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Abstract

A fractional matching of a graph G is a function f giving each edge a number in [0, 1] such
that

∑

e∈Γ(v) f(e) ≤ 1 for each vertex v ∈ V (G), where Γ(v) is the set of edges incident to v.

The fractional matching number of G, written α′

∗
(G), is the maximum value of

∑

e∈E(G) f(e)
over all fractional matchings. In this paper, we investigate the relations between the fractional
matching number and the signless Laplacian spectral radius of a graph. Moreover, we give
some sufficient spectral conditions for the existence of a fractional perfect matching.

1 Introduction

Graphs considered in this paper are simple and undirected. Let G be a graph with vertex set

V (G) and edge set E(G) such that |V (G)| = n and |E(G)| = m. As usual, d(u) stands for the

degree of a vertex u in G. The adjacent matrix of G is A(G) = (aij)n×n, where aij = 1 if i and j

are adjacent, and aij = 0 otherwise. The diagonal matrix of G is D(G) = (d(i))n×n, where d(i)

is the degree of vertex i. Let λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G), µ1(G) ≥ µ2(G) ≥ . . . ≥ µn(G) and

q1(G) ≥ q2(G) ≥ . . . ≥ qn(G) be the eigenvalues of A(G), L(G) and Q(G), respectively, where

L(G) = D(G) − A(G) and Q(G) = D(G) + A(G). Particularly, the eigenvalues λ1(G), µ1(G)

and q1(G) are called the spectral radius, Laplacian spectral radius and signless Laplacian spectral

radius of G, respectively. For a set S ⊆ V (G), let G[S] denote the subgraph of G induced by

S, and let G− S be the graph obtained from G by deleting the vertices in S together with their

incident edges. The complement graph Gc of G is the graph whose vertex set is V (G) and whose

edges are the pairs of nonadjacent vertices of G. For any two vertex-disjoint graphs G1 and G2,

we use G1 ∨G2 to denote the join of graphs G1 and G2 and G1 ∪G2 to denote the disjoint union

of graphs G1 and G2.

An edge set M of G is called a matching if any two edges in M have no common vertices. If

each vertex of G is incident with exactly one edge of M , then M is called a perfect matching of

G. The matching number of a graph G, denoted by α′(G), is the number of edges in a maximum

matching. A fractional matching of a graph G is a function f giving each edge a number in [0, 1]
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such that
∑

e∈Γ(v) f(e) ≤ 1 for each vertex v ∈ V (G), where Γ(v) is the set of edges incident to v.

The fractional matching number of G, written α′
∗(G), is the maximum value of

∑

e∈E(G) f(e) over

all fractional matchings f . A fractional perfect matching of a graph G is a fractional matching f

with α′
∗(G) =

∑

e∈E(G) f(e) =
n
2 , and a fractional perfect matching f of a graph G is a perfect

matching if it takes only the values 0 or 1.

Fractional matching has attracted many researchers’ attention. Behrend et al. [3] established

a lower bound on the fractional matching number of a graph with given some graph parameters

and characterized the graphs whose fractional matching number attains the lower bound. Choi et

al. [7] gave the tight upper bounds on the difference and ratio of the fractional matching number

and matching number among all n-vertex graphs, and characterized the infinite family of graphs

where equalities hold. O [8] investigated the relations between the spectral radius of a connected

graph with minimum degree δ and its fractional matching number, and gave a lower bound on the

fractional matching number in terms of the spectral radius and minimum degree. Xue [11] studied

the connections between the fracional matching number and the Laplacian spectral radius of a

graph, and obtained some lower bounds on the fractional matching number of a graph. Moreover,

they presented some sufficient spectral conditions for the existence of a fractional perfect matching.

Motivated by [8, 11], we investigate the relations between the signless Laplacain spectral

radius of a graph and its fractional matching number. In Section 2, we list some useful lemmas.

In Section 3, we establish a lower bound on the fraction number of a graph in terms of its signless

Laplacian spectral radius and minimum degree. In Section 4, we obtain some sufficient spectral

conditions for the existence of a fractional perfect matching.

