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Abstract

A Gallai coloring of a complete graph Kn is an edge coloring without tri-
angles colored with three different colors. A sequence e1 ≥ · · · ≥ ek of positive
integers is an (n, k)-sequence if

∑k
i=1 ei =

(
n
2

)
. An (n, k)-sequence is a G-

sequence if there is a Gallai coloring of Kn with k colors such that there are
ei edges of color i for all i, 1 ≤ i ≤ k. Gyárfás, Pálvölgyi, Patkós and Wales
proved that for any integer k ≥ 3 there exists an integer g(k) such that every
(n, k)-sequence is a G-sequence if and only if n ≥ g(k). They showed that
g(3) = 5, g(4) = 8 and 2k − 2 ≤ g(k) ≤ 8k2 + 1.

We show that g(5) = 10 and give almost matching lower and upper bounds

for g(k) by showing that with suitable constants α, β > 0, αk
1.5

ln k ≤ g(k) ≤ βk1.5
for all sufficiently large k.
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1 Introduction

Gallai colorings (a term introduced in [6] referring to a concept of Gallai [4]) of
complete graphs are edge colorings that do not contain triangles colored with three
different colors. We shall abbreviate Gallai colorings as G-colorings. Observe that
every 2-coloring of the edges of the complete graph Kn is a G-coloring but the number
of colors in a G-coloring is not fixed.

Ramsey-type problems for G-colorings have been investigated in several papers
such as [6, 7, 8, 9] and the statistical behaviour of the number of G-colorings have
been studied in [1, 2, 3]. A recent work [5] explored the distribution of colors in
G-colorings and this note contributes to a problem exposed there.

We call a sequence e1, . . . , ek of nonnegative integers an (n, k)-sequence if
∑k

i=1 ei =(
n
2

)
. An (n, k)-sequence is a G-sequence if there is a G-coloring of Kn with k colors

such that there are ei edges of color i for all i, 1 ≤ i ≤ k. A sequence e1, . . . , ek is
ordered if e1 ≥ · · · ≥ ek.

The following decomposition theorem plays a central role in the theory of G-
colorings. It was formulated in [6] but implicitly it was already in [4].

Theorem 1.1. [Theorem A, [6]] Assume that we have a G-coloring on Kn with at
least three colors. Then there exist at most two colors, say 1, 2, and a decomposition
of Kn into m ≥ 2 vertex disjoint complete graphs Kni

(1 ≤ i ≤ m) so that all edges
between V (Kni

) and V (Knj
) are colored with the same color and that color is either

1 or 2.

We call the (at most) two colors in Theorem 1.1 base colors, and call the edges
within the disjoint complete graphs internal edges. Theorem 1.1 can be stated in
a slightly stronger form observing that if one of the base colors does not span a
connected subgraph of Kn then the other base color provides a decomposition of Kn

with one base color, spanning a connected subgraph of Kn. This leads to the following
corollary.

Corollary 1.2. There exists a decomposition according to Theorem 1.1 where all (two
or one) base colors span a connected subgraph of Kn. Thus in a suitable decomposition,
all base colors have at least n− 1 edges.

It was proved in [5] that for any integer k ≥ 2 there is a (unique) integer g(k) with
the following property: there exists a Gallai k-coloring of Kn with ei edges in color
i for every e1, . . . , ek satisfying

∑k
i=1 ei =

(
n
2

)
, if and only if n ≥ g(k). The bounds

2k − 2 ≤ g(k) ≤ 8k2 + 1 were given in [5]. It was also proven in [5] that g(3) = 5
and g(4) = 8. In this paper, we improve the upper and lower bounds and show that
g(5) = 10. Specifically, we prove the following theorems:
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Theorem 1.3. There exists a constant β > 0 such that g(k) ≤ βk3/2 for all suffi-
ciently large k. In fact, β ≤ β(k), where β(k)→ 2

√
3 as k →∞.

Theorem 1.4. There exists a constant α > 0 such that g(k) ≥ αk1.5

ln k
for all sufficiently

large k. In fact, α ≥ α(k), where α(k)→ 1 as k →∞.

Theorem 1.5. The (9, 5)-sequence 12, 6, 6, 6, 6 is not a G-sequence but all (10, 5)-
sequences are G-sequences. Thus g(5) = 10.

In Section 2 we prove Theorem 1.3 with an algorithm whose input is an (n, k)-
sequence with an arbitrary n satisfying n ≥ β(k)k3/2 and whose output is a G-coloring
of Kn. The algorithm works using a series of simple decompositions called cuts that
use one base color to separate the graph into 2 parts according to Corollary 1.2. The
algorithm ensures that the iterated decomposition process never stops with a part Ka

with a > 1 because there is always a term in the actual sequence with value at least
a− 1 .

Section 3 is devoted to proving Theorem 1.4 regarding lower bounds on g(k). We
explicitly construct a family of color sequences and show that any possible decom-
position steps for these sequences cannot decompose the complete graph down past
a certain size. This implies that these sequences are not G-sequences and provide a
lower bound on g(k).

Section 4 gives the proof of Theorem 1.5, reducing (10, 5)-sequences by cuts to 4-
sequences realizable by G-colorings on a smaller complete graph. Although we found
some tools to limit the number of cases within a plausible range, the full analysis is
rather long, predicting that it is difficult to determine g(k) exactly.
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2 Proof of Theorem 1.3

The proof of Theorem 1.3 is separated into four subsections. The first defines an
algorithm to provide G-colorings using simple decomposition steps. For technical
reasons it is convenient to extend the definition of (n, k)-sequences allowing sequences
e1, . . . , ek with

∑k
i=1 ei ≥

(
n
2

)
edges. The second subsection partitions (n, k)-sequences

that are not G-colorable by the algorithm into classes, called irreducibility classes. In
the third subsection we show that each class of (2k, k)-sequences has G-colorings if∑k

i=1 ei is large enough. In the last subsection we prove Theorem 1.3.

2.1 A G-Coloring Algorithm

Definition 2.1. Assume that Kn is partitioned into two parts, a Kn−j and a Kj.
The set of edges between them is called a cut.

