
PATTERN-AVOIDING PERMUTATION POWERS

AMANDA BURCROFF AND COLIN DEFANT

Abstract. Recently, Bóna and Smith defined strong pattern avoidance, saying that a permuta-
tion π strongly avoids a pattern τ if π and π2 both avoid τ . They conjectured that for every
positive integer k, there is a permutation in Sk3 that strongly avoids 123 · · · (k + 1). We use the
Robinson–Schensted–Knuth correspondence to settle this conjecture, showing that the number of

such permutations is at least kk
3/2+O(k3/ log k) and at most k2k

3+O(k3/ log k). We enumerate 231-
avoiding permutations of order 3, and we give two further enumerative results concerning strong
pattern avoidance. We also consider permutations whose powers all avoid a pattern τ . Finally,
we study subgroups of symmetric groups whose elements all avoid certain patterns. This leads
to several new open problems connecting the group structures of symmetric groups with pattern
avoidance.

1. Introduction

Consider Sn, the symmetric group on n letters. This is the set of all permutations of the set
[n] = {1, . . . , n}, which we can view as bijections from [n] to [n]. Many interesting questions
arise when we view permutations as group elements. For example, we can ask about their cycle
types, their orders, and their various powers. It is also common to view permutations as words
by associating the bijection π : [n] → [n] with the word π(1) · · ·π(n). We use this association to
consider permutations as bijections and words interchangeably. This point of view allows us to
consider the notion of a permutation pattern, which has spawned an enormous amount of research
since its inception in the 1960’s [6,12,15]. Given π = π(1) · · ·π(n) ∈ Sn and τ = τ(1) · · · τ(m) ∈ Sm,
we say the entries π(i1), . . . , π(im) form an occurrence of the pattern τ in π if i1 < · · · < im and
for all j, k ∈ {1, . . . ,m}, π(ij) < π(ik) if and only if τ(j) < τ(k). We say that π avoids τ if there
does not exist an occurrence of τ in π. Let Av(τ1, . . . , τr) denote the set of all permutations that
avoid the patterns τ1, . . . , τr. Let Avn(τ1, . . . , τr) = Av(τ1, . . . , τr) ∩ Sn. Let idn = 123 · · ·n denote
the identity element of Sn.

Recently, researchers have begun to explore interactions between permutation pattern avoidance
and the group-theoretic properties of permutations [1–5, 7, 8, 10, 11, 13, 14]. For example, a permu-
tation is called cyclic if it has exactly one cycle in its disjoint cycle decomposition. At the 2007
Permutation Patterns Conference, Stanley posed the problem of determining the number of cyclic
permutations in Avn(τ). There are currently no known formulas for these numbers when τ has
length at least 3, but the articles [3, 7, 10] do obtain several interesting results concerning cyclic
permutations that avoid multiple patterns.

Following a recent paper of Bóna and Smith [8], we say a permutation π ∈ Sn strongly avoids
a pattern τ if π and π2 both avoid τ . For example, the permutation 2341 strongly avoids 321
because the permutations 2341 and (2341)2 = 3412 both avoid 321. Let SAv(τ1, . . . , τr) denote
the set of permutations that strongly avoid the patterns τ1, . . . , τr, and let SAvn(τ1, . . . , τr) =
SAv(τ1, . . . , τr) ∩ Sn. Bóna and Smith proved that SAvn(idk+1) = ∅ for all positive integers n and
k with n ≥ k3 + 1. They also conjectured (see [8, Conjecture 2.2]) that SAvk3(idk+1) 6= ∅. The
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following theorem proves that this is indeed the case. In what follows, let fλp×q denote the number
of standard Young tableaux whose shape is the p× q rectangle.

Theorem 1.1. For every positive integer k, we have(⌊
k2/2

⌋
bk2/4c

)k (
fλbk/2c×dk/2e

)2k
≤
∣∣ SAvk3(idk+1)

∣∣ ≤ (fλk2×k

)2
.

