# Signless Laplacian spectral radius and fractional matchings in graphs* 

Yingui $\operatorname{Pan}^{a}$, Jianping Li ${ }^{a}$<br>${ }^{a}$ College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China, 410073.

May 28, 2019


#### Abstract

A fractional matching of a graph $G$ is a function $f$ giving each edge a number in $[0,1]$ such that $\sum_{e \in \Gamma(v)} f(e) \leq 1$ for each vertex $v \in V(G)$, where $\Gamma(v)$ is the set of edges incident to $v$. The fractional matching number of $G$, written $\alpha_{*}^{\prime}(G)$, is the maximum value of $\sum_{e \in E(G)} f(e)$ over all fractional matchings. In this paper, we investigate the relations between the fractional matching number and the signless Laplacian spectral radius of a graph. Moreover, we give some sufficient spectral conditions for the existence of a fractional perfect matching.


## 1 Introduction

Graphs considered in this paper are simple and undirected. Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$ such that $|V(G)|=n$ and $|E(G)|=m$. As usual, $d(u)$ stands for the degree of a vertex $u$ in $G$. The adjacent matrix of $G$ is $A(G)=\left(a_{i j}\right)_{n \times n}$, where $a_{i j}=1$ if $i$ and $j$ are adjacent, and $a_{i j}=0$ otherwise. The diagonal matrix of $G$ is $D(G)=(d(i))_{n \times n}$, where $d(i)$ is the degree of vertex $i$. Let $\lambda_{1}(G) \geq \lambda_{2}(G) \geq \cdots \geq \lambda_{n}(G), \mu_{1}(G) \geq \mu_{2}(G) \geq \ldots \geq \mu_{n}(G)$ and $q_{1}(G) \geq q_{2}(G) \geq \ldots \geq q_{n}(G)$ be the eigenvalues of $A(G), L(G)$ and $Q(G)$, respectively, where $L(G)=D(G)-A(G)$ and $Q(G)=D(G)+A(G)$. Particularly, the eigenvalues $\lambda_{1}(G), \mu_{1}(G)$ and $q_{1}(G)$ are called the spectral radius, Laplacian spectral radius and signless Laplacian spectral radius of $G$, respectively. For a set $S \subseteq V(G)$, let $G[S]$ denote the subgraph of $G$ induced by $S$, and let $G-S$ be the graph obtained from $G$ by deleting the vertices in $S$ together with their incident edges. The complement graph $G^{c}$ of $G$ is the graph whose vertex set is $V(G)$ and whose edges are the pairs of nonadjacent vertices of $G$. For any two vertex-disjoint graphs $G_{1}$ and $G_{2}$, we use $G_{1} \vee G_{2}$ to denote the join of graphs $G_{1}$ and $G_{2}$ and $G_{1} \cup G_{2}$ to denote the disjoint union of graphs $G_{1}$ and $G_{2}$.

An edge set $M$ of $G$ is called a matching if any two edges in $M$ have no common vertices. If each vertex of $G$ is incident with exactly one edge of $M$, then $M$ is called a perfect matching of $G$. The matching number of a graph $G$, denoted by $\alpha^{\prime}(G)$, is the number of edges in a maximum matching. A fractional matching of a graph $G$ is a function $f$ giving each edge a number in $[0,1]$

[^0]such that $\sum_{e \in \Gamma(v)} f(e) \leq 1$ for each vertex $v \in V(G)$, where $\Gamma(v)$ is the set of edges incident to $v$. The fractional matching number of $G$, written $\alpha_{*}^{\prime}(G)$, is the maximum value of $\sum_{e \in E(G)} f(e)$ over all fractional matchings $f$. A fractional perfect matching of a graph $G$ is a fractional matching $f$ with $\alpha_{*}^{\prime}(G)=\sum_{e \in E(G)} f(e)=\frac{n}{2}$, and a fractional perfect matching $f$ of a graph $G$ is a perfect matching if it takes only the values 0 or 1 .