Algorithm 2.2. For a given input (n, k)-sequence s = (e1, . . . , ek) (allowing
∑k

i=1 ei ≥(
n
2

)
as discussed above) we define an algorithm to G-color Kn using only cuts to color

all edges of the cut with the same color. A “branch” of the algorithm works as follows:

1. Define S to be a set that will contain vertex disjoint complete graphs whose
union contains all n vertices. Initially let S = {Kn}.

2. Pick Ka ∈ S such that a ≥ b ∀ Kb ∈ S and remove Ka from S.

3. Partition Ka into two vertex disjoint complete subgraphs Ka1 and Ka2 so that
a1a2 ≤ ei for some i. If there are multiple colors that satisfy this inequality,
choose one to be i. Color all edges of the cut Ka1 , Ka2 with color i. Adjust the
actual sequence e1, . . . , ek by replacing ei with ei − a1a2 and go to the next step
(step 4). If there is no cut with the condition, i.e. ei < a− 1 for all i ∈ [k], exit
this loop. In this case, he branch is terminated and called irreducible at Ka.

4. Add Ka1 and Ka2 to S.

5. As long as S contains a graph with more than one vertex, repeat from step 2.

Each branch of algorithm 2.2 can be represented by a path on a graph where
vertices correspond to iterations within the branch and are labeled with the actual
partition S and with the actual sequence (e1, ..., ek) at the beginning of the iterations.
Furthermore, all of these branches can be linked together on a tree (see Example 2.3)
with S = {Kn} and the initial (n, k)-sequence at the root. The G-coloring algorithm
is then just a depth-first search on this tree and will stop at the first place where
S = {K1, ..., K1}. If this never happens then all branches are irreducible. In this case
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the input sequence of the algorithm is called irreducible as well.

Example 2.3. The following shows three branches of the decomposition of K8 with
the sequence (14, 8, 3, 3). Terms in S that are K1’s are not shown for brevity. Terms
are not reordered after cuts for the sake of clarity:

{K8}, (14, 8, 3, 3)

{K7}, (7, 8, 3, 3)

{K6}, (7, 2, 3, 3)

{K5}, (2, 2, 3, 3)

{K6, K2}, (2, 8, 3, 3)

{K5, K2}, (2, 3, 3, 3) {K4, K2, K2}, (2, 0, 3, 3)

{K3, K2, K2}, (2, 0, 0, 3)

{K2, K2, K2}, (0, 0, 0, 3)

{K2, K2}, (0, 0, 0, 2)

{K2}, (0, 0, 0, 1)

{}, (0, 0, 0, 0)

2.2 Irreducibility Classes

For an irreducible (n, k)-sequence each branch of algorithm 2.2 is irreducible and
stops with a Kp and a sequence e1, . . . , ek with ei < p − 1 for all i. For different
attempts to decompose Kn, branches may stop when trying to decompose different
Kp’s. However, there are a finite number of distinct partial decompositions of Kn

that can be attempted, so we can define a minimum p for each sequence. We call this
p the lowest stopping point of the decomposition of Kn with this sequence.
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Definition 2.4. For an (n, k)-sequence s with sum m, let f(s) be the lowest stopping
point of the decomposition of Kn with s. Then, for p ≥ 2, we define the irreducibility
class Inp (m) as

Inp (m) = {s : f(s) = p}

.

Lemma 2.5. For n ≥ 2kj − j + 1, a decomposition of Kn with an (n, k)-sequence
into two subgraphs Kn−j and Kj can always be performed. Additionally, for j = 1, a
decomposition can be performed for n = 2k − 1.

Proof. For n = 2kj − j + 1,

n(n− 1) = (2kj − j + 1)(2kj − j) > 2kj(2kj − 2j + 1) =⇒
(
n
2

)
k

> j(n− j)

We also have that if the previous inequality is true for n and n ≥ kj,(
n+ 1

2

)
=

(
n

2

)
+ n > kj(n− j) + kj = kj(n+ 1− j) =⇒

(
n+1
2

)
k

> j(n+ 1− j)

Thus for all n ≥ 2kj − j + 1, we have that
(n
2)
k
> j(n − j). This means there must

be some term in the (n, k)-sequence that is greater than j(n− j) and can be used as
the base color to remove a Kj.
Additionally, for j = 1 and n = 2k − 1,⌈(

2k−1
2

)
k

⌉
=

⌈
(2k − 1)(2k − 2)

2k

⌉
=

⌈
2k − 2− 2k − 2

2k

⌉
= 2k − 2

Thus there must be a color with at least (2k − 1) − 1 edges so it can be used as a
base color to remove a K1. �

Corollary 2.6. Fix a positive integer k. For n and p ≥ 2k − 1 and for all m ≥
(
n
2

)
,

Inp (m) = ∅.

Proof. If n < p then, because the decomposition algorithm 2.2 starts with a Kn

and decomposes it, there will never be a Kp in S. For n ≥ p, since p ≥ 2k − 1, a
decomposition can always be performed on Kp by Lemma 2.5. �

Lemma 2.7. Assume that k(p− 2) ≤ m and s = (e1, . . . , ek) ∈ Inp (m) is an ordered
(n, k)-sequence with e1 ≥ · · · ≥ ej > p− 2 ≥ ej+1 ≥ · · · ≥ ek. Then, for some q ≥ p,
there exists an ordered (n, k)-sequence s′ = (f1, . . . , fk) ∈ Inq (m) with fj+1 = · · · =
fk = p− 2.
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Proof. Let t be the smallest integer in [j + 1, k] such that et < p − 2. If no such t
exists then set s′ = s. Otherwise, because k(p − 2) ≤ m, we can define an ordered
sequence s1 as follows. Increase et by one and decrease some ei with i ∈ [1, j] by one.
We can repeat these modifications to get s2, . . . , sw such that all terms of sw with
index at least j + 1 are equal to p− 2 and all terms with index at most j are at least
p− 2. Set s′ = sw. Then algorithm 2.2 on s′ cannot use colors other than the first j
to decompose any Ka. Because fi ≤ ei for i ∈ [1, j] and the first j colors of s could
not decompose Kn past Kp, the first j colors of s′ cannot decompose Kn past Kp. �

Corollary 2.8. If there are no ordered (n, k)-sequences ending in a nonnegative num-
ber of (p− 2)’s in any Inq (m) for q ≥ p, then Inp (m) = ∅.