The lower bound in Theorem 1.1 far surpasses the lower bound of 1 that Bóna and Smith
conjectured. We will see in Section 3 that

(1)

(⌊
k2/2

⌋
bk2/4c

)k (
fλbk/2c×dk/2e

)2k
= kk

3/2+O(k3/ log k) and
(
fλk2×k

)2
= k2k

3+O(k3/ log k).

It is somewhat surprising that
∣∣ SAvk3(idk+1)

∣∣ is exponential in k3 log k since SAvk3+1(idk+1) is
empty.

Bóna and Smith [8] showed that | SAvn(312)| = |SAvn(231)| and | SAvn(132)| = | SAvn(213)|.
They determined | SAvn(312)| exactly and found a lower bound for |SAvn(321)|. However, they
were unable to compute | SAvn(132)| explicitly. Motivated by an attempt to complete this enu-
meration, they asked for the number of permutations in Avn(132) that have order 1 or 3. We have
not answered this question, but we have proven the following theorem. Given a set T of positive
integers and a permutation pattern τ , let ΩT

n (τ) denote the set of permutations π ∈ Avn(τ) such
that the order of π in the group Sn is an element of T .

Theorem 1.2. We have∑
n≥1

∣∣Ω{1,3}n (231)
∣∣xn =

∑
n≥1

∣∣Ω{1,3}n (312)
∣∣xn =

x+ x3 + x5

1− x− 3x3 − x5
.

Additional motivation for the preceding theorem comes from the observation that the sets

Ω
{t}
n (231) and Ω

{t}
n (312) have been enumerated when t = 1 (this is trivial) and when t = 2 (see [18]).

The next natural step concerns the enumeration of the sets Ω
{3}
n (231) and Ω

{3}
n (312), which is im-

mediate from Theorem 1.2.

Although it still seems difficult to enumerate permutations that strongly avoid τ whenever τ ∈
{132, 213, 321}, we can sometimes obtain exact formulas when we insist that our permutations
strongly avoid an additional pattern of length 4.

Theorem 1.3. For every n ≥ 2, we have

| SAvn(132, 3421)| = |SAvn(213, 4312)| = 2n2 − 7n+ 8.

Theorem 1.4. We have

1 +
∑
n≥1
|SAvn(321, 3412)|xn =

1

1− x− x2 − 2x3
.

As far as we can see, there is no reason to limit our attention to only permutations and their
squares. It is natural to consider pattern avoidance in all of the powers of a permutation.

Definition 1.1. We say a permutation π ∈ Sn powerfully avoids a pattern τ if every power of π
avoids τ . Let PAv(τ1, . . . , τr) denote the set of permutations that powerfully avoid the patterns
τ1, . . . , τr, and let PAvn(τ1, . . . , τr) = PAv(τ1, . . . , τr) ∩ Sn.
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Fix a permutation pattern τ . Since powerful pattern avoidance is evidently a very stringent
condition, one might naturally ask if there even exist arbitrarily long permutations that strongly
avoid τ . Of course, such a permutation exists if and only if τ is not an identity permutation. Indeed,
if τ is not an identity permutation, then for every n ≥ 1, the identity permutation in Sn powerfully
avoids τ . On the other hand, if n ≥ k, then PAvn(idk) is empty because every permutation in
Sn has idn as a power. To make this discussion nontrivial, we ask if there exist permutations of
arbitrary order that powerfully avoid τ . A more refined question is as follows. What is the set of
positive integers r such that there exists a permutation of order r that powerfully avoids τ? Let us
denote this set by Ξ(τ). The following theorem answers this question for most patterns τ .

Theorem 1.5. Fix m ≥ 2 and τ ∈ Sm. If τ = idm, then Ξ(τ) is equal to the set of all orders
of elements of Sm−1. If τ 6∈ {idm,m123 · · · (m − 1), 234 · · ·m1}, then Ξ(τ) = N. We also have
Ξ(231) = Ξ(312) = {1, 2}.

Consider the cyclic group Z/rZ. Note that r ∈ Ξ(τ) if and only if there is a positive integer n
and an injective homomorphism ϕ : Z/rZ ↪→ Sn such that ϕ(Z/rZ) ⊆ Avn(τ). This leads us to the
notion of pattern avoidance in subgroups of symmetric groups. When we speak about groups, we
really mean isomorphism classes of groups. This allows us to speak about sets of groups without
infringing upon set-theoretic paradoxes.