Fractional matching has attracted many researchers' attention. Behrend et al. [3] established a lower bound on the fractional matching number of a graph with given some graph parameters and characterized the graphs whose fractional matching number attains the lower bound. Choi et al. 7] gave the tight upper bounds on the difference and ratio of the fractional matching number and matching number among all $n$-vertex graphs, and characterized the infinite family of graphs where equalities hold. O [8] investigated the relations between the spectral radius of a connected graph with minimum degree $\delta$ and its fractional matching number, and gave a lower bound on the fractional matching number in terms of the spectral radius and minimum degree. Xue [11 studied the connections between the fracional matching number and the Laplacian spectral radius of a graph, and obtained some lower bounds on the fractional matching number of a graph. Moreover, they presented some sufficient spectral conditions for the existence of a fractional perfect matching.

Motivated by [8, 11, we investigate the relations between the signless Laplacain spectral radius of a graph and its fractional matching number. In Section 2, we list some useful lemmas. In Section 3, we establish a lower bound on the fraction number of a graph in terms of its signless Laplacian spectral radius and minimum degree. In Section 4, we obtain some sufficient spectral conditions for the existence of a fractional perfect matching.

## 2 Preliminaries

In this section, we list some lemmas which will be used in our paper later. Some fundamental properties of fractional matching were obtained in [9].

Lemma 2.1. [9] For any graph $G$, let $\alpha_{*}^{\prime}(G)$ be the fractional matching number of $G$. Then
(i) $2 \alpha_{*}^{\prime}(G)$ is an integer.
(ii) $\alpha_{*}^{\prime}(G)=\frac{1}{2}(n-\max \{i(G-S)-|S|\})$, where the maximum is taken over all $S \subseteq V(G)$.

Lemma 2.2. [10] Let $G$ be a connected graph. If $H$ is a subgraph of $G$, then $q_{1}(H) \leq q_{1}(G)$.
Lemma 2.3. [6] Let $K_{n}$ be a complete graph of order $n$, where $n \geq 2$. Then $q_{1}\left(K_{n}\right)=2 n-2$.
We now explain the concepts of the equitable matrix and equitable partition.
Definition 2.4. [2] Let $M$ be a real matrix of order $n$ described in the following block form

$$
M=\left(\begin{array}{ccc}
M_{11} & \cdots & M_{1 t} \\
\vdots & \ddots & \vdots \\
M_{t 1} & \cdots & M_{t t}
\end{array}\right)
$$

where the blocks $M_{i j}$ are $n_{i} \times n_{j}$ matrices for any $1 \leq i, j \leq t$ and $n=n_{1}+\ldots+n_{t}$. For $1 \leq i, j \leq t$, let $b_{i j}$ denote the average row sum of $M_{i j}$, i.e. $b_{i j}$ is the sum of all entries in $M_{i j}$ divided by the number of rows. Then $B(M)=\left(b_{i j}\right)$ (simply by $B$ ) is called the quotient matrix of $M$. If for each pair $i, j, M_{i j}$ has constant row sum, then $B$ is called the equitable quotient matrix of $M$ and the partition is called equitable.

Lemma 2.5. [2] Let $M$ be a symmetric real matrix. If $M$ has an equitable partition and $B$ is the corresponding matrix, then each eigenvalue of $B$ is also an eigenvalue of $M$.

The relation between $\lambda_{1}(B)$ and $\lambda_{1}(M)$ is obtained as below.
Lemma 2.6. [12] Let $B$ be the equitable matrix of $M$ as defined in Definition 2.4, and $M$ be a nonnegative matrix. Then $\lambda_{1}(B)=\lambda_{1}(M)$.

O [8] constructed a family of connected bipartite graphs $\mathcal{H}(\delta, k)$, where $\delta$ and $k$ are two positive integers. For each graph $G \in \mathcal{H}(\delta, k)$ with the bipartition $V(G)=V_{1} \cup V_{2}, G$ satisfies the following conditions:
(i) every vertex in $V_{1}$ has degree $\delta$,
(ii) $\left|V_{1}\right|=\left|V_{2}\right|+k$,
(iii) the degrees of vertices in $V_{2}$ are equal.