2 Preliminaries

In this section, we list some lemmas which will be used in our paper later. Some fundamental

properties of fractional matching were obtained in [9].

Lemma 2.1. [9] For any graph G, let α′
∗(G) be the fractional matching number of G. Then

(i) 2α′
∗(G) is an integer.

(ii) α′
∗(G) = 1

2(n−max{i(G − S)− |S|}), where the maximum is taken over all S ⊆ V (G).

Lemma 2.2. [10] Let G be a connected graph. If H is a subgraph of G, then q1(H) ≤ q1(G).

Lemma 2.3. [6] Let Kn be a complete graph of order n, where n ≥ 2. Then q1(Kn) = 2n− 2.

We now explain the concepts of the equitable matrix and equitable partition.

Definition 2.4. [2] Let M be a real matrix of order n described in the following block form

M =







M11 · · · M1t
...

. . .
...

Mt1 · · · Mtt






,
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where the blocks Mij are ni × nj matrices for any 1 ≤ i, j ≤ t and n = n1 + . . . + nt. For

1 ≤ i, j ≤ t, let bij denote the average row sum of Mij , i.e. bij is the sum of all entries in Mij

divided by the number of rows. Then B(M) = (bij) (simply by B) is called the quotient matrix of

M . If for each pair i, j, Mij has constant row sum, then B is called the equitable quotient matrix

of M and the partition is called equitable.

Lemma 2.5. [2] Let M be a symmetric real matrix. If M has an equitable partition and B is the

corresponding matrix, then each eigenvalue of B is also an eigenvalue of M .

The relation between λ1(B) and λ1(M) is obtained as below.

Lemma 2.6. [12] Let B be the equitable matrix of M as defined in Definition 2.4, and M be a

nonnegative matrix. Then λ1(B) = λ1(M).

O [8] constructed a family of connected bipartite graphsH(δ, k), where δ and k are two positive

integers. For each graph G ∈ H(δ, k) with the bipartition V (G) = V1∪V2, G satisfies the following

conditions:

(i) every vertex in V1 has degree δ,

(ii) |V1| = |V2|+ k,

(iii) the degrees of vertices in V2 are equal.

The exact values of the fractional matching number and the spectral radius for graphs in

H(δ, k) are obtained as below.

Lemma 2.7. [8] If H ∈ H(δ, k), then α′
∗(H) = |V (H)|−k

2 and λ1(H) = δ
√

1 + 2k
|V (H)|−k

.

We now determine the signless Laplacian spectral radius of graphs in H(δ, k).

Lemma 2.8. If H ∈ H(δ, k), then q1(H) = 2δ|V (H)|
|V (H)|−k

.

Proof. If H ∈ H(δ, k), by the partition V (H) = V1 ∪ V2, we can obtain the quotient matrix of

Q(H):

B =

(

δ δ
δ|V1|
|V2|

δ|V1|
|V2|

)

.

It is easy to calculate that λ1(B) = δ
(

1 + |V1|
|V2|

)

= δ
(

2 + k
|V2|

)

. By the construction of H(δ, k), the

partition V (H) = V1 ∪ V2 is equitable and |V2| =
|V (H)|−k

2 . By Lemma 2.6, we have

q1(H) = λ1(Q(H)) = λ1(B) = δ

(

2 +
k

|V2|

)

= δ

(

2 +
2k

|V (H)| − k

)

=
2δ|V (H)|

|V (H)| − k

as desired.
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3 A relationship between q1(G) and α′
∗(G)

In this section, we investigate the relationship between the signless Laplacian spectral radius

of a graph with minimum degree δ and its fractional matching number. Similar to the proof of

Lemma 3.2 in [8], we can obtain the following lemma.

Lemma 3.1. Let G be an n-vertex connected graph with minimum degree δ, and let k be a real

number between 0 and n. If q1(G) < 2nδ
n−k

, then α′
∗(G) > n−k

2 .

Proof. If α′
∗(G) ≤ n−k

2 , by Lemma 2.1, there exists a vertex set S ⊆ V (G) such that i(G−S)−|S| ≥

k. Since i(G−S) is an integer, then i(G−S)− |S| ≥ ⌈k⌉. Let A be the set of all isolated vertices

in G− S. Then,

|A| = i(G− S) ≥ |S|+ ⌈k⌉.

