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ON VARIETIES DEFINED BY LARGE SETS OF QUADRICS AND

THEIR APPLICATION TO ERROR-CORRECTING CODES

SIMEON BALL AND VALENTINA PEPE

Abstract. Let U be a (
(

k−1

2

)

− 1)-dimensional subspace of quadratic forms defined on
PG(k − 1,F) with the property that U does not contain any reducible quadratic form.
Let V (U) be the points of PG(k − 1,F) which are zeros of all quadratic forms in U .
We will prove that if there is a group G which fixes U and no line of PG(k − 1,F) and
V (U) spans PG(k − 1,F) then any hyperplane of PG(k − 1,F) is incident with at most
k points of V (U). If F is a finite field then the linear code generated by the matrix
whose columns are the points of V (U) is a k-dimensional linear code of length |V (U)|
and minimum distance at least |V (U)| − k. A linear code with these parameters is an
MDS code or an almost MDS code. We will construct examples of such subspaces U and
groups G, which include the normal rational curve, the elliptic curve, Glynn’s arc from
[8] and other examples found by computer search. We conjecture that the projection of
V (U) from any k− 4 points is contained in the intersection of two quadrics, the common
zeros of two linearly independent quadratic forms. This would be a strengthening of a
classical theorem of Fano, which itself is an extension of a theorem of Castelnuovo, for
which we include a proof using only linear algebra.

1. Introduction

Let PG(k − 1,F) denote the (k − 1)-dimensional projective space over an arbitrary field
F. An arc is a subset S of points of PG(k − 1,F) with the property that any hyperplane
is incident with at most k− 1 points of S. A track is a subset S of points of PG(k− 1,F)
with the property that any hyperplane is incident with at most k points of S and some
hyperplane is incident with exactly k points of S. Tracks were first defined by de Boer in
[5]. Let Fq denote the finite field with q elements. In this article, we will be interested in
arcs and tracks in PG(k − 1,Fq), which give rise to k-dimensional linear codes of length
|S| and minimum distance |S| − k+1 and |S| − k respectively, also known as linear MDS
(maximum distance separable) and linear AMDS codes respectively.

In PG(k− 1,Fq), which we from now on denote by PG(k − 1, q), the classical example of
a large arc is the normal rational curve. This arc has size q + 1 and is larger than taking
a basis plus a point, which is an arc of size k + 1, for k 6 q − 1. The classical example
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2 SIMEON BALL AND VALENTINA PEPE

of a large track comes from an elliptic curve, see Section 2.2. This track has size at most
q + ⌈2√q⌉+ 1. These sizes should be compared to the trivial upper bounds in each case.
By considering the hyperplanes through a subset of k − 2 points of an arc or track, one
quickly deduces that an arc has size at most q+k−1 and a track has size at most 2q+k.

In this article, we shall be interested in arcs and tracks which are contained in the common
zeros of a large number of linearly independent quadratic forms.

The following theorem is from Glynn [9, Theorem 3.1].

Theorem 1. Let U be a subspace of quadratic forms defined on F
k with the property that

U does not contain any reducible quadratic forms. Let V (U) be the points of PG(k−1,F)
which are zeros of all quadratic forms in U . If U has dimension

(

k−1

2

)

and V (U) spans

the space then V (U) is an arc of PG(k − 1,F).

Glynn conjectures in Section 5 of [9] that if we include the additional hypothesis that
|V (U)| = q + 1 then V (U) is a normal rational curve. In Theorem 5 we will prove
this conjecture under the hypothesis that 2k 6 q. Glynn suggests that the hypothesis
2k 6 q + 2 may be necessary.

If the field is a finite field then Theorem 1 implies that the linear code C generated by
the matrix whose columns are the points of V (U) is a k-dimensional linear code of length
|V (U)| and minimum distance at least |V (U)| − k + 1. In other words, C is a linear
maximum distance separable (MDS) code.

The following theorem is from [3].

Theorem 2. Let U be a subspace of quadratic forms defined on F
k with the property that

U does not contain any reducible quadratic form. Let V (U) be the points of PG(k − 1,F)
which are zeros of all quadratic forms in U . If U has dimension

(

k−1

2

)

−1 and V (U) spans
the space then V (U) is either an arc, a track or contains a line.

The following example indicates that V (U) can contain a line.

Example 1. Let k = 4 and

U = 〈X1X3 +X2X4, X2X3 +X1X4 +X3X4〉.
Then U contains no reducible quadratic form, V (U) spans the space and contains the line

spanned by (1, 0, 0, 0) and (0, 1, 0, 0).

The set V (U) also contains the normal rational curve

{(−t, t2, t− t3, 1− t2) | t ∈ Fq} ∪ {(0, 0, 1, 0)}.
The intersection of V (U) with the quadric V (X2

1 + X1X3 − X2
2 ) is the normal rational

curve.

Supposing that V (U) contains no line, if the field is a finite field then Theorem 2 implies
that the linear code C generated by the matrix whose columns are the points of V (U) is
a k-dimensional linear code of length |V (U)| and minimum distance at least |V (U)| − k.
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Theorem 3 adds an additional hypothesis to the previous theorem which rules out the
possibility that V (U) contains a line. In Section 3, we shall detail many examples in which
Theorem 3 applies. These examples include the famous Glynn arc from [8]. This example
has parameters k = 5 and q = 9. The variety V (U) is a track of size q + 2 and contains
an arc of size q+1 which is not a normal rational curve. The subspace of quadratic forms
has a large symmetry group which contains a cyclic subgroup of size k which fixes no line
of PG(4, 9).