When we say a nonnegative number of (p − 2)’s, and this number is 0, what we
really mean is a sequence in which all of the terms are greater than (p− 2). However,
phrasing it in this way will be useful in the next section.

2.3 Tail Length Classes

Definition 2.9. For an ordered (n, k)-sequence, s = (e1, . . . , ek) and a fixed value r,
define the tail length lr(s) to be the number of terms in the sequence less than or equal
to r. For 0 ≤ l ≤ k, Let the tail length class Lr(l) be defined as

Lr(l) = {s : lr(s) = l}

Note that for any fixed r, the sets {Lr(l)} partition the set of (n, k)-sequences.

Lemma 2.10. Fix the integers k > 0 and p < 2k − 1. If there is an m such
that I2kq (m) = ∅ for all q ≥ p + 1, then I2kq′ (m + x) = ∅ for all q′ ≥ p where
x = min(k − 1, p− 1).

Proof. Suppose I2kq′ (m + x) 6= ∅ for some q′ ≥ p where x = min(k − 1, p − 1). Then
there is an ordered sequence s = (e1, . . . ., ek) with sum at least m+ x decomposable
to Kq′ but not any further.
Case 1. q′ > p.

Because x < 2k− 1, s′ = (e1−x, . . . , ek) is a sequence with k terms and with sum
at least m and can thus be decomposed past Kq′ . This contradicts the assumption of
the lemma.
Case 2. q′ = p. We know from Case 1 that I2kq′ (m + x) = ∅ for all q′ > p so we can
always decompose (e1, . . . , ek) at least until Kp. Applying Corollary 2.8 with n = 2k
and m + x as the sequences’ sum, we have that s ∈ Lp−2(l) for some l. We separate
this case into two subcases.
Subcase 2.1. s ∈ Lp−2(l) with l ≤ p− k − 1.
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Each base color in a decomposition of Kn removes at least a K1 from it. Thus
because 2k − p vertices are removed in the series of decompositions from K2k to Kp,
a maximum of 2k− p colors could have been used as base colors to decompose to Kp.
The total number of ei > p− 2 is

k − l ≥ k − (p− k − 1) = 2k − p+ 1.

Thus there must be at least one ei with ei > p− 2 that has not been used as a base
color. We have that this ei ≥ p − 1 so we can use it to decompose the Kp, contra-
dicting the assumption of the lemma.

Subcase 2.2. s ∈ Lp−2(l) with l ≥ p− k.
Write s = (e1, . . . , ej, p − 2, . . . , p − 2) (where j = k means no trailing p − 2’s).

Since the sum of s is m + min(k − 1, p − 1) and p < 2k − 1, we have e1 > p − 1.
Consider the sequence s′ = (e1− (p− 1), e2, .., ej, p− 1, . . . , p− 1) with l p− 1’s. The
sum of s′ is

(m+ x)− (p− 1) + l.

If p− k ≥ 0, then k − 1 ≤ p− 1 and

(m+ x)− (p− 1) + l ≥ (m+ k − 1)− (p− 1) + (p− k) = m.

If p− k < 0, then p− 1 < k − 1 and because l ≥ 0,

(m+ x)− (p− 1) + l ≥ (m+ p− 1)− (p− 1) + 0 ≥ m.

Thus the sequence s′ will always have sum greater than or equal to m. By the given, it
can be reduced down to Kp and by Corollary 1.2 this can be done using only the first
j colors. Then for s the same decomposition can be used to guarantee an ei ≥ p− 1.
This can then be used to decompose the Kp. Thus no (2k, k)-sequence ending in a
nonnegative number of p−2’s is in I2kp (m+x) so by Corollary 2.8, I2kp (m+x) = ∅. �

Corollary 2.11. If s = (e1, . . . , ek) is a (2k, k)-sequence with e1 + . . . + ek =
(
2k
2

)
+

3k2−7k+2
2

, then s is G-colorable.

Proof. • p ≥ 2k − 1. Corollary 2.6 with n = 2k,m =
(
2k
2

)
implies I2kp (

(
2k
2

)
) = ∅.

• p ∈ [k, 2k − 2]. Lemma 2.10 implies that

∀ q ≥ p+ 1, I2kq (m) = ∅ =⇒ ∀ q ≥ p, I2kq (m+ k − 1) = ∅.

Performing this for all values of p in this range we get

m =

(
2k

2

)
+ (k − 1)2 =⇒ ∀ q ≥ k, I2kq (m) = ∅.
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• p ∈ [3, k − 1]. Lemma 2.10 gives that

∀ q ≥ p+ 1, I2kq (m) = ∅ =⇒ ∀ q ≥ p+ 1, I2kq (m+ p− 1) = ∅.

Performing this for all values of p in this range gives that

m =

(
2k

2

)
+(k−1)2+

(
k − 1

2

)
−1 =

(
2k

2

)
+

3k2 − 7k + 2

2
=⇒ ∀q ≥ 3, I2kq (m) = ∅.

We have that I2k2 (m) is empty because if there is an edge left, it can always be
used to color a K2. Additionally, observing that the decomposition of Algorithm 2.2
ensures that nothing bigger than a K1 is added to S during the decomposition of K2k,
there are no extra components that may be too large to color. �

2.4 G-coloring of Kn

To prove Theorem 1.3 we will use Lemma 2.5 to decompose Kn (for n large enough)
down to K2k in such a way that

∑
Ki∈S

(
i
2

)
≥ 3k2−7k+2

2
. By Corollary 2.11, we can

then color the K2k. Letting n = 2k(n0 + 1), for some n0, we will remove as many
Kn0 ’s as possible from the Ka’s with a ∈ [2kn0, 2k(n0 + 1)] which we can do by
Lemma 2.5. We will then remove as many Kn0−1’s as possible from the Ka’s with
a ∈ [2k(n0− 1), 2kn0]. Each time we remove a Kj from Ka, the next largest graph in
S will be Ka−j. To find a lower bound on the number of Kj we can remove from the
Ka with a ∈ [2kj, 2k(j+1)], we should assume we have removed a Kj+1 from K2k(j+1)

and remove as many Kj’s as we can from the Ka with a ∈ [2kj, 2k(j + 1) − j − 1],
removing one from K2kj, K2kj+j, ..., K2kj+yj where yj ≤ 2k− j−1. Solving this yields

y =

⌊
2k − j − 1

j

⌋
.