Consider the bipartite subgraph H with the partitions V (H) = A ∪ S such that E(H) is the set

of edges of G having one endpoint in A and the other in S. Let r be the number of edges in H.

Then r ≥ δ|A|. For the partition V (H) = A ∪ S, we can obtain a quotient matrix of Q(H) as

below:

B =

(

r
|A|

r
|A|

r
|S|

r
|S|

)

.

It is easy to calculate that λ1(B) = r(|A|+|S|)
|A||S| . Since the partition is equitable, by Lemma 2.5, we

have

q1(G) = λ1(Q(G)) ≥ λ1(B) =
r(|A|+ |S|)

|A||S|
≥ δ

|A|+ |S|

|S|
≥ δ

2|S| + ⌈k⌉

|S|
≥ δ

(

2 +
2⌈k⌉

n− k

)

≥
2nδ

n− k

since r ≥ δ|A|, |A| ≥ |S|+ ⌈k⌉, n ≥ |A|+ |S| ≥ 2|S|+ k and |S| ≥ δ.

Theorem 3.2. If G is an n-vertex graph with minimum degree δ, then we have

α′
∗(G) ≥

nδ

q1(G)
,

with equality if and only if k = n(q1(G)−2δ)
q1(G) is an integer and G is an element of H(δ, k).

Proof. By Lemma 3.1, α′
∗(G) > n−k

2 if q1(G) < 2nδ
n−k

. Note that 2n
n−k

is an increasing function of

k on [0, n), thus 2nδ
n−k

decreases towards q1(G) as k decreases towards z, where z = n(q1(G)−2δ)
q1(G) .

Then for each value k ∈ (z, n), we have α′
∗(G) > n−k

2 by Lemma 3.1. Let k tend to z and finally

equal to z, we obtain α′
∗(G) ≥ nδ

q1(G) as desired.

If k = n(q1(G)−2δ)
q1(G) is an integer and G ∈ H(δ, k), then by Lemma 2.7, we have α′

∗(G) = n−k
2 =

nδ
q1(G) . For the ’only if’ part, assume that α′

∗(G) = nδ
q1(G) . Then k = z and the inequalities in

Lemma 3.1 become equality. Since ⌈k⌉ = k, k must be an integer. In addition, note that r = δ|A|,

|A| = |S|+ k, n = 2|S|+ k and |S| = δ, G must be included in H(δ, k).

Let G be a bipartite graph with partition V (G) = V1 ∪ V2. Then G is said to be semi-regular

if all vertices in Vi have the same degree di for i = 1, 2.
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Lemma 3.3. [5] Let G be a connected graph graph. Then

q1(G) ≤ max{d(u) + d(v) : uv ∈ E(G)},

with equality if and only if G is a regular bipartite graph or a semi-regular bipartite graph.

Let g(G) be the length of a shortest cycle in G, and let α(G) be the independence number of

G which is the cardinality of the largest independent set of G. Similar to the proof of Theorem

2.6 in [11], we can obtain the following theorem.

Theorem 3.4. Let G be a graph with independence number α(G). If g(G) ≥ 5, then q1(G) <

2 + α(G).

Proof. Without loss of generality, assume that G is connected and d(u1) + d(v1) = max{d(u) +

d(v) : uv ∈ E(G)}. Let A = N(u1)\{v1} and B = N(v1)\{u1}. Since g(G) ≥ 5, then |A|+ |B| ≤

α(G) and thus d(u1) + d(v1) = 2 + |A| + |B| ≤ 2 + α(G). By Lemma 3.3, q1(G) ≤ 2 + α(G).

If q1(G) = 2 + α(G), then α(G) = |A| + |B| and thus G is bipartite regular or semi-regular.

Suppose that |A| ≥ |B| for convenience. Let w1 be a vertex of B. Then u1, w1 ∈ B since both

u1 and w1 are adjacent to v1. Since G is regular or semi-regular, then d(u1) = d(w1) and thus

|N(w1)\{v1}| = |A|. Note that N(w1)∪A is an independent set of G, then α(G) ≥ |N(w1)∪A| =

2|A|+ 1, a contradiction to the fact α(G) = |A|+ |B|.