We say that a set V of points of PG(k − 1,F) defines r conditions on the subspace of
quadratic forms if the co-dimension of the subspace of quadratic forms in the space of
quadratic forms which are zero on V is r.

Theorem 3. Let U be a subspace of quadratic forms defined on PG(k − 1,F) with the

property that U does not contain reducible quadratic forms. Let V (U) be the points of

PG(k−1,F) which are zeros of all quadratic forms in U . Suppose that there is a subgroup

G of PGL(k,F) which fixes U but which fixes no line of PG(k−1,F). If U has dimension
(

k−1

2

)

− 1 and V (U) spans the space then V (U) is either an arc or a track.

Proof. By Theorem 2, we know that V (U) is either an arc, a track or it contains a line.

Suppose that V (U) contains a line ℓ. Since G does not fix ℓ, there is an element σ ∈ G
such that σ(ℓ) 6= ℓ. Since G fixes U , it also fixes V (U), so the points of σ(ℓ) are also in
V (U). The subspace spanned by ℓ and σ(ℓ) has dimension 2 or 3, depending on whether
the lines intersect or not. We can choose 5 (resp. 6) points on these lines and extend them
to a generating set for a hyperplane π by adding an additional k − 3 (resp. k − 4) points
of V (U). This will give a set of k+2 points Y of V (U) in π which define k+2 conditions
on the space of quadratic forms defined on π, so the subspace of quadratic forms which
are zero on Y has co-dimension k + 2. Let α(X) be a linear form whose kernel is π. The
dimension of the subspace of quadratic forms defined on the (k − 1)-dimensional vector
subspace ker(α) of Fk

q , which are zero on Y , is at most

(

k

2

)

− k − 2 =

(

k − 1

2

)

− 3.

Since this is smaller than the dimension of U , there is a quadratic form in U which is
zero on π which implies that U contains a reducible quadratic form, contradicting the
hypothesis.

�

We are interested in the applications of V (U) to error correcting codes, so we will assume
that F = Fq. However, we note that, over the algebraic closure of Fq, the varieties we will
consider are 0 or 1-dimensional, since any hyperplane intersects them in a finite number
of points.
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2. Examples of spaces of quadratic forms

Throughout the article, {e1, . . . , ek} will be the points of PG(k − 1,F) defined by the
canonical basis.

2.1. The normal rational curve. Let α1, . . . , αk be distinct elements of F and suppose
|F| > 2k − 2.

One can readily check that if

U =
〈

(αi − αj)XiXj + (α1 − αi)X1Xi + (αj − α1)X1Xj| 2 6 i < j 6 k
〉

.

then

V (U) = {
( 1

t− α1

, . . . ,
1

t− αk

)

| t ∈ F \ {α1, . . . , αk}} ∪ {e1, . . . , ek} ∪ {(1, . . . , 1)}.

Note that dimU =
(

k−1

2

)

. Since |V (U)| > 2k − 1 and V (U) is an arc, it is not contained
in the union of two hyperplanes, so U cannot contain a reducible quadratic form.

The set V (U) is a normal rational curve, which is an arc of size q + 1.

2.2. The elliptic curve. Let E be a plane elliptic curve defined as

E = {(1, x, y) | y2 = x3 + ax+ b} ∪ {(0, 0, 1)}.

Define
φ1(x, y) = 1,

and for i > 2,

φi(x, y) =







yj if i = 3j,
x2yj−1 if i = 3j + 1,
xyj if i = 3j + 2.

For k > 4, define Φk to be the map from PG(2, q) to PG(k − 1, q)

Φk((1, x, y)) 7→ (φ1(x, y), φ2(x, y), . . . , φk(x, y)).

and
Φk((0, 0, 1)) 7→ (0, . . . , 0, 1).

For example,

Φ12((1, x, y)) 7→ (1, x, y, x2, xy, y2, x2y, xy2, y3, x2y2, xy3, y4).

In [7], Giullieti proves that Φk(E) is either a track or an arc. He goes on to prove that if
the j-invariant of E is not zero then Φ6(E) is not extendable as a track, Φ4(E) is extendable
as a track by at most 1 point and Φ5(E) is extendable as a track by at most 2 points.

Theorem 4. The set of points Φk(E) is contained in V (Uk), for some
((

k−1

2

)

− 1
)

-

dimensional subspace Uk of quadratic forms defined on F
k
q .
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Proof. For k = 4, Φ4(E) is contained in V (U4), where

U4 = 〈X2

2 −X1X4, X
2

3 −X2X4 + aX2X4 + bX2

1 〉.

For k = 5, Φ5(E) is contained in V (U5), where

U5 = U4 ⊕ 〈X1X5 −X2X3, X2X5 −X3X4, X3X5 −X2

4 + aX2

2 + bX1X2〉.
We proceed by induction.

The points of Φk(E) are contained in V (Uk−1) so it suffices to show that there are k − 2
quadratic forms, q1, . . . , qk−2 such that Φk(E) are contained in V (Uk), where we define

Uk = Uk−1 ⊕ 〈q1, . . . , qk−2〉.

We consider three cases.