Definition 1.2. Given a permutation pattern τ , let G(τ) be the set of groups G such that there
exists a positive integer n and an injective homomorphism ϕ : G ↪→ Sn with ϕ(G) ⊆ Avn(τ).

We will obtain the following result as a simple consequence of Theorem 1.5. See Section 2 for
the definition of a sum indecomposable permutation.

Corollary 1.1. The sets G(231) and G(312) are both equal to the set of elementary abelian 2-
groups. If m ≥ 2 and τ ∈ Sm \ {m123 · · · (m − 1), 234 · · ·m1} is sum indecomposable, then G(τ)
contains all abelian groups.

2. Preliminaries and Notation

The plot of a permutation π = π(1) · · ·π(n) ∈ Sn is the graph displaying the points (i, π(i)) for
all i ∈ [n]. The reverse of π is the permutation rev(π) = π(n) · · ·π(1). The complement of π is
the permutation comp(π) = (n + 1 − π(1)) · · · (n + 1 − π(n)). The inverse of π, denoted π−1, is
just the inverse of π in the group Sn. The plots of the reverse, complement, and inverse of π are
obtained by reflecting the plot of π across the lines x = n+1

2 , y = n+1
2 , and y = x, respectively.

We call comp(rev(π)) the reverse complement of π. Let rot(π) be the permutation whose plot is
obtained by rotating the plot of π by 90◦ counterclockwise. It is straightforward to check that
rot(π) = rev(π−1) and that rot(rot(π)) = comp(rev(π)).

Let δn = n · · · 321 be the reverse of the identity element idn = 123 · · ·n. One can check that
rev(π) = π ◦ δn and comp(π) = δn ◦ π, respectively, where the symbol ◦ represents the product in
the group Sn (it is just the composition of bijections). This means that the reverse complement of
π is δn ◦ π ◦ δn, which is a conjugate of π in Sn because δn = δ−1n . It follows that comp(rev(πk)) =
comp(rev(π))k for each positive integer k. Consequently, if τ ′1, . . . , τ

′
r are the reverse complements

of the patterns τ1, . . . , τr, then

|Avn(τ1, . . . , τr)| = |Avn(τ ′1, . . . , τ
′
r)|, | SAvn(τ1, . . . , τr)| = | SAvn(τ ′1, . . . , τ

′
r)|,

and |PAvn(τ1, . . . , τr)| = |PAvn(τ ′1, . . . , τ
′
r)| for every n ≥ 1.
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For example, |PAvn(231)| = |PAvn(312)| and |PAvn(132)| = |PAvn(213)| for every n ≥ 1.

Given σ ∈ S` and µ ∈ Sm, let σ ⊕ µ denote the sum of σ and µ. This is the permutation whose
plot is obtained by placing the plot of µ above and to the right of the plot of σ. The skew sum of
σ and µ, denoted σ 	 µ, is the permutation whose plot is obtained by placing the plot of µ below
and to the right of the plot of σ. More precisely, we have

(σ ⊕ µ)(i) =

{
σ(i) if 1 ≤ i ≤ `;
µ(i− `) + ` if `+ 1 ≤ i ≤ `+m

and

(σ 	 µ)(i) =

{
σ(i) +m if 1 ≤ i ≤ `;
µ(i− `) if `+ 1 ≤ i ≤ `+m.

We always have σk ⊕µk = (σ⊕µ)k, but the analogous statement with the sum replaced by a skew
sum is false in general. A permutation is called sum indecomposable if it cannot be written as the
sum of two smaller permutations.

We make the convention that S0 = {ε}, where ε is the empty permutation. For the sake of
convenience, we give S0 the trivial group structure. Thus, ε has order 1.

3. Long Permutations that Strongly Avoid idk+1

We begin this section by proving the lower bound in Theorem 1.1. Suppose µ1, . . . , µk ∈
Avk2(idk+1) are such that µk−i+1 ◦ µi = δk2 for all i ∈ [k]. The permutation π = µ1 	 · · · 	 µk of
length k3 avoids idk+1. In fact, π strongly avoids idk+1 because

π2 =
k⊕
i=1

(µk−i+1 ◦ µi) =
k⊕
i=1

δk2 .