Together with Theorems 3.2 and 3.4, we obtain a lower bound on the fractional matching

number in terms of the independence number and minimum degree, which improves the lower

bound obtained in [11].

Corollary 3.5. Let G be a connected graph with independence number α(G) and minimum degree

δ. If g(G) ≥ 5, then

α′
∗(G) >

nδ

α(G) + 2
.

4 Signless Laplacian spectral radius and fractional perfect match-
ing

Some sufficient condition for the existence of a fractional perfect matching in a graph in

terms of the spectral radius were obtain in [11]. In this section, we are devoted to give some

sufficient conditions for a graph to have a fractional perfect matching from the viewpoint of

signless Laplacian spectral radius.

Theorem 4.1. Let G be an n-vertex connected graph with minimum degree δ. If q1(G) < 2nδ
n−1 ,

then G has a fractional perfect matching.

Proof. If q1(G) < 2nδ
n−1 , then it follows from Lemma 3.1 that α′

∗(G) > n−1
2 . By Lemma 2.1, 2α′

∗(G)

is an integer, then α′
∗(G) = n

2 , which means that G has a fractional perfect matching.
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We now give a sufficient condition for the existence of a fractional perfect matching in a graph

in terms of the signless Laplacian spectral radius of its complement.

Theorem 4.2. Let G be an n-vertex connected graph with minimum degree δ and Gc be the

complement of G. If q1(G
c) < 2δ, then G has a fractional perfect matching.

Proof. Assume to the contrary that α′
∗(G) < n

2 . By Lemma 2.1, there exists a vertex set S ⊆ V (G)

such that i(G − S) − |S| > 0. Denote by A the set of isolated vertices in G − S. Note that the

neighbours of each isolated vertex belong to S, then |S| ≥ δ, which implies that |A| ≥ |S| + 1 ≥

δ + 1. Since Gc[A] is a clique, by Lemmas 2.2 and 2.3, we have

q1(G
c) ≥ q1(G

c[A]) = 2(|A| − 1) = 2δ,

a contradiction. This completes the proof.

Theorem 4.3. Let G be an n-vertex connected graph with minimum degree δ and Gc be the

complement of G. If q1(G
c) < 2δ+1, then G has a fractional perfect matching unless G ∼= H1∨H2,

where H1 is a (δ + 1)-independent set and H2 is any graph of order δ.

Proof. Suppose that α′
∗(G) < n

2 . By Lemma 2.1, there exists a vertex set S ⊆ V (G) such that

i(G− S)− |S| > 0. Let A be the set of isolated vertices in G− S. Then |A| ≥ |S|+ 1 ≥ δ + 1. If

|A| ≥ δ+2, then there is a clique of order δ+2 in Gc and thus q1(G
c) ≥ 2(δ+1), a contradiction.

Furthermore, we have |A| = |S|+1 = δ+1. If V (G) 6= A∪S, then there is a clique of order δ+2

in Gc and thus q1(G
c) ≥ 2(δ + 1), a contradiction. Hence, we have V (G) = A ∪ S. Therefore, we

have G ∼= H1 ∨H2. This completes the proof.

For regular graphs, the authors in [1, 4] investigated the relations between the eigenvalues and

the perfect matching. Here, we obtain the relations between the eigenvalues and the fractional

perfect matching for regular graphs.

Theorem 4.4. Let G be an n-vertex connected k-regular graph with eigenvalues k = λ1 ≥ λ2 ≥

· · · ≥ λn. If

λ3 ≤

{

k − 1 + 3
k+1 , if k is even;

k − 1 + 4
k+2 , if k is odd,

then G has a fractional perfect matching.

Proof. Assume that there exists not a fractional perfect matching in G. Then G has no perfect

matching. Similar to the proof of the Theorem 4.8.9 in [2], we can get a contradiction.

By Theorem 4.4, we can get the following corollary immediately.

Corollary 4.5. A regular graph with algebraic connectivity at least one has a fractional perfect

matching.
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