Suppose that k ≡ 0 modulo 3. Then, for i = 1, . . . , k − 2,

qi =







XkXi −Xk−1Xi+1 + aXk−1Xi−3 + bXk−3Xi−3 if i ≡ 0 mod 3,
XkXi −Xk−1Xi+1 if i ≡ 1 mod 3,
XkXi −Xk−2Xi+3 if i ≡ 2 mod 3.

Suppose that k ≡ 1 modulo 3. Then, for i = 1, . . . , k − 2,

qi =







XkXi −Xk−1Xi+1 if i ≡ 0 mod 3,
XkXi −Xk−1Xi+1 + aXk−3Xi−3 + bXk−2Xi−4 if i ≡ 1 mod 3,
XkXi −Xk−1Xi+1 + aXk−1Xi−1 + bXk−1Xi−2 if i ≡ 2 mod 3.

Suppose that k ≡ 2 modulo 3. Then, for i = 1, . . . , k − 2,

qi =







XkXi −Xk−1Xi+1 + aXk−3Xi−1 + bXk−3Xi−3 if i ≡ 0 mod 3,
XkXi −Xk−1Xi+1 if i ≡ 1 mod 3,
XkXi −Xk−1Xi+2 if i ≡ 2 mod 3.

�

2.3. Glynn’s track. Let G be the dihedral group D5 with 10 elements generated by the
reflections

σ1 = (34)(25)(1) and σ2 = (13)(45)(2)

and consider the action of G on the coordinates of PG(4,F).

To verify that G fixes no line of PG(4,F) one can suppose that one of the points of the
line is (1, a, b, c, d), since one of the coordinates must be non-zero and after a suitable
permutation of G we can suppose that this is the first coordinate. Then the fact that G
fixes a line containing (1, a, b, c, d) implies that all the points in the orbit of this point are
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collinear. Putting the points in this orbit as the rows of a matrix, this is equivalent to
saying that the 10× 5 matrix



























1 a b c d
1 d c b a
b a 1 d c
c b a 1 d
d c b a 1
a b c d 1
b c d 1 a
c d 1 a b
d 1 a b c



























has rank two. It is a simple matter to check that this matrix never has rank two.

Let U be the subspace

〈X2X5 +X5X4 +X2X3 − e(X4X3 +X2X4 +X3X5),

X2X4 +X5X4 +X2X1 − e(X4X1 +X2X5 +X1X5),

X3X5 +X1X5 +X2X3 − e(X2X5 +X1X3 +X1X2),

X1X3 +X3X4 +X1X5 − e(X3X5 +X1X4 +X5X4),

X1X4 +X1X2 +X4X3 − e(X1X3 +X2X4 +X3X2)〉,
where e2 6= 1.

We are interested in finding values of e for which the intersection of these 5 quadrics
contains more than just the canonical basis.

Suppose that cd 6= 0, c2 6= d2 and c2, d2 6= 1 and that the point (c, d, 1, 1, d) is in V (U).
Since the 5 points in its orbit are in V (U) too, V (U) contains the canonical basis and
at least an additional 5 points which span the space but which are not contained in two
hyperplanes. Note that if the 10 points were contained in the union of two hyperplanes
then two of the points in the orbit of (c, d, 1, 1, d) would be in a hyperplane with three
points of the canonical basis, which they are not. Hence, U contains no reducible quadratic
form, so Theorem 3 implies that V (U) is a track or possibly an arc.

The point (c, d, 1, 1, d) is a zero of all these quadratic forms if and only if

d2 + 2d− e(1 + 2d) = 0, 2d+ cd− e(c+ d2 + cd) = 0, c+ 1 + cd− e(2d+ c) = 0.

This will have a solution for c and e providing

3(d− 1)(d2 + 3d+ 1) = 0.

The condition e2 6= 1 implies

d2(d+ 2)2 6= (1 + 2d)2,

which rules out d = 1.
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Thus, if the characteristic is not 3 then we have to choose d such that d2+3d+1 = 0 which
imposes the condition that 5 should be a square in F. It also implies that e2+3e+1 = 0.
This will guarantee at least 10 points in the track,

V (U) ⊇ {e1, e2, e3, e4, e5, (c, d, 1, 1, d), (d, c, d, 1, 1), (1, d, c, d, 1), (1, 1, d, c, d), (d, 1, 1, d, c)}.
In fact, V (U) is a normal rational curve, since V (U) is the intersection of the following
six linearly independent quadratic forms (see Theorem 6)

q45 = X1X2 − (1 + e)X1X3 +X2X3, q34 = X1X2 +X1X5 − (1 + e)X2X5,

q23 = −(1 + e)X1X4 +X1X5 +X4X5, q24 = X1X3 + (2 + e)X1X5 +X3X5,

q25 = X1X3 +X1X4 + (2 + e)X3X4, q35 = (2 + e)X1X2 +X1X4 +X2X4.

This can be seen by verifying that the five quadratic forms in U are (in the same order
as before),

q45 − (e + 2)q34 − eq35 + (2e+ 1)q25 − q24 + q23,

(1 + e)q34 + q35 + q24, q45 − (1 + e)q34 + q24.

(q + 1)q25 − eq24 − eq23, (e+ 1)q25 − eq45 − eq35.

