar0 such that |A′
r0 | ≥ |Ar0 |/(2c)ℓ

where ℓ = |V (i+1, i)|. Moreover, each vertex of A′
r0 is adjacent to every vertex of V (i+1, i).

It’s easy to see that with any choice of yi+1 from A′
r0 , condition (a) and (b) are clearly

satisfied. For condition (c), observe we only need to handle the values of i + 1 < t ≤ n
such that xtxi+1 ∈ E(G). There are at most d such values since d(xi+1) ≤ d. Pick one
such t arbitrarily. Now pick an arbitrary r 6= r0 such that Ar ∩ V (t, i) = ∅. Observe
ℓ′ = |V (t, i + 1)| = |V (t, i)| + 1. By condition (c), we already know that there exists some

7



A′
r ⊆ Ar such that |A′

r| ≥ |Ar|/(2c)ℓ′−1 ≥ ǫ|Ar| and every vertex of A′
r is adjacent to every

vertex of V (t, i). Now since (Ar, Ar0) is ǫ-regular and d1(Ar, Ar0) ≥ 1
c , it follows that at most

ǫ|Ar0 | of the points in A′
r0 are adjacent to less than 1

2c of the points in A′
r. Fixing t and

proceeding through all values of r, we would eliminate at most dǫ|Ar0 | candidates for yi+1

in A′
r0 . Ranging over all of the d possible values of t, we then eliminate at most d2ǫ|Ar0 |

candidates of yi+1 in A′
r0 . Moreover, there are at most n points in A′

r0 that may have been
selected previously already. Since the number of partitions k ≤ M and C ≥ M/d2ǫ, we have
that |Ar0 | ≥ Cn/M , which implies that n ≤ d2ǫ|Ar0 |.

In order to be able to pick yi+1, it suffices to show that |A′
r0 | > 2d2ǫ|Ar0 |. This holds

because |A′
r0 |/|Ar0 | > 1/(2c)d > 2d2ǫ. This completes the proof of the theorem.
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