The exact values of the fractional matching number and the spectral radius for graphs in $\mathcal{H}(\delta, k)$ are obtained as below.

Lemma 2.7. [8] If $H \in \mathcal{H}(\delta, k)$, then $\alpha_{*}^{\prime}(H)=\frac{|V(H)|-k}{2}$ and $\lambda_{1}(H)=\delta \sqrt{1+\frac{2 k}{|V(H)|-k}}$.
We now determine the signless Laplacian spectral radius of graphs in $\mathcal{H}(\delta, k)$.
Lemma 2.8. If $H \in \mathcal{H}(\delta, k)$, then $q_{1}(H)=\frac{2 \delta|V(H)|}{|V(H)|-k}$.
Proof. If $H \in \mathcal{H}(\delta, k)$, by the partition $V(H)=V_{1} \cup V_{2}$, we can obtain the quotient matrix of $Q(H)$ :

$$
B=\left(\begin{array}{cc}
\delta & \delta \\
\frac{\delta\left|V_{1}\right|}{\left|V_{2}\right|} & \frac{\delta\left|V_{1}\right|}{\left|V_{2}\right|}
\end{array}\right) .
$$

It is easy to calculate that $\lambda_{1}(B)=\delta\left(1+\frac{\left|V_{1}\right|}{\left|V_{2}\right|}\right)=\delta\left(2+\frac{k}{\left|V_{2}\right|}\right)$. By the construction of $\mathcal{H}(\delta, k)$, the partition $V(H)=V_{1} \cup V_{2}$ is equitable and $\left|V_{2}\right|=\frac{|V(H)|-k}{2}$. By Lemma 2.6, we have

$$
q_{1}(H)=\lambda_{1}(Q(H))=\lambda_{1}(B)=\delta\left(2+\frac{k}{\left|V_{2}\right|}\right)=\delta\left(2+\frac{2 k}{|V(H)|-k}\right)=\frac{2 \delta|V(H)|}{|V(H)|-k}
$$

as desired.

## 3 A relationship between $q_{1}(G)$ and $\alpha_{*}^{\prime}(G)$

In this section, we investigate the relationship between the signless Laplacian spectral radius of a graph with minimum degree $\delta$ and its fractional matching number. Similar to the proof of Lemma 3.2 in [8], we can obtain the following lemma.

Lemma 3.1. Let $G$ be an n-vertex connected graph with minimum degree $\delta$, and let $k$ be a real number between 0 and $n$. If $q_{1}(G)<\frac{2 n \delta}{n-k}$, then $\alpha_{*}^{\prime}(G)>\frac{n-k}{2}$.

Proof. If $\alpha_{*}^{\prime}(G) \leq \frac{n-k}{2}$, by Lemma[2.1, there exists a vertex set $S \subseteq V(G)$ such that $i(G-S)-|S| \geq$ $k$. Since $i(G-S)$ is an integer, then $i(G-S)-|S| \geq\lceil k\rceil$. Let $A$ be the set of all isolated vertices in $G-S$. Then,

$$
|A|=i(G-S) \geq|S|+\lceil k\rceil .
$$

Consider the bipartite subgraph $H$ with the partitions $V(H)=A \cup S$ such that $E(H)$ is the set of edges of $G$ having one endpoint in $A$ and the other in $S$. Let $r$ be the number of edges in $H$. Then $r \geq \delta|A|$. For the partition $V(H)=A \cup S$, we can obtain a quotient matrix of $Q(H)$ as below:

$$
B=\left(\begin{array}{cc}
\frac{r}{|A|} & \frac{r}{|A|} \\
\frac{r}{|S|} & \frac{r}{|S|}
\end{array}\right) \text {. }
$$