So, the number of Kj’s that we will remove is
⌊
2k−1
j

⌋
. Thus we want our n0 to satisfy

n0∑
i=2

⌊
2k − 1

i

⌋(
i

2

)
>

3k2 − 7k + 2

2

All that is left to show is that we can color the remaining small components in S after
K2k is decomposed and that we can successfully determine the value of n0. To do the
first part, we will show that when trying to decompose a Kj ∈ S, there is always a
color with greater than or equal to j − 1 edges. For j ≥ 3, when attempting to color
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Kj, we will not have colored any of the Kj−1. Thus the number of edges we will have
left to color Kj will be greater than⌊

2k − 1

j − 1

⌋(
j − 1

2

)
+

(
j

2

)
≥
(

2k − (j − 1)

j − 1

)(
j − 1

2

)
+

(
j

2

)
=

(2k − (j − 1))(j − 2) + j(j − 1)

2
= k(j − 2) + j − 1 > k(j − 2)

Thus a color will always have enough edges to decompose Kj for every Kj ∈ S with
j ≥ 3. For j = 2, if there are still edges, Kj can be decomposed. Thus every element
in S is decomposable and our coloring is complete.

To calculate n0, we have that

n0∑
i=2

⌊
2k − 1

i

⌋(
i

2

)
≥

n0∑
i=2

(2k − i)(i− 1)

2

If the right side is bigger than 3k2−7k+2
2

, then n0 will be as large as we need it to be.
Thus we would like the smallest n0 that makes the expression below positive.

2

(
n0∑
i=2

(2k − i)(i− 1)

2
− 3k2 − 7k + 2

2

)
=

n0∑
i=2

(−i2 + (2k+ 1)i− 2k)− (3k2− 7k+ 2)

= −
(
n0(n0 + 1)(2n0 + 1)

6
− 1

)
+(2k+1)

(
n0(n0 + 1)

2
− 1

)
−2k(n0−1)−3k2+7k−2

= −n
3
0

3
+ kn2

0 +

(
1

3
− k
)
n0 − 3k2 + 7k − 2 (1)

We would like (1) to be positive. For n0 = 2
√
k (1) becomes

k2 − 14

3
k
√
k + 7k +

2
√
k

3
− 2.

By AM-GM,

k2 + 6k ≥ 2k
√

6k >
14

3
k
√
k.

Thus for k ≥ 2,

k2 − 14

3
k
√
k + 7k +

2
√
k

3
− 2 ≥ k +

2
√
k

3
− 2 > 0.

Thus for n0 = 2
√
k, (1) is positive and for n0 >

√
3k, the coefficient of the

highest degree term in (1), kn2
0 − 3k2, is positive. We have that as k gets large, n0

approaching
√

3k (thus n = 2k(n0 + 1) approaching 2
√

3k3/2) will make (1) positive,
proving Theorem 1.3.
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3 Proof of the Lower Bound

We first prove an important lemma used throughout this section. It provides a lower
bound on the size of the largest component in a decomposition step.

Lemma 3.1. If the largest component in a partition of Kn into disjoint complete
graphs has size at most j with n > j > n

2
, then there are at most

(
j
2

)
+
(
n−j
2

)
internal

edges within the components of this partition.

Proof. Let the Kx1∪· · ·∪Kxm be a partition of Kn with the largest amount of internal
edges. Without loss of generality assume x1 ≥ · · · ≥ xm. If x1 < j, then m > 1 and
Kx1+1 ∪ · · · ∪Kxm−1, where we discard the last part if xm = 1, is also a partition of
Kn. We have that(

x1 + 1

2

)
+

(
xm − 1

2

)
−
(
x1
2

)
−
(
xm
2

)
= x1 − xm + 1 > 0,

so the new partition has more internal edges than the original one, which is a contra-
diction. Therefore x1 = j.

Similar to above, if x2 < n− j, then m > 2, and Kx1 ∪Kx2+1 · · · ∪Kxm−1, where
we discard the last part if xm = 1, is a partition of Kn with more internal edges,
contradiction. So x2 = n − j,m = 2 and the maximum number of internal edges is
indeed

(
j
2

)
+
(
n−j
2

)
. �

We now prove Theorem 1.4 by constructing a family of color sequences that are
not G-sequences. Every color sequence we construct will have roughly half of the
entries being large and the other half being small. By Corollary 1.2, if this sequence
is a G-sequence, then we can decompose the complete graph down to a certain stage
without using colors corresponding to the small entries as base colors.

On the other hand, we show that the number of edges from colors correspond-
ing to large entries are actually not enough for us to get to that stage. At each
intermediate stage we have a lower bound for the number of internal edges in any
possible decomposition. Lemma 3.1 then gives a lower bound on the size of the largest
component in any possible decomposition. We then use this information to count the
minimum number of edges needed to decompose down to that desired stage and reach
a contradiction.

Proof of Theorem 1.4. The proof consists of four steps.

Step 1: Constructing the sequence

For every fixed integer k ≥ 2, let f(k) =
⌊
αk1.5

ln k

⌋
, where α is a constant to be chosen

later. For simplicity, we shall write f instead of f(k) when there is no confusion. We
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want to construct an (f, k)-sequence (e1, · · · , ek) of the form e1 = · · · = ec = a + 1,
ec+1 = · · · = ed k2e = a and ed k2e+1 = · · · = ek = b, such that a > b and both are

carefully chosen to make the ensuing calculation work. A suitable choice is

b = 3

⌈
f√
k

⌉
, a =

⌊(
f
2

)
−
⌊
k
2

⌋
b⌈

k
2

⌉ ⌋
, c =

(
f

2

)
− b
⌊
k

2

⌋
− a

⌈
k

2

⌉
.

One can verify that c <
⌈
k
2

⌉
and c(a+1)+(

⌈
k
2

⌉
−c)a+

⌊
k
2

⌋
b = c+a

⌈
k
2

⌉
+b
⌊
k
2

⌋
=
(
f
2

)
so this is a well-defined (f, k)-sequence. One estimate that will be useful later is that

a ≤
(
f
2

)
−
⌊
k
2

⌋
b⌈

k
2

⌉ ≤ f 2 − f − (k − 1)b

k
<
f 2

k
=

1

9
(

3f√
k

)2 ≤ b2

9
.