If the characteristic is 3 then the point (1, 1, 1, 1, 1) is in V (U). The three equations imply
e = −d and c = −d − 1. Thus, for any value of d 6= ±1, we get at least 11 points in the
track V (U), namely

{e1, e2, e3, e4, e5, (1, 1, 1, 1, 1), (c, d, 1, 1, d), (d, c, d, 1, 1), (1, d, c, d, 1), (1, 1, d, c, d), (d, 1, 1, d, c)}.
In all cases removing the point (1, 1, 1, 1, 1) from V (U) we obtain Glynn’s arc. This
implies that the intersection of the 5 quadrics described above can be a Glynn track (if
the characeteristic is 3) or a normal rational curve (if the characteristic is not 3), in which
case the value of e must be chosen accordingly.

3. Cyclic examples

The cyclic representation of the Glynn arc suggests that the cyclic group acting on the co-
ordintaes (and more specifically the di-hedral group) may be a group for which Theorem 3
will provide us with interesting examples of arcs and tracks.

Let G be a group which fixes no line of PG(k − 1, q). Instead of trying to construct
subspaces of quadratics forms directly which satisfy the hypothesis of Theorem 3, we aim
to construct arcs A of PG(k− 1, q) of size 2k which are fixed by G and let U be the space
of quadratic forms which are zero on A. Then the hypothesis will be satisfied since V (U)
spans the space and U cannot contain a reducible quadratic form since A is not contained
in the union of two hyperplanes.
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Let σ be the cyclic permuation (1, 2, . . . , k) acting on the coordinates of the points of
PG(k − 1, q). The k × k circulant matrix

M =









x1 x2 . . . xk

xk x1 . . . xk−1

. . . .
x2 x3 . . . x1









has rank determined by

k − deg gcd(x1 + x2X + · · ·+ xkX
k−1, 1−Xk−1),

see [10]. Hence, M does not have rank two provided

deg gcd(x1 + x2X + · · ·+ xkX
k−1, 1−Xk−1) 6= k − 2.

If M does not have rank two then σ fixes no line.

If M has rank k then M−1 is also a cyclic matrix. Specifically,

M−1 =
1

x1y1 + · · ·+ xkyk









y1 y2 . . . yk
yk y1 . . . yk−1

. . . .
y2 y3 . . . y1









,

where y = (y1, . . . , yk) is a non-trivial solution to the system of equations,

k
∑

i=1

xiXi+j = 0

for j ∈ {1, . . . , k − 1}, indices read modulo k.

Moreover, suppose that the set A of columns of the k × 2k matrix

(Ik | M)

is an arc. If we multiply by M−1 then this amounts to a change of basis, so the arc
property is maintained. Therefore, the set of columns of

(Ik | M−1)

is also an arc. Hence, the examples come in pairs which are projectively equivalent.

We will look for examples where M is a symmetric circulant matrix.

3.1. The 5-dimensional case. An exhaustive search for q 6 49 using GAP reveals that

A = {e1, . . . , e5} ∪ {σj(1, a, b, b, a) | j = 1, . . . , 5}
is an arc for which |V (U)| > q + 1 occurs for the following values of a and b. Supposing
that M is the matrix given by the pair (a, b), the pair (a′, b′) gives the matrix M−1. In the
following table ǫ is the primitive element of Fq used by GAP [11].
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q a b a′ b′ dim U |V (U)| arc or track

9 ǫ ǫ6 ǫ3 ǫ2 5 11 track
ǫ5 ǫ7 ǫ5 ǫ7 6 10 arc

11 ǫ3 ǫ4 ǫ3 ǫ4 6 12 arc
13 ǫ3 ǫ8 ǫ8 ǫ3 5 15 track

ǫ4 ǫ9 ǫ7 ǫ5 5 15 track
19 ǫ12 ǫ17 ǫ12 ǫ17 6 20 arc
29 ǫ7 ǫ9 ǫ7 ǫ9 6 30 arc

ǫ8 ǫ17 ǫ17 ǫ8 5 35 track
ǫ9 ǫ19 ǫ20 ǫ11 5 35 track

31 ǫ ǫ25 ǫ21 ǫ4 5 35 track
ǫ3 ǫ5 ǫ11 ǫ23 5 35 track
ǫ5 ǫ28 ǫ5 ǫ28 6 32 arc
ǫ5 ǫ29 ǫ9 ǫ20 5 35 track
ǫ7 ǫ19 ǫ12 ǫ22 5 35 track
ǫ8 ǫ18 ǫ27 ǫ25 5 35 track
ǫ9 ǫ26 ǫ10 ǫ21 5 35 track

41 ǫ7 ǫ25 ǫ7 ǫ25 6 42 arc
47 ǫ3 ǫ22 ǫ20 ǫ41 5 55 track

ǫ5 ǫ26 ǫ27 ǫ29 5 55 track
ǫ17 ǫ19 ǫ43 ǫ24 5 55 track

49 ǫ9 ǫ43 ǫ42 ǫ30 5 55 track
ǫ10 ǫ19 ǫ22 ǫ37 5 55 track
ǫ11 ǫ26 ǫ30 ǫ36 5 55 track
ǫ12 ǫ18 ǫ38 ǫ29 5 55 track
ǫ13 ǫ15 ǫ18 ǫ6 5 55 track
ǫ13 ǫ43 ǫ13 ǫ43 6 50 arc

By Theorem 5, the entries in the table for which the dimension of U is 6 and |V (U)| = q+1
are normal rational curves. In fact, since these occur in the table only when q is prime,
this also follows from [1, Theorem 1.8].