It is easy to calculate that $\lambda_{1}(B)=\frac{r(|A|+|S|)}{|A| S \mid}$. Since the partition is equitable, by Lemma 2.5, we have
$q_{1}(G)=\lambda_{1}(Q(G)) \geq \lambda_{1}(B)=\frac{r(|A|+|S|)}{|A||S|} \geq \delta \frac{|A|+|S|}{|S|} \geq \delta \frac{2|S|+\lceil k\rceil}{|S|} \geq \delta\left(2+\frac{2\lceil k\rceil}{n-k}\right) \geq \frac{2 n \delta}{n-k}$
since $r \geq \delta|A|,|A| \geq|S|+\lceil k\rceil, n \geq|A|+|S| \geq 2|S|+k$ and $|S| \geq \delta$.
Theorem 3.2. If $G$ is an $n$-vertex graph with minimum degree $\delta$, then we have

$$
\alpha_{*}^{\prime}(G) \geq \frac{n \delta}{q_{1}(G)},
$$

with equality if and only if $k=\frac{n\left(q_{1}(G)-2 \delta\right)}{q_{1}(G)}$ is an integer and $G$ is an element of $\mathcal{H}(\delta, k)$.
Proof. By Lemma 3.1 $\alpha_{*}^{\prime}(G)>\frac{n-k}{2}$ if $q_{1}(G)<\frac{2 n \delta}{n-k}$. Note that $\frac{2 n}{n-k}$ is an increasing function of $k$ on $[0, n)$, thus $\frac{2 n \delta}{n-k}$ decreases towards $q_{1}(G)$ as $k$ decreases towards $z$, where $z=\frac{n\left(q_{1}(G)-2 \delta\right)}{q_{1}(G)}$. Then for each value $k \in(z, n)$, we have $\alpha_{*}^{\prime}(G)>\frac{n-k}{2}$ by Lemma 3.1. Let $k$ tend to $z$ and finally equal to $z$, we obtain $\alpha_{*}^{\prime}(G) \geq \frac{n \delta}{q_{1}(G)}$ as desired.

If $k=\frac{n\left(q_{1}(G)-2 \delta\right)}{q_{1}(G)}$ is an integer and $G \in \mathcal{H}(\delta, k)$, then by Lemma 2.7, we have $\alpha_{*}^{\prime}(G)=\frac{n-k}{2}=$ $\frac{n \delta}{q_{1}(G)}$. For the 'only if' part, assume that $\alpha_{*}^{\prime}(G)=\frac{n \delta}{q_{1}(G)}$. Then $k=z$ and the inequalities in Lemma 3.1 become equality. Since $\lceil k\rceil=k, k$ must be an integer. In addition, note that $r=\delta|A|$, $|A|=|S|+k, n=2|S|+k$ and $|S|=\delta, G$ must be included in $\mathcal{H}(\delta, k)$.

Let $G$ be a bipartite graph with partition $V(G)=V_{1} \cup V_{2}$. Then $G$ is said to be semi-regular if all vertices in $V_{i}$ have the same degree $d_{i}$ for $i=1,2$.

Lemma 3.3. [5] Let $G$ be a connected graph graph. Then

$$
q_{1}(G) \leq \max \{d(u)+d(v): u v \in E(G)\},
$$

with equality if and only if $G$ is a regular bipartite graph or a semi-regular bipartite graph.
Let $g(G)$ be the length of a shortest cycle in $G$, and let $\alpha(G)$ be the independence number of $G$ which is the cardinality of the largest independent set of $G$. Similar to the proof of Theorem 2.6 in [11], we can obtain the following theorem.

Theorem 3.4. Let $G$ be a graph with independence number $\alpha(G)$. If $g(G) \geq 5$, then $q_{1}(G)<$ $2+\alpha(G)$.