We will show that this is not a G-sequence for suitable choices of α. If this is a
G-sequence, then by repeated applications of Theorem 1.1 we can decompose {Kf}
down to {K1, · · · , K1}. Moreover, by Corollary 1.2, when decomposing Kx with
x ≥ b + 2, we can arrange so that the base colors have have at least x − 1 ≥ b + 1
edges. This implies that we can decompose Kf to the stage where all components
have size less than b+ 2 only using the first

⌈
k
2

⌉
colors as base colors.

Step 2: Bounding the size of the largest component
To bound the size of the largest component in each intermediate decomposition

step, we will prove the following inequality for sufficiently large k and all b+2 ≤ x ≤ f :(
x

2

)
− 2(a+ 1) >

(
x− h(x)

2

)
+

(
h(x)

2

)
, (2)

where h(x) =
⌈
3(a+1)
x

⌉
.

Indeed, (2) is equivalent to:

x · h(x) > 2(a+ 1) + h(x)2. (3)

Since 2
3
x·h(x) ≥ 2(a+1), to show that (3) holds, it suffices to show that 1

3
x·h(x) >

h(x)2, i.e. x > 3 ·h(x) for all b+ 1 < x ≤ f . Because h(x) decreases as x increases, it
suffices to show this for x = b + 2. We have that for all sufficiently large k and thus
sufficiently large b:

(b+ 2)2 > b2 + 3b+ 24 > 9a+ 3b+ 24 = 9(a+ 2) + 3(b+ 2)

=⇒ b+ 2 > 3(
3(a+ 2)

b+ 2
+ 1) > 3

⌈
3(a+ 2)

b+ 2

⌉
= 3 · h(b+ 2).
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Therefore (3) holds and so (2) is proved.
Because there are at most two base colors, each with at most a+ 1 edges, the left

side of (2) is a lower bound on the number of internal edges for any decomposition of
Kx. By Lemma 3.1 and the fact that x > 3 · h(x) =⇒ x− h(x) > x

2
, the right side

of (2) is an upper bound on the number of internal edges for decompositions of Kx if
the largest component have size at most x − h(x). Thus inequality (2) implies that
the largest component in any decomposition of Kx must have size at least x−h(x)+1.

Step 3: Counting number of edges needed from the first
⌈
k
2

⌉
colors

We now count the minimum number of edges needed from the first
⌈
k
2

⌉
colors to

get to the desired stage where all components have size less than b+ 2.
For any such decomposition steps down to the desired stage, we can find the

following intermediate decomposition steps Kx0 → Kx1 → · · · → Kxj , where f =
x0 > x1 > · · · > xj−1 ≥ b + 2 > xj and Kxr+1 is the largest component in the
decomposition of Kxr for all 0 ≤ r ≤ j − 1. For all 0 ≤ r ≤ j − 1, we have that
xr+1 ≥ xr − h(xr) + 1 > xr − h(xr) by Step 2 and for any vertex in Kxr but not in
the component Kxr+1 , all of its xr+1 edges to Kxr+1 are colored with base colors. Let
tr = xr − xr+1, then at least trxr+1 > tr(xr − h(xr)) edges from the first

⌈
k
2

⌉
colors

are needed to decompose Kxr . Therefore at least

j−1∑
r=0

tr(xr − h(xr)) =

j−1∑
r=0

tr−1∑
i=0

(xr − h(xr))

>

j−1∑
r=0

tr−1∑
i=0

(xr − i− h(xr − i))

=

x0∑
x=xj+1

(x− h(x)) ≥
f∑

x=b+2

(x− h(x))

edges from the first
⌈
k
2

⌉
colors are needed to decompose Kf into components of size

less than b+ 2.
Further calculation shows that at least

f∑
x=b+2

(x− h(x)) =

f∑
x=b+2

x−
f∑

x=b+2

⌈
3(a+ 1)

x

⌉

>
1

2
(f + b+ 2)(f − b− 1)− 3(a+ 1)

f∑
x=b+2

1

x
−

f∑
x=b+2

1

>
f 2 − f − b2 − b

2
− 3(a+ 1) ln

f

b

13



≥ f 2 − f − b2 − b
2

− 3(a+ 1) ln
f
√
k

3f

=
f 2 − f − b2 − b

2
− 3(a+ 1) ln

√
k

3

>
f 2 − f − b2 − b

2
− 3

2
(a+ 1) ln k

edges from the first
⌈
k
2

⌉
colors are needed.

However, there are only(
f

2

)
−
⌊
k

2

⌋
b ≤ f 2 − f

2
− (k − 1)b

2

edges in total from the first
⌈
k
2

⌉
colors.

Step 4: Choosing constant α to reach a contradiction
So if we have

f 2 − f − b2 − b
2

− 3

2
(a+ 1) ln k >

f 2 − f
2
− (k − 1)b

2

⇐⇒ (k − 2)b > 3(a+ 1) ln k + b2, (4)

then there is a contradiction because there are not enough edges from the first
⌈
k
2

⌉
colors to decompose down to the desired stage.

Recall that a < b2

9
. Fix a small 0 < ε < 1 so that the right side of (4) is less than

(3 + ε)a ln k + b2 < b2(
3 + ε

9
ln k + 1) < (3 +

3f√
k

)2
(3 + 2ε) ln k

9

<
(3 + 2ε)(1 + ε)f 2 ln k

k
<

(3 + 7ε)f 2 ln k

k
for all sufficiently large k. The left side of (4) is at least

(k − 2)
3f√
k
> (3− ε)

√
kf

for all sufficiently large k. If α < 3−ε
3+7ε

, then

f(k) =

⌊
αk1.5

ln k

⌋
=⇒ (3− ε)

√
kf ≥ (3 + 7ε)f 2 ln k

k
,

so (4) holds for all sufficiently large k and the original sequence is not a G-sequence.
So we have g(k) > f(k) =⇒ g(k) > αk1.5

ln k
for all sufficiently large k. Note that

limε→0
3−ε
3+7ε

= 1, so α(k)→ 1 as k →∞. This completes the proof. �
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4 Proof of Theorem 1.5

The proof of Theorem 1.5 is based on some lemmas.