It is also of interest to note that a = ǫ2, b = ǫ8 gives an arc of size 10 in PG(4, 11) for
which the dimension of U is 5 and is therefore not contained in a normal rational curve
(which is contained in the common zeros of 6 linearly independent quadratic forms).

In all cases, apart from the first entry which is the Glynn track, the projection of V (U)
from a point of V (U) into PG(3, q) is contained in the intersection of two linearly inde-
pendent quadratic forms, see Conjecture 7. This implies that the projection of V (U) from
two points of V (U) is contained in a plane cubic curve. This is also true of the Glynn
track. However, for the Glynn track, the projection of V (U) into PG(3, q) from one point
of V (U) is not contained in the intersection of two linearly independent quadratic forms.



10 SIMEON BALL AND VALENTINA PEPE

3.2. The 7-dimensional case. An exhaustive search for q 6 47 using GAP reveals that

A = {e1, . . . , e7} ∪ {σj(1, a, b, c, c, b, a) | j = 1, . . . , 7}
is an arc for which |V (U)| > q+1 occurs for the following values of a, b and c. Supposing
that M is the matrix given by the triple (a, b, c), the triple (a′, b′, c′) gives the matrix M−1.

q a b c a′ b′ c′ dim U |V (U)| arc or track

13 ǫ2 ǫ10 ǫ3 ǫ2 ǫ10 ǫ3 15 14 arc
23 ǫ ǫ8 ǫ2 ǫ6 ǫ21 ǫ9 14 21 track

ǫ ǫ13 ǫ16 ǫ9 ǫ15 ǫ17 14 21 track
ǫ5 ǫ13 ǫ7 ǫ21 ǫ14 ǫ20 14 21 track

25 ǫ ǫ19 ǫ11 ǫ11 ǫ13 ǫ8 14 21 track
ǫ ǫ17 ǫ19 ǫ3 ǫ9 ǫ2 14 21 track
ǫ7 ǫ8 ǫ17 ǫ ǫ15 ǫ22 14 21 track
ǫ7 ǫ5 ǫ23 ǫ16 ǫ7 ǫ17 14 21 track
ǫ13 ǫ11 ǫ16 ǫ14 ǫ6 ǫ3 14 21 track

27 ǫ11 ǫ21 ǫ7 ǫ11 ǫ21 ǫ7 15 28 arc
29 ǫ17 ǫ18 ǫ24 ǫ17 ǫ18 ǫ24 15 30 arc
41 ǫ ǫ3 ǫ34 ǫ ǫ3 ǫ34 15 42 arc
43 ǫ ǫ30 ǫ8 ǫ ǫ30 ǫ8 15 44 arc

ǫ ǫ32 ǫ27 ǫ20 ǫ15 ǫ34 14 49 track
ǫ7 ǫ19 ǫ25 ǫ15 ǫ41 ǫ10 14 49 track
ǫ8 ǫ22 ǫ27 ǫ35 ǫ23 ǫ17 14 49 track

47 ǫ2 ǫ15 ǫ7 ǫ12 ǫ3 ǫ38 14 49 track
ǫ4 ǫ6 ǫ31 ǫ17 ǫ25 ǫ36 14 49 track
ǫ5 ǫ7 ǫ25 ǫ29 ǫ16 ǫ41 14 49 track
ǫ5 ǫ13 ǫ19 ǫ15 ǫ42 ǫ40 14 49 track
ǫ5 ǫ17 ǫ30 ǫ30 ǫ22 ǫ37 14 49 track
ǫ8 ǫ34 ǫ43 ǫ15 ǫ36 ǫ12 14 49 track
ǫ9 ǫ16 ǫ24 ǫ39 ǫ21 ǫ41 14 49 track
ǫ10 ǫ29 ǫ21 ǫ41 ǫ33 ǫ27 14 49 track
ǫ10 ǫ34 ǫ31 ǫ44 ǫ31 ǫ39 14 49 track

49 ǫ2 ǫ43 ǫ39 ǫ44 ǫ18 ǫ16 14 49 track
ǫ4 ǫ30 ǫ32 ǫ6 ǫ25 ǫ23 14 49 track
ǫ5 ǫ9 ǫ46 ǫ23 ǫ25 ǫ42 14 49 track

As in the 5-dimensional case, Theorem 5 implies that the entries in the table for which
the dimension of U is 15 and |V (U)| = q + 1, V (U) is a normal rational curve.

It is also of interest to note that a = ǫ3, b = ǫ5 and c = ǫ15 gives an arc of size 14
in PG(6, 17) for which the dimension of U is 14 and is therefore not contained in a
normal rational curve (which is contained in the common zeros of 15 linearly independent
quadratic forms). The parameters a = ǫ3, b = ǫ7 and c = ǫ8 give an arc of size 14 in
PG(6, 19) which is not contained in a normal rational curve for the same reason.
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In all cases the projection of V (U) from three points of V (U) into PG(3, q) is contained
in the intersection of two linearly independent quadratic forms, see Conjecture 7. This
implies that the projection of V (U) from four points of V (U) is contained in a plane cubic
curve.

4. Castelnuovo’s theorem

In this section, we will be interested in deducing precisely what arcs and tracks we get by
intersecting large amounts of quadrics. If V (U) is large enough then it may be that we
get only the classical examples described in the introduction.