Our goal is to determine the number of ways to choose the permutations µ1, . . . , µk with these
properties. Let

a(k) = |{µ ∈ Avk2(idk+1, δk+1) : µ = comp(rev(µ))}|
and

a′(k) = |{µ ∈ Avk2(idk+1, δk+1) : µ = rot(µ)}|.

Lemma 3.1. Preserving the above notation, we have

|SAvk3(idk+1)| ≥

{
a(k)k/2, if k ≡ 0 (mod 2);

a(k)(k−1)/2a′(k), if k ≡ 1 (mod 2).

Proof. We have seen that |SAvk3(idk+1)| is at least the number of ways to choose µ1, . . . , µk ∈
Avk2(idk+1) with µk−i+1 ◦µi = δk2 for all i ∈ [k]. The equation µk−i+1 ◦µi = δk2 shows that µk−i+1

determines µi. Indeed, it is equivalent to the equation µi = µ−1k−i+1 ◦ δk2 . We have µ−1k−i+1 ◦ δk2 =

rev(µ−1k−i+1) = rot(µk−i+1), so we need µi = rot(µk−i+1) = rot(rot(µi)) = comp(rev(µi)) for all
i ∈ [k]. Because the plot of each µi is obtained by rotating that of µk−i+1 by 90◦, the permutations
µ1, . . . , µk all avoid idk+1 if and only if they all avoid idk+1 and δk+1. If k is even, then it follows
that the number of ways to choose µ1, . . . , µk ∈ Avk2(idk+1) with µk−i+1 ◦ µi = δk2 for all i ∈ [k] is
the same as the number of ways to choose µ1, . . . , µk/2 ∈ Avk2(idk+1, δk+1) with µi = comp(rev(µi))
for all i ∈ [k/2]. If k is odd, then we also need µ(k+1)/2 = rot(µ(k+1)/2). In this case, the number
of ways to choose µ1, . . . , µk ∈ Avk2(idk+1) with µk−i+1 ◦ µi = δk2 for all i ∈ [k] is the same as



5

the number of ways to choose µ1, . . . , µ(k+1)/2 ∈ Avk2(idk+1, δk+1) with µi = comp(rev(µi)) for all
i ∈ [(k − 1)/2] and µ(k+1)/2 = rot(µ(k+1)/2). �

At this point, we make use of the Robinson–Schensted–Knuth (RSK) correspondence. This
famous bijection sends each permutation µ ∈ Sn to a pair (P (µ), Q(µ)) of standard Young tableaux
on n boxes that have the same shape. We refer the reader to [6,16] for information about the RSK
correspondence. Unless otherwise stated, we assume all standard Young tableaux on n boxes are
filled with the elements of [n].

It is well known that the length of the first row in P (µ) (which is also the length of the first
row in Q(µ) since these two tableaux have the same shape) is the length of the longest increasing
subsequence of µ. Similarly, the length of the first column of P (µ) is the length of the longest
decreasing subsequence of µ. It follows that µ ∈ Avk2(idk+1, δk+1) if and only if P (µ), Q(µ) ∈
SYT(λk×k), where SYT(λ) denotes the set of standard Young tableaux of shape λ and λp×q denotes
the partition (q, q, . . . , q) of length p (i.e., the partition whose Young diagram is a p× q rectangle).
Let fλ = |SYT(λ)|. By the hook-length formula, we have

(2) fλp×q =
(pq)!∏p

i=1

∏q
j=1(i+ j − 1)

.