Lemma 4.1. There are four (6, 4)-sequences that are not G-sequences: (7, 4, 2, 2), (7, 3, 3, 2),
(6, 3, 3, 3) and (4, 4, 4, 3). The only (7, 4)-sequence that is not a G-sequence is (9, 4, 4, 4).

Proof. To prove the first part, let s = (e1, e2, e3, e4) be a (6, 4) sequence.

• e1 ≤ 4. We have the only sequence is s = (4, 4, 4, 3). This is not a G-sequence
as it violates Corollary 1.2.

• ei = 5 for some i. Then with the star K1,5 we can reduce the problem to a
(5, 3)-sequence and it is a G-sequence since g(3) = 5.

• e1 = 6. With the star K1,5 we can reduce the problem to the (5, 4)-sequence
obtained by adding e′ = 1 to the sequence (e2, e3, e4). Three of the four possi-
bilities are G-sequences (one uses a K3 ∪ K2 decomposition), the exception is
(6, 3, 3, 3).

• e1 = 7. With the star K1,5 we can reduce the problem to the (5, 4)-sequence.
Three of the five possibilities are G-sequences (two use K1∪K4 decomposition),
the exceptions are (7, 3, 3, 2) and (7, 4, 2, 2).

• e1 = 8. K2 ∪K4 can be used.

• e1 = 9. K3 ∪K3 can be used.

• e1 = 10. K3 ∪K3 can be used except that (10, 3, 1, 1) uses K4 ∪K1 ∪K1 and
gets reduced to (2, 2, 1, 1) on K4.

• e1 = 11. K3 ∪K3 can be used.

• e1 = 12. K2 ∪K2 ∪K2 can be used.

To prove the second part, let s = (e1, e2, e3, e4) be a (7, 4)-sequence.

• e1 = 6. With the star K1,6 we can reduce (7, 4)-sequences into (6, 3)-sequences,
which are always G-sequences since g(3) = 5.

• e1 = 7, 8, or 9. With the star K1,6 we can reduce (7, 4)-sequences into (6, 4)-
sequences. We know that there are four (6, 4)-sequences that are not G-sequences,
and in this case there are in total five (7, 4)-sequences which can become one
of those non G-sequences on K6. Four of the five possibilities are G-sequences
(one uses K4 ∪K2 ∪K1 decomposition), the exception is (9, 4, 4, 4).
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• e1 = 10, 11. K2 ∪K5 can be used.

• e1 ≥ 12. K3 ∪K4 can be used. �

Lemma 4.2. For any positive j and let k = 2j − 1, n = 2g(j), any (n, k)-sequence
with e1 ≥ g(j)2 is a G-sequence.

Proof. The proof of this statement relies on a decomposition into two copies of Kg(j).
Let a1 ≥ . . . ≥ a2j−1 be the number of edges left in each color after g(j)2 edges of
color e1 are used to color the edges between the two copies of Kg(j). We have that

a1 + a2 + . . . .+ a2j−1 =

(
2g(j)

2

)
− g(j)2

We have that a2i−1 ≥ a2i so

a2 + . . . .+ a2j−2 ≤ a1 + a3 + . . .+ a2j−3 =⇒ a2 + . . .+ a2j−2 ≤
(
2g(j)
2

)
− g(j)2

2

Additionally, we have that a2i ≥ a2i+1 so

a3 + . . . .+ a2j−1 ≤ a2 + a4 + . . .+ a2j−2 =⇒ a3 + . . . .+ +a2j−1 ≤
(
2g(k)
2

)
− g(j)2

2

Thus, we can place all edges of color a2, a4, . . . , a2j−2 in one copy of Kg(j) and all
edges of colors a3, a5, . . . , a2j−1 in the other, with edges of color a1 filling remaining
edges in each graph. Because we will have at most j colors in each copy of Kg(j), we
will be able to Gallai color each one. �

To prove g(5) = 10, in the Lemma 4.2 we take j = 3, then k = 2j − 1 = 5, n =
2g(j) = 10 and g(3) = 5. It follows that if e1 ≥ g(3)2 = 25, then the (10, 5)-sequence
is always a G-sequence. Thus we may assume that e1 ≤ 24.

Lemma 4.3. Let s = (e1, e2, e3, e4, e5) be a (10, 5)-sequence. If s contains a term in
{7, 8, 9, 14, 15, 16, 17, 21, 22, 23, 24}, then s is a G-sequence.

Proof. Let s = (e1, e2, e3, e4, e5) be a (10, 5)-sequence.

• If s contains 9, then we remove a K1,9. What remains is a (9, 4)-sequence. Since
g(4) = 8, we conclude that s is a G-sequence.

• If s contains 8, then s must contain a term ≥ 9. Firstly we remove a K1,9 from
that term and then remove a K1,8 from the term 8 in s. What remains is a
(8, 4)-sequence which is always a G-sequence since g(4) = 8.
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• If s contains 7, then s contains either one term ≥ 17 or one term ≥ 9 and
another ≥ 8, and thus we could always remove a K1,9 and subsequently a K1,8.
Afterwards we remove aK1,7 from the term 7. What remains is a (7, 4)-sequence.
By Lemma 4.1, we’re done if we can prove that those (10, 5)-sequences which
become sequences in Lemma 4.1 after such coloring, called suspicious sequences
in the rest of our proof, are all G-sequences on K10. Suspicious sequences are:

(26, 7, 4, 4, 4)→ e1 = 26 > 25, it’s a G-sequence by Lemma 4.2.

(21, 9, 7, 4, 4)→ it’s a G-sequence because it contains 9.

(18, 12, 7, 4, 4)→ (18, 12, 7, 4, 4)− (8, 9, 7, 0, 0) = (10, 4, 4, 3) on K7

(17, 13, 7, 4, 4)→ (17, 13, 7, 4, 4)− (9, 8, 7, 0, 0) = (8, 5, 4, 4) on K7.

• If s contains a term in {14, 15, 16, 17, 21, 22, 23, 24}, then we use the decompo-
sition K10 → K7 ∪K2 ∪K1

• For 14, we use it up to color the edges between K7 and K2. We may assume
there is no 9,8, or 7 in s as otherwise it will be a G-sequence as aforementioned.
Thus, other than 14, s contains a term ≥ 10. Then we use 1 + 2 + 7 = 10 from
that term to color the edge within K2, edges between K1 and K2, and those
connecting K1 and K7. Suspicious sequences are:

(19, 14, 4, 4, 4)→ (19, 14, 4, 4, 4)− (9, 14, 1, 0, 0) = (10, 4, 4, 3) on K7

(14, 14, 9, 4, 4)→ G-sequence because it contains a 9.