Theorem 5, and its corollary Theorem 6, is essentially Castelnuovo’s theorem [4]. It is not
clear to us if it is known that this theorem holds over an arbitrary field, so we include a
proof. Theorem 5 verifies the conjecture in Section 5 of [9] under the hypothesis 2k > q.

Theorem 5. Let X be an arc of size 2k+ 1 of PG(k− 1,F) and let U be the subspace of

quadratic forms which are zero on X. If dimU >
(

k−1

2

)

then the projection of V (U) from
any k − 3 points of V (U) is contained in a conic.

Proof. After a suitable change of basis, we can suppose that the canonical basis {e1, . . . , ek} ⊆
X and let V = X \ {e1, . . . , ek}.
Let C be a basis for a

(

k−1

2

)

-dimensional subspace of the space of quadratic forms that
are zero on X .

Let M = (mij) be the |C| ×
(

k−1

2

)

matrix whose rows are indexed by the elements of C,

whose first k − 2 columns are indexed X1, . . . , Xk−2 and whose next
(

k−2

2

)

columns are
indexed by XiXj, where i, j ∈ {1, . . . , k− 2} and i < j. The row-column entry, where the
row is indexed by the quadratic form

q(X) =
∑

16i<j6k

aijXiXj

is defined as

ai,k−1Xk−1 + ai,kXk

for the first i = 1, . . . , k − 2 columns and aij for the remaining columns. Thus, M has
entries which are constants or linear forms in Xk−1 and Xk and its determinant is a
homogeneous polynomial of degree k − 2.
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Let x = (x1, . . . , xk) be a point in the intersection of all the quadrics in C. Then

M(xk−1, xk)



















x1

...
xk−2

x1x2

...
xk−3xk−2



















= vxk−1xk,

where v is the vector whose coordinates are indexed by the quadrics in C and whose
coordinate indexed by q(X) has entry −ak−1,k.

We can solve for xi (i = 1, . . . , k − 2) and xixj (i, j = 1, . . . , k − 2, i < j) by Cramer’s
method, defining Mi to be the matrix obtained by from M by replacing the column indexed
by xi by v and Mij to be the matrix obtained by from M by replacing the column indexed
by xixj by v.

Thus,

det(M(xk−1, xk))xi = xk−1xk det(Mi(xk−1, xk))

and

det(M(xk−1, xk))xixj = xk−1xk det(Mij(xk−1, xk)).

If det(M(xk−1, xk)) = 0, for some x ∈ V , then there is a linear combination of the quadrics
in C which is a quadric

(xkXk−1 − xk−1Xk)(d1X1 + · · ·+ dk−2Xk−2) = dk−1Xk−1Xk,

for some d1, . . . , dk−1 ∈ F. Since x is a zero of this quadric and xk−1xk 6= 0 we have
that dk−1 = 0, which implies that in the space of quadrics spanned by C there is a
hyperplane pair (reducible) quadric. However, the arc X is not contained in a hyperplane
pair quadric, which is a contradiction. Observe that this implies that det(M)(Xk−1, Xk)
is not identically zero.

Similarly, if det(M)(Xk−1, 0) = 0 then there is a linear combination of the quadrics in C
which is a quadric

Xk(d1X1 + · · ·+ dk−2Xk−2 + dk−1Xk−1),

for some d1, . . . , dk−1 ∈ F, again contradicting the fact that C does not contain a hyper-
plane pair quadric.

As a homogeneous polynomial in (Xk−1, Xk), the determinants are non-zero and have
degree

deg det(M(Xk−1, Xk)) = k − 2, deg det(Mi(Xk−1, Xk)) = k − 3

and

deg det(Mij(Xk−1, Xk)) = k − 2.

Note that we have also proved that the degree of detM in Xk−1 is also k − 2.
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From this we deduce that, for x in the intersection of all the quadrics in C, x is a zero of

Xk−1Xk det(Mi) det(Mj)− det(M) det(Mij),

which is a homogeneous polynomial in (Xk−1, Xk) of degree 2k − 4. Note that we have
not written the indeterminates for the determinants, and will not from now on, for the
sake of readability.

We can choose bj , j ∈ {1, . . . k − 3} \ {i}, so that

Xk−1Xk det(Mi)
∑

j 6=i

bj det(Mj)− det(M)
∑

j 6=i

bj det(Mij)

is a polynomial of degree at most k in Xk−1. This polynomial has a zero (Xk−1, Xk) =
(ak−1, ak) for every a = (a1, . . . , ak) ∈ V . Since |X| > 2k + 1, we have that |V | > k + 1.
Moreover, since X is an arc the pairs (ak−1, ak) are distinct for distinct points in V .
Therefore, the polynomial above is identically zero.

In other words,

(1) Xk−1Xk det(Mi)
∑

j 6=i

bj det(Mj) ≡ det(M)
∑

j 6=i

bj det(Mij).

For all x ∈ V ,
det(M(xk−1, xk))xj = xk−1xk det(Mj(xk−1, xk)).

Hence, if
∑

j 6=i

bj det(Mj) ≡ 0

then
(
∑

j 6=i

bjxj) det(M(xk−1, xk)) = 0,

for all x ∈ V .

We have already proven that det(M(xk−1, xk)) 6= 0.