Proof. Without loss of generality, assume that $G$ is connected and $d\left(u_{1}\right)+d\left(v_{1}\right)=\max \{d(u)+$ $d(v): u v \in E(G)\}$. Let $A=N\left(u_{1}\right) \backslash\left\{v_{1}\right\}$ and $B=N\left(v_{1}\right) \backslash\left\{u_{1}\right\}$. Since $g(G) \geq 5$, then $|A|+|B| \leq$ $\alpha(G)$ and thus $d\left(u_{1}\right)+d\left(v_{1}\right)=2+|A|+|B| \leq 2+\alpha(G)$. By Lemma 3.3, $q_{1}(G) \leq 2+\alpha(G)$. If $q_{1}(G)=2+\alpha(G)$, then $\alpha(G)=|A|+|B|$ and thus $G$ is bipartite regular or semi-regular. Suppose that $|A| \geq|B|$ for convenience. Let $w_{1}$ be a vertex of $B$. Then $u_{1}, w_{1} \in B$ since both $u_{1}$ and $w_{1}$ are adjacent to $v_{1}$. Since $G$ is regular or semi-regular, then $d\left(u_{1}\right)=d\left(w_{1}\right)$ and thus $\left|N\left(w_{1}\right) \backslash\left\{v_{1}\right\}\right|=|A|$. Note that $N\left(w_{1}\right) \cup A$ is an independent set of $G$, then $\alpha(G) \geq\left|N\left(w_{1}\right) \cup A\right|=$ $2|A|+1$, a contradiction to the fact $\alpha(G)=|A|+|B|$.

Together with Theorems 3.2 and [3.4, we obtain a lower bound on the fractional matching number in terms of the independence number and minimum degree, which improves the lower bound obtained in [11].

Corollary 3.5. Let $G$ be a connected graph with independence number $\alpha(G)$ and minimum degree $\delta$. If $g(G) \geq 5$, then

$$
\alpha_{*}^{\prime}(G)>\frac{n \delta}{\alpha(G)+2} .
$$

## 4 Signless Laplacian spectral radius and fractional perfect matching

Some sufficient condition for the existence of a fractional perfect matching in a graph in terms of the spectral radius were obtain in [11]. In this section, we are devoted to give some sufficient conditions for a graph to have a fractional perfect matching from the viewpoint of signless Laplacian spectral radius.

Theorem 4.1. Let $G$ be an $n$-vertex connected graph with minimum degree $\delta$. If $q_{1}(G)<\frac{2 n \delta}{n-1}$, then $G$ has a fractional perfect matching.

Proof. If $q_{1}(G)<\frac{2 n \delta}{n-1}$, then it follows from Lemma 3.1 that $\alpha_{*}^{\prime}(G)>\frac{n-1}{2}$. By Lemma 2.1, $2 \alpha_{*}^{\prime}(G)$ is an integer, then $\alpha_{*}^{\prime}(G)=\frac{n}{2}$, which means that $G$ has a fractional perfect matching.

We now give a sufficient condition for the existence of a fractional perfect matching in a graph in terms of the signless Laplacian spectral radius of its complement.

Theorem 4.2. Let $G$ be an n-vertex connected graph with minimum degree $\delta$ and $G^{c}$ be the complement of $G$. If $q_{1}\left(G^{c}\right)<2 \delta$, then $G$ has a fractional perfect matching.

Proof. Assume to the contrary that $\alpha_{*}^{\prime}(G)<\frac{n}{2}$. By Lemma2.1, there exists a vertex set $S \subseteq V(G)$ such that $i(G-S)-|S|>0$. Denote by $A$ the set of isolated vertices in $G-S$. Note that the neighbours of each isolated vertex belong to $S$, then $|S| \geq \delta$, which implies that $|A| \geq|S|+1 \geq$ $\delta+1$. Since $G^{c}[A]$ is a clique, by Lemmas [2.2) and 2.3, we have

$$
q_{1}\left(G^{c}\right) \geq q_{1}\left(G^{c}[A]\right)=2(|A|-1)=2 \delta,
$$

a contradiction. This completes the proof.
Theorem 4.3. Let $G$ be an n-vertex connected graph with minimum degree $\delta$ and $G^{c}$ be the complement of $G$. If $q_{1}\left(G^{c}\right)<2 \delta+1$, then $G$ has a fractional perfect matching unless $G \cong H_{1} \vee H_{2}$, where $H_{1}$ is a $(\delta+1)$-independent set and $H_{2}$ is any graph of order $\delta$.