• For 15, we use it up to color the edges between K7 and K2 and the one within
K2. We may assume there’s no 9,8, or 7 in s, and thus we can use 9 from
another term in s for a K1,9. Suspicious sequences are:

(18, 15, 4, 4, 4) → K6 ∪K3 ∪K1 → Use 18 up for edges between K6 and K3, 9
from 15 for a K1,9, and 3 from 4 for edges within K3 → (6, 4, 4, 1) on K6.

(15, 14, 9, 4, 4)→ G-sequence because it contains 9.

• For 16, we use it up to color the edges between K7 and K2, and the edges
connecting K2 and K1. We may assume there’s no 9,8, or 7 in s, and thus we
can use 1 + 7 = 8 from another term on the edge within K2 and those between
K7 and K1. Suspicious sequences are:

(17, 16, 4, 4, 4)→ K4 ∪K4 ∪K2 → Use 16 up to color all edges between K4 and
K4, and 16 out of 17 to color edges between K4 and K2 and one on the edge
within K2 → (4, 4, 4) on K4 ∪K4.

(16, 12, 9, 4, 4)→ G-sequence because it contains 9.
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• For 17, we use it up on the edges between K7 and K2, the edges connecting K2

and K1, and the one within K2. Then we use 7 from another term on edges
between K7 and K1. Suspicious sequences are:

(17, 16, 4, 4, 4)→ G-sequence as checked in the case with 16.

(17, 11, 9, 4, 4)→ G-sequence as it contains 9.

• For 21, we use it up on the edges between K7 and K2 and the edges between
K7 and K1. We use 3 from another term on the edges connecting K2 and K1,
and the one within K2. Suspicious sequences are:

(21, 12, 4, 4, 4)→ (21, 12, 4, 4, 4)− (21, 2, 1, 0, 0) = (10, 4, 4, 3) on K7

(21, 9, 7, 4, 4)→ G-sequence since it contains 9.

• For 22, we use it up to color the edges between K7 and K2, the edges between
K7 and K1, and the one within K2. We use 2 from another term on the edges
connecting K2 and K1. Suspicious sequences are:

(22, 11, 4, 4, 4)→ (22, 11, 4, 4, 4)− (22, 0, 2, 0, 0) = (11, 4, 4, 2) on K7.

(22, 9, 6, 4, 4)→ G-sequence on K10 as it contains 9.

• For 23, we use it up on the edges between K7 and K2, the edges between K7

and K1, and those connecting K2 and K1. We use 1 from another term on the
one within K2. Suspicious sequences are (23, 10, 4, 4, 4) and (23, 9, 5, 4, 4):

(23, 10, 4, 4, 4)→ (23, 10, 4, 4, 4)− (23, 0, 1, 0, 0) = (10, 4, 4, 3) on K7.

(23, 9, 5, 4, 4)→ G-sequence on K10 as it contains 9.

• For 24, we use it up on all edges other than those within K7 in our decomposi-
tion. The only suspicious sequence is (24, 9, 4, 4, 4). We know that it must be a
G-sequence as it contains 9. �

4.1 Proof of Theorem 1.5

Proof. First, (12, 6, 6, 6, 6) is not a G-sequence on K9. The only decomposition we
can do with sequence is K9 → K8 ∪K1. What remains afterwards is (6, 6, 6, 6, 4) on
K8, which violates Corollary 1.2. Thus g(5) > 9.

We now proceed to show that g(5) = 10. Excluding values 9,8,7, we divide all of
(10, 5)-sequences into 4 categories.

Case 1. e1 ≥ 10 > 6 ≥ e2. Then e1 ≥ 21 in this case as e2 + e3 + e4 + e5 ≤ 24.
By Lemmas 4.2 and 4.3, we’re done in this case.
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Case 2. e1 ≥ e2 ≥ 10 > 6 ≥ e3. Then we have e1 ≥ 14 as e3 + e4 + e5 ≤ 18. By
Lemma 4.2 and 4.3, we only have to deal with cases where e1 = 18, 19, 20. We use
the following the decomposition: K10 → K6 ∪K3 ∪K1.

• When e1 = 18, we use it up on the edges between K6 and K3. Since e2 ≥ 10, we
use 9 for edges between K1 and K3, K6 respectively, and 1 for an edge within
K3. Then use 2 from a term amongst e3, e4, e5 on the remaining two edges
within K3. What remains is a (6, 4)-sequence. Similar to the idea previously,
all suspicious sequences in this subcase are:

(18, 13, 6, 4, 4) → Use e1 as above, e2 for a K1,9, and e4 for edges in K3 →
(18, 13, 6, 4, 4)− (18, 9, 0, 3, 0) = (6, 4, 4, 1) on K6.

(18, 13, 6, 5, 3) → Use e1 as above, e2 for a K1,9, and e4 for edges in K3 →
(18, 13, 6, 5, 3)− (18, 12, 0, 0, 0) = (6, 5, 3, 1) on K6.

(18, 17, 5, 3, 2), (18, 17, 4, 3, 3),(18, 17, 4, 4, 2), (18, 17, 6, 2, 2),(18, 14, 9, 2, 2),

(18, 14, 7, 4, 2), (18, 14, 5, 4, 4), (18, 14, 6, 4, 3), (18, 13, 9, 3, 2), (18, 13, 7, 5, 2),

(18, 13, 7, 4, 3), (18, 12, 9, 3, 3)(18, 12, 7, 5, 3), (18, 12, 9, 4, 2), (18, 12, 7, 6, 2),

(18, 12, 7, 4, 4), (18, 13, 8, 3, 3), (18, 16, 5, 3, 3) → All these are G-sequences on
K10 by Lemma 4.3.

• When e1 = 19, we use 18 on the edges between K6 and K3, and the remaining
1 on an edge within K3. We use 9 from e2 for edges between K1 and K3, K6

respectively. Then use 2 from a term amongst e3, e4, e5 on the remaining two
edges within K3. Suspicious sequences in this subcase are:

(19, 13, 6, 4, 3) → Use e1 up as above, and e2 for a K1,9 and 2 within K3 →
(19, 13, 6, 4, 3)− (19, 11, 0, 0, 0) = (6, 4, 3, 2) on K6.