Since V is a set of more than k points of an arc,
∑

j 6=i

bjxj 6= 0

for every element x ∈ V .

Thus,
∑

j 6=i

bj det(Mj) 6≡ 0.

Suppose that the degree of g = gcd(det(M), Xk−1Xk det(Mi)) is r 6 k − 4. Let m =
det(M)/g and mi = Xk−1Xk det(Mi)/g.
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We can choose dj, j ∈ {1, . . . k − 3} \ {i}, so that

mi

∑

j 6=i

dj det(Mj)−m
∑

j 6=i

dj det(Mij)

is a polynomial of degree at most k − r in Xk−1.

This polynomial is zero at all x ∈ V , which implies that it is identically zero. This implies
that mi divides

∑

j 6=i dj det(Mij) and so
∑

j 6=i dj det(Mj) has degree k−r− (k−r−1) = 1
in Xk−1. It is divisible by m, which has degree k − 2 − r > 2 in Xk−1. This implies that
∑

j 6=i dj det(Mj) is identically zero, which we already proved before that it is not.

Thus, the degree of g is k − 3. For all x ∈ V , the point x is a zero of the quadratic form

Xk−1Xk det(Mi)

g
−Xi

det(M)

g
.

This implies that the projection of X from any k− 3 points of X is contained in a conic.

�

Theorem 6. Let X be an arc of size 2k + 1 of PG(k − 1,F) defining at most 2k − 1
linearly independent conditions on the space of quadratic forms. Then X is contained in

a normal rational curve.

Proof. By Theorem 5, the projection of X from any k − 3 points of X is contained in a
conic. It is well-known that this implies that X is contained in a normal rational curve,
see for example [1]. �

We conjecture the following, based on the examples found by computer. This should be
compared to Fano’s theorem from [6] which states that, under the additional hypothesis
that all subsets of X with the same number of elements impose the same number of
conditions on the space of quadratic forms, V (U) is a curve of degree k.

Conjecture 7. Let X be an arc of size 2k + 3 of PG(k − 1,F) and let U be the subspace

of quadratic forms which are zero on X. If dimU >
(

k−1

2

)

−1 then the projection of V (U)
to PG(3, q) from any k− 4 points of V (U) is contained in the intersection of two linearly

independent quadratic forms.

Observe that Conjecture 7, implies that that projection of V (U) to PG(2, q) from any
k− 3 points of V (U) is contained in a cubic curve. To see this suppose that f1 and f2 are
quadratic forms defining two linearly independent quadratic forms on PG(3, q). Let

bi(X, Y ) = fi(X + Y )− fi(X)− fi(Y ),

the symmetric bilinear form which is the polarisation of fi(X). Then, for x in the projec-
tion of V (U), let

gx(X) = b1(X, x)f2(X)− f1(X)b2(X, x).
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Then V (gx) contains all the points of the line joining x and y, for any y( 6= x) in the
projection of V (U), since gx(λx+µy) = 0. Since gx(X) has degree three this implies that
the projection of V (U) from x to PG(2, q) is contained in a cubic curve.

5. Another generalisation of Glynn’s construction

Let α be an element of F9 such that α4 = −1.

The set of points of PG(4, 9)

A = {(1, x, x2 + αx6, x3, x4) | x ∈ F9} ∪ {(0, 0, 0, 0, 1)}
is projectively equivalent to Glynn’s arc.

In the following lemma we give a short proof of the fact that A is an arc, which we will
then generalise.

Lemma 8. The set of points A is an arc of PG(4, 9).

Proof. The points of a hyperplane section of A satisfy the equation

f(x) = a0 + a1x+ a2(x
2 + αx6) + a3x

3 + a4x
4 = 0.

If a2 = 0, then the equation obviously has at most 4 solutions.

If a2 6= 0 then we can assume that a2 = 1. Since x 7→ x3 is an automorphism of the field,
f(x) = 0 if and only if f(x)3 = 0. Hence we also have

a30 + a31x
3 + x6 + α3x2 + a33x+ a34x

4 = 0.

A solution x to f(x) = 0 satisfies f(x)− αf(x)3 = 0. Hence,

a0 − αa30 + (a1 − αa33)x+ (1− α4)x2 + (a3 − αa31)x
3 + (a4 − αa34)x

4 = 0.

If α4 6= 1 then the equation f(x)− αf(x)3 = 0 is not identically zero and has at most 4
solutions. �

The set of qt+1 points of PG(2t−1, qt), where the coordinates are indexed by the subsets
of {0, 1, 2, . . . , t− 1}

Vt := {(
∏

i∈T

xqi)T⊆{0,1,2,...,t−1} | x ∈ Fqt} ∪ {(0, 0, . . . , 0, 1)},

is fixed by the map

(x0, x1, . . . , x2t−1) 7→ (x0, x1, . . . , x2t−1)
q

and such a map has order t.

Theorem 9. Let I = {q− 1}∪ {qd− qd−1 +1 | d = 2, 3, . . . , t− 1} and suppose that t− 1
of the coordinates of the points of PG(2t + t− 2, qt) are indexed by the elements of I. Let
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A be the set of points of PG(2t + t− 2, qt) such that the projection of A onto the subspace

xi = 0 for i ∈ I is Vt and the i-th coordinate is

t−1
∑

j=0

αijx
iqj

for i ∈ I.