In [17], Schützenberger defined a map called “evacuation,” which sends each standard Young
tableau to a standard Young tableau of the same shape; we denote this map by ev. A standard
Young tableau is called self-evacuating if it is fixed by the evacuation map. Let SYTev(λ) be the
set of self-evacuating standard Young tableaux of shape λ. Some of the many useful properties of
the RSK correspondence (see Theorems 3.2.3, 3.6.6, and 3.9.4 in [16]) are the identities

P (rev(µ)) = P (µ)T , Q(rev(µ)) = ev
(
Q(µ)T

)
, P (µ−1) = Q(µ), Q(µ−1) = P (µ),

where Y T denotes the transpose of the standard Young tableau Y . It follows that

(3) P (rot(µ)) = P (rev(µ−1)) = P (µ−1)T = Q(µ)T

and

(4) Q(rot(µ)) = Q(rev(µ−1)) = ev
(
Q(µ−1)T

)
= ev

(
P (µ)T

)
.

Using the fact that the RSK map is bijective, we deduce from (3) and (4) that µ = rot(µ) if and
only if P (µ) = Q(µ)T and Q(µ) = ev(Q(µ)). Consequently,

(5) a′(k) = | SYTev(λk×k)|.

The evacuation map satisfies ev
(
Y T
)

= ev(Y )T for every standard Young tableau Y . Referring
to (3) and (4) once again, we find that

P (comp(rev(µ))) = P (rot(rot(µ))) = Q(rot(µ))T = ev
(
P (µ)T

)T
= ev(P (µ)).

Similarly,

Q(comp(rev(µ))) = Q(rot(rot(µ))) = ev
(
P (rot(µ))T

)
= ev(Q(µ)).

This shows that µ = comp(rev(µ)) if and only if P (µ) and Q(µ) are both self-evacuating. Therefore,

(6) a(k) = |SYTev(λk×k)|2.

According to (5) and (6), Lemma 3.1 tells us that

(7) | SAvk3(idk+1)| ≥ |SYTev(λk×k)|k
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for every positive integer k. In order to complete the proof of the lower bound in Theorem 1.1, we
are left to prove the following lemma.

Lemma 3.2. For every k ≥ 1, the number of self-evacuating k × k standard Young tableaux is
given by

| SYTev(λk×k)| =
(⌊
k2/2

⌋
bk2/4c

)(
fλbk/2c×dk/2e

)2
.

Proof. Given a partition λ, let us start at the bottom left corner of the Young diagram of λ and
traverse the southeast perimeter. We write down the letter v every time we traverse a vertical line
segment, and we write an h every time we traverse a horizontal line segment. This produces a word
w(λ) over the alphabet {v, h}. Let wo(λ) (respectively, we(λ)) be the word obtained by deleting
the letters in w(λ) in even (respectively, odd) positions and then removing any copies of the letter
v that come before the first h and any copies of h that come after the last v in this new word.
There are unique partitions λo and λe such that w(λo) = wo(λ) and w(λe) = we(λ). For example,
if we consider the partition λ4×4 = (4, 4, 4, 4), then we have

w(λ4×4) = hhhhvvvv, so wo(λ4×4) = we(λ4×4) = hhvv.

This means that λo4×4 = λe4×4 = λ2×2. More generally, we have λok×k = λbk/2c×dk/2e and λek×k =
λdk/2e×bk/2c.

Given two partitions λ1 ` n1 and λ2 ` n2, let SYT(λ1, λ2) be the set of pairs (X,Y ) such that

• X is a standard Young tableaux of shape λ1 whose entries form some n1-element subset Ψ
of [n1 + n2] (here, we do not require that Ψ = [n1]);
• Y is a standard Young tableaux of shape λ2 whose entries form the set [n1 + n2] \Ψ.

In Theorems 4.13 and 5.5 of [9], Egge showed that there is a bijection between self-evacuating
tableaux of shape λ and elements of certain sets of the form SYT(λ1, λ2), where λ1, λ2 depend on
λ. We only need this result when λ = λk×k, which is a particularly easy case. Specializing Egge’s
results, we find that there is a bijection

SYTev(λk×k)→ SYT(λok×k, λ
e
k×k) = SYT

(
λbk/2c×dk/2e, λdk/2e×bk/2c

)
.