Proof. Suppose that $\alpha_{*}^{\prime}(G)<\frac{n}{2}$. By Lemma 2.1, there exists a vertex set $S \subseteq V(G)$ such that $i(G-S)-|S|>0$. Let $A$ be the set of isolated vertices in $G-S$. Then $|A| \geq|S|+1 \geq \delta+1$. If $|A| \geq \delta+2$, then there is a clique of order $\delta+2$ in $G^{c}$ and thus $q_{1}\left(G^{c}\right) \geq 2(\delta+1)$, a contradiction. Furthermore, we have $|A|=|S|+1=\delta+1$. If $V(G) \neq A \cup S$, then there is a clique of order $\delta+2$ in $G^{c}$ and thus $q_{1}\left(G^{c}\right) \geq 2(\delta+1)$, a contradiction. Hence, we have $V(G)=A \cup S$. Therefore, we have $G \cong H_{1} \vee H_{2}$. This completes the proof.

For regular graphs, the authors in [1, 4] investigated the relations between the eigenvalues and the perfect matching. Here, we obtain the relations between the eigenvalues and the fractional perfect matching for regular graphs.

Theorem 4.4. Let $G$ be an n-vertex connected $k$-regular graph with eigenvalues $k=\lambda_{1} \geq \lambda_{2} \geq$ $\cdots \geq \lambda_{n}$. If

$$
\lambda_{3} \leq \begin{cases}k-1+\frac{3}{k+1}, & \text { if } k \text { is even } ; \\ k-1+\frac{4}{k+2}, & \text { if } k \text { is odd },\end{cases}
$$

then $G$ has a fractional perfect matching.
Proof. Assume that there exists not a fractional perfect matching in $G$. Then $G$ has no perfect matching. Similar to the proof of the Theorem 4.8.9 in [2], we can get a contradiction.

By Theorem 4.4, we can get the following corollary immediately.
Corollary 4.5. A regular graph with algebraic connectivity at least one has a fractional perfect matching.

## Acknowledgement(s)

The authors would like to express their sincere gratitude to all the referees for their careful reading and insightful suggestions.

## References

[1] A.E. Brouwer, W.H. Haemers, Eigenvalues and perfect matchings, Linear Algebra Appl. 395 (2005) 155-162.
[2] A.E. Brouwer, W.H. Haemers, Spectra of Graphs - Monograph, Springer, 2011.
[3] R.E. Behrend, S. O, D.B. West, Sharp lower bounds on the fractional matching number, Discrete Appl. Math. 186 (2015) 272-274.
[4] S.M. Cioabă, D.A. Gregory, W.H. Haemers, Matchings in regular graphs from eigenvalues, J. Combin. Theory (B) 99 (2009) 287-297.
[5] D. Cvetković, P. Rowlinson, S.K. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl. 423 (2007) 155-171.
[6] D. Cvetković, S.K. Simić, Towards a spectral theory of graphs based on the signless Laplacian, I, Publ. Inst. Math. 99 (2009) 19-33.
[7] I. Choi, J. Kim, S. O, The difference and ratio of the fractional matching number and the matching number of graphs, Discrete Math. 339 (2016) 1382-1386.
[8] S. O. Spectral radius and fractional matchings in graphs, European J Combin. 55 (2016) 144-148.
[9] E.R. Scheinerman, D.H. Ullman, Fractional Graph Theory: A Rational Approach to the Theory of Graphs, Wiley \& Sons, 1997.
[10] Y. Shen, L.H. You, M.J. Zhang, S.C. Li, On a conjecture for the signless Laplacian spectral radius of cacti with given matching number, Linear Multilinear Algebra, 65 (2017) 457-474.
[11] J. Xue, M.Q. Zhai, J.L. Shu, Fractional matching number and eigenvalues of a graph, Linear Multilinear Algebra, DOI:10.1080/03081087.2018.1498059.
[12] L.H. You, M. Yang, W. So, W.G. Xi, On the spectrum of an equitable matrix and its application, Linear Algebra Appl. 577 (2019) 21-40.


[^0]:    ${ }^{*}$ This work was supported by the National Natural Foundation of China [61773020]. Corresponding author: Yingui Pan(panygui@163.com)