(19, 13, 5, 4, 4) → Use e1 up as above, and e2 for a K1,9 and 2 within K3 →
(19, 13, 5, 4, 4)− (19, 11, 0, 0, 0) = (5, 4, 4, 2) on K6.

(19, 12, 6, 4, 4) → Use e1 up as above, and e2 for a K1,9 and 2 within K3 →
(19, 12, 6, 4, 4)− (19, 11, 0, 0, 0) = (6, 4, 4, 1) on K6.

(19, 12, 6, 5, 3) → Use e1 up as above, and e2 for a K1,9 and 2 within K3 →
(19, 12, 6, 5, 3)− (19, 11, 0, 0, 0) = (6, 5, 3, 1) on K6.

(19, 16, 5, 3, 2), (19, 16, 4, 3, 3), (19, 16, 4, 4, 2), (19, 16, 6, 2, 2), (19, 13, 9, 2, 2),

(19, 13, 7, 4, 2), (19, 12, 9, 3, 2), (19, 12, 7, 5, 2), (19, 12, 7, 4, 3), (19, 11, 9, 4, 2),

(19, 11, 7, 6, 2), (19, 11, 7, 4, 4), (19, 11, 9, 3, 3), (19, 11, 7, 5, 3), (19, 12, 8, 3, 3),

(19, 15, 5, 3, 3)→ G-sequences on K10 by Lemma 4.3.
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• When e1 = 20, we use 18 on the edges between K6 and K3, and the remaining
2 on two edges within K3. We use 10 from e2 for edges between K1 and K3,
K6 respectively, and the remaining one edge within K3. Suspicious sequences
in this subcase are:

(20, 13, 4, 4, 4)→ Do the decomposition K10 → K5 ∪K4 ∪K1 → Use 20 up on
the edges between K5 and K4, and 9 from 13 on the edges between K1 and K5,
K4 respectively → (4, 4, 4, 4) on K5 ∪K4.

(20, 13, 6, 3, 3)→ Do the decomposition K10 → K5 ∪K4 ∪K1 → Use 20 up on
the edges between K5 and K4, and 9 from 13 on the edges between K1 and K5,
K4 respectively → (6, 4, 3, 3) on K5 ∪K4.

(20, 17, 3, 3, 2), (20, 17, 4, 2, 2), (20, 14, 4, 4, 3), (20, 14, 7, 2, 2), (20, 13, 7, 3, 2),

(20, 12, 7, 3, 3), (20, 12, 7, 4, 2), (20, 16, 3, 3, 3) → All are G-sequences on K10 by
Lemma 4.3.

Case 3. e1 ≥ e2 ≥ e3 ≥ 10 > 6 ≥ e4. Then e1 ≥ 11 as e4 + e5 ≤ 12. By Lemma
4.3 and Case 2, we only need to tackle cases where e1 = 11, 12, 13.

• When e1 = 11, there’s only one sequence to check:

(11, 11, 11, 6, 6) can be reduced to the (6, 4)-sequence (6, 4, 3, 2) by removing
K1,9, K1,8, K1,7, K1,6. Then by Lemma 4.1 it’s a G-sequence.

• When e1 = 12 or 13, we remove a K9 from e2 and a K8 from e3. What
remains is an (8, 5)-sequence with e1 = 12 or 13. Then we do the decomposition
K8 → K6 ∪K2.

• For e1 = 12, we use it up on edges between K6 and K2, and then use 1 from
e3 on the edge within K2. After such coloring, we derive a (6, 4)-sequence.
Similarly, we check all the suspicious sequences (here 12 = e1 ≥ e2 ≥ e3):

(12, 12, 12, 6, 3) → Use e1 as above, and then use 1 from e2 on the edge within
K2 → (12, 12, 12, 6, 3)− (12, 9 + 1, 8, 0, 0) = (6, 4, 3, 2) on K6.

(12, 12, 12, 7, 2), (12, 12, 11, 7, 3), (12, 11, 11, 7, 4)→ G-sequences by Lemma 4.3.

• For e1 = 13, we use 12 on edges between K6 and K2, and then 1 on the edge
within K2. What remains is a (6, 4)-sequence. Suspicious sequences are (here
13 = e1 ≥ e2 ≥ e3):

(13, 13, 12, 4, 3), (13, 13, 11, 4, 4). Removing K1,9, K1,8, K1,7, K1,6, K1,5 following
the order e3, e1, e2, e2, e1 respectively, we get a (5, 3)-sequence which is always a
G-sequence as g(3) = 5.
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(13, 12, 12, 4, 4)→ (13, 12, 12, 4, 4)−(8, 9, 0, 0, 0) = (12, 5, 4, 4, 3) on K8 → Then
do K8 → K6 ∪K2 → Use 12 up on the edges between K6 and K2, and 1 from
3 on the edge within the K2 → (5, 4, 4, 2) on K6.

(13, 12, 11, 6, 3)→ (13, 12, 11, 6, 3)− (8, 9, 7, 6, 0) = (5, 4, 3, 3) on K6.

(13, 12, 11, 7, 2), (13, 12, 10, 7, 3), (13, 11, 11, 7, 3), (13, 13, 10, 7, 2),
(13, 12, 11, 7, 2), (13, 11, 10, 7, 4)→ All are G-sequences on K10 by Lemma 4.3.

Case 4. e1 ≥ e2 ≥ e3 ≥ e4 ≥ 10 > 6 ≥ e5.
By Lemma 4.3 and Case 3, we only need to examine cases where e1 = 10, 11. In

this sense, there only remain five more sequences to check:
(11, 11, 11, 11, 1), (11, 11, 11, 10, 2), (11, 11, 10, 10, 3), (11, 10, 10, 10, 4), (10, 10, 10, 10, 5).
Removing K1,9, K1,8, K1,7, K1,6 following the order e4, e3, e2, e1 respectively, we get
(5, 4, 3, 2, 1) which is obviously a G-sequence on K6. �
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[5] A. Gyárfás, D. Pálvölgyi, B. Patkós, M. Wales, Distribution of colors in Gallai
colorings, arXiv:1903.04380v4.
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