If the matrix

P =











αi0 αi1 · · · αi,t−1

αq
i,t−1

αq
i0 · · · αq

i,t−2

...
...

...
...

αqt−1

i1 αqt−1

i2 · · · αqt−1

i0











is non-singular then A is a set of qt + 1 points of PG(2t + t − 2, qt) such that every

hyperplane is incident with at most qt−1 + qt−2 + · · ·+ q + 1 points of A.

Proof. In Zqt−1 consider the bijection τ : i 7→ iq. The map τ has order t and the elements
of I have distinct orbits.

The only element in the orbit of q − 1 larger than

qt−1 + qt−2 + · · ·+ q + 1

is qt − qt−1 = qt−1(q − 1) and this occurs only when q > 2.

In the orbit of qd − qd−1 + 1,

qe(qd − qd−1 + 1) < qt−1 + qt−2 + · · ·+ q + 1

for e 6 t− 1− d and for e ∈ {t− d+ 1, t− d+ 2, . . . , t− 1},
qe+d − qe+d−1 + qe ≡ qe+d−t − qe+d−1−t + qe (mod qt − 1).

Hence,
qe+d−t − qe+d−1−t + qe < qt−1 + qt−2 + · · ·+ q + 1.

The only element in the orbit of qd− qd−1+1 which is larger than qt−1+ qt−2+ · · ·+ q+1
is qt−d(qd − qd−1 + 1).

A linear section of A is a linear combination l(x) of the monomials

M := {
∏

i∈T

xqi | T ⊆ {0, 1, 2, . . . , t− 1}} ∪ {xiqj | i ∈ I, j ∈ {0, 1, 2, . . . , t− 1}}

which is equal to zero.

Also l(x)q
j

= 0, for j = 1, 2, . . . , t− 1 which are linear combinations of the monomials of
M too.

Since the number of elements in M of degree larger than

qt−1 + qt−2 + · · ·+ q + 1
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is at most t− 1, there is a suitable linear combination f(x) of

l(x), l(x)q, . . . , l(x)q
t−1

,

that does not contain those monomials.

Hence, f(x) is a non-zero polynomial of degree at most

qt−1 + qt−2 + · · ·+ q + 1,

or f(x) is identically zero. The latter is only possible if

{l(x), l(x)q, . . . , l(x)qt−1}
are linearly dependent as subset of the vector space generated by the monomials of M
over Fqt.

If in l(x) the coefficient of

t−1
∑

j=0

αijx
iqj is zero for all i ∈ I then l(x) has degree at most

qt−1 + qt−2 + · · ·+ q + 1.

If there exist an i ∈ I such that the coefficient of

t−1
∑

j=0

αijx
iqj 6= 0

then, by the non-singularity of P, it follows that

{l(x), l(x)q, . . . , l(x)qt−1}
are linearly independent. Hence, A is a set of qt +1 points of PG(2t + t− 2, qt) such that
every hyperplane is incident with at most qt−1 + qt−2 + · · ·+ q + 1 points of A. �

To calculate the space of quadratic forms vanishing on A, observe that we have labeled 2t

of the coordinates of PG(2t + t− 2, qt) by the subsets of {0, 1, . . . t− 1}. Let Ti, Tj, Tl, Tm

be subsets of {0, 1, . . . t− 1} such that Ti ∩ Tj = Tl ∩ Tm = ∅ and Ti ∪ Tj = Tl ∪ Tm. All
the quadratic forms of type

xTi
xTj

= xTl
xTm

vanish on A.

If q = 3 then there are more quadratic forms vanishing on A. We have

I = {2} ∪ {2 · 3d−1 + 1 | d = 2, 3, . . . , t− 1}.
Let xi be the coordinate occupied by

pi(x) =
t−1
∑

j=0

αijx
iqj ,



18 SIMEON BALL AND VALENTINA PEPE

for some i ∈ I. Then the following quadratic forms vanishing on A,

x2xT =
t−1
∑

j=0

α2jxTjl
xTjm

,

where T, Tjl, Tjm ⊂ {0, 1, . . . t−1} such that Tjl∪Tjm = T∪{j}, and for d ∈ {2, 3, . . . , t−1},

xexT =
t−1
∑

j=0

αejxTjl
xTjm

,

where e = 2 · 3d−1 + 1 and T, Tjl, Tjm ⊂ {0, 1, . . . t− 1} such that

Tjl ∪ Tjm = T ∪ {j, j + d− 1, j + d− 1}
if d− i+ j /∈ T , and

Tjl ∪ Tjm = T \ {d− i+ j} ∪ {j, j + d}
if d− i+ j ∈ T .

6. Conclusions

Let X be a set of points of PG(k − 1, q) which are not contained in the union of two
hyperplanes and which impose 2k conditions on the space of quadratic forms. Theorem 2
tells us that X is either an arc, a track or contains a line. Furthermore, if there is some
symmetry, Theorem 3 implies that the latter case does not occur. This enables us to find
many examples of arcs and tracks as the set of common zeros V (U) of the subspace U
of quadratic forms which are zero on X . In all but one case, these examples are either
a normal rational curve or have the property that they project onto the intersection of
two quadrics in PG(3, q). The exceptional case is the Glynn track. This leads us to
Conjecture 7. We could go further and conjecture that if the hypothesis of Conjecture 7
holds and V (U) is an arc then V (U) is a normal rational curve.
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