The desired result follows since∣∣ SYT
(
λbk/2c×dk/2e, λdk/2e×bk/2c

) ∣∣ =

(
2 bk/2c · dk/2e
bk/2c · dk/2e

)
fλbk/2c×dk/2efλdk/2e×bk/2c

=

(⌊
k2/2

⌋
bk2/4c

)(
fλbk/2c×dk/2e

)2
. �

Lemma 3.2 and the inequality in (7) prove the lower bound in Theorem 1.1; we now prove the
upper bound. The proof follows easily from the argument used to prove Theorem 2.1 in [8], which
we reproduce here for easy reference.

Suppose π ∈ SAvk3(idk+1). This means that the standard Young tableau P (π) has at most k
columns. Therefore, it follows from Greene’s theorem [19, Theorem 7.23.17] that we can color the
entries of π with at most k colors so that each color class forms a decreasing subsequence of π. We
may assume that the color red is used to color a maximum-length decreasing subsequence. Let the
red entries be π(i1) > · · · > π(im), where i1 < · · · < im. Suppose by way of contradiction that m ≥
k2+1. By the pigeonhole principle, there exist j1 < · · · < jk+1 such that π2(ij1), . . . , π2(ijk+1

) are all

the same color. Since π(ijk+1
) < · · · < π(ij1), this means that π2(ijk+1

) > · · · > π2(ij1). It follows
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that π2(ij1), . . . , π2(ijk+1
) form an occurrence of the pattern idk+1 in π2, which is a contradiction.

We deduce that m ≤ k2, which means that π does not contain a decreasing subsequence of length
k2 + 1.

As mentioned above, the hypothesis that π avoids idk+1 guarantees that the first row in the
standard Young tableau P (π) has length at most k. We just saw that π avoids δk2+1, so the first
column in P (π) has length at most k2. This tableau has k3 boxes, so it must be of shape λk2×k.
Note that Q(π) must also be of shape λk2×k. Because the RSK correspondence is a bijection, we

find that | SAvk3(idk+1)| ≤
(
fλk2×k

)2
, as desired.

To finish this section, we derive the asymptotic estimates in (1). The Barnes G-function is

defined on integers n ≥ 2 by G(n) =
∏n−2
j=1 j!. It is known [20, Equation A.6] that

(8) log(G(n+ 1)) =
1

2
n2 log n− 3

4
n2 +O(n).

Furthermore, for any positive integers p and q, we can rewrite (2) as

(9) fλp×q =
(pq)!G(p+ 1)G(q + 1)

G(p+ q + 1)
.

Combining Stirling’s formula with (8) and (9) when p = bk/2c and q = dk/2e yields the estimate

log(fλbk/2c×dk/2e) = log(bk/2c · dk/2e)!) + log(G(bk/2c+ 1)) + log(G(dk/2e+ 1))− log(G(k + 1))

= (k2/4) log(k2/4) +
1

2
(k/2)2 log(k/2) +

1

2
(k/2)2 log(k/2)− 1

2
k2 log k +O(k2)

= (k2/4) log k +O(k2),

so (
fλbk/2c×dk/2e

)2k
= kk

3/2+O(k3/ log k).

Another application of Stirling’s formula yields(⌊
k2/2

⌋
bk2/4c

)k
= 2k

3/2+O(k log k) = kO(k3/ log k),

so (⌊
k2/2

⌋
bk2/4c

)k (
fλbk/2c×dk/2e

)2k
= kk

3/2+O(k3/ log k).

This proves the first equality in (1). For the second equality, we again combine Stirling’s formula
with (8) and (9), this time with p = k2 and q = k, to find that

log
(
fλk2×k

)
= log((k3)!) + log(G(k2 + 1)) + log(G(k + 1))− log(G(k2 + k + 1))

= k3 log(k3) +

(
1

2
(k2)2 log(k2)− 3

4
(k2)2

)
−
(

1

2
(k2 + k)2 log(k2 + k)− 3

4
(k2 + k)2

)
+O(k3)

= 3k3 log k + k4 log k − 3

4
k4 − (k2 + k)2 log k +

3

4
(k2 + k)2 +O(k3) = k3 log k +O(k3).

The second equality in (1) is now immediate.
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4. 312-Avoiding Permutations of Order 1 or 3

Recall that Ω
{1,3}
n (τ) denotes the set of permutations of order 1 or 3 that avoid the pattern τ . It

follows from the observations we made in Section 2 that the elements of Ω
{1,3}
n (231) are precisely the

reverse complements of the elements of Ω
{1,3}
n (312). This proves the first equality in Theorem 1.2.

The remainder of this section is devoted to the second equality in that theorem.

Proof of Theorem 1.2. Fix n ≥ 1, and suppose π ∈ Ω
{1,3}
n (312). Let j be such that π(j) = 1.

Because π avoids 312, we can write π = σ ⊕ µ for some σ ∈ Avj(312) and µ ∈ Avn−j(312).
Since π3 = σ3 ⊕ µ3, the permutations σ and µ must have orders dividing 3. This shows that every

permutation in Ω
{1,3}
n (312) can be written uniquely as the sum of a permutation in

⋃
m≥1 Ω

{1,3}
m (312)

that ends in the entry 1 and a (possibly empty) permutation in
⋃
m≥0 Ω

{1,3}
m (312). Let B(x) =∑

m≥1 b(m)xm, where b(m) is the number of permutations in Ω
{1,3}
m (312) that end in the entry 1.

We have
∑

m≥1
∣∣Ω{1,3}m (312)

∣∣xm =
(

1 +
∑

m≥1
∣∣Ω{1,3}m (312)

∣∣xm)B(x), which we can rewrite as∑
m≥1

∣∣Ω{1,3}n (312)
∣∣xm =

B(x)

1−B(x)
.

From this, it is straightforward to check that the second equality in Theorem 1.2 is equivalent to
the identity

B(x) = x+
x3(1 + x)2

1− 2x3
.

We clearly have b(1) = 1, so assume n ≥ 2. Let π ∈ Ω
{1,3}
n (312) be a permutation with π(n) = 1.

Let M be the smallest positive integer such that π(n−M) 6= M + 1. Note that

π(n−M) 6∈ {π(n− j) : 0 ≤ j < M} = {j + 1 : 0 ≤ j < M} = {1, . . . ,M},
so π(n −M) > M + 1. Let k = π(1), and observe that π(k) = n because π3(n) = n. The points
in the plot of π that are not on the line y = x can be partitioned into 3-cycles. Every 3-cycle in a
permutation either forms an occurrence of the pattern 231 or forms an occurrence of the pattern
312. Since π avoids 312, each 3-cycle in π forms a 231 pattern. In such a 231 pattern, the two
higher points are above the line y = x, and the lowest point is below this line (see Figure 1).

We claim that the only points below y = x are the points (i, π(i)) with n−M + 1 ≤ i ≤ n. To
see this, suppose instead that there is some r ≤ n−M with π(r) < r. Assume that we have chosen
r maximally subject to these constraints. The entries in the same 3-cycle as π(r) are π2(r) and r.
These entries form a 231 pattern, so π(r) < π2(r) < r. If r < k, then the entries k, π2(r), r form a
312 pattern in π. If π(r) > k, then n, π2(r), r form a 312 pattern in π. Both of these situations are
forbidden, so π(r) < k < r. Since r ≤ n−M , it follows from the definition of M that

π(r) 6∈ {π(n− j) : 0 ≤ j < M} = {j + 1 : 0 ≤ j < M} = {1, . . . ,M},
so π(r) ≥M+1. If π(r) > M+1, then the entry M+1 appears to the left of π(r) by the maximality
of r. In this case, the entries k,M + 1, π(r) form an occurrence of the pattern 312 in π, which is
impossible. Consequently, π(r) = M + 1. We know that π(n−M) > M + 1, so n,M + 1, π(n−M)
form a 312 pattern in π. This is our desired contradiction, so we have proven that there are only
M points in the plot of π below the line y = x. This means that π has exactly M 3-cycles.

Because π avoids 312, there is at most one point in the plot of π of the form (s, s) with s < k.
We claim that if such a point exists, it must be (M + 1,M + 1). To see this, suppose instead that
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Figure 1. Illustrating the proof of Theorem 1.2, this figure shows a permutation

in Ω
{1,3}
13 (312). In this example, we have M = 4 and k = 6. There are four 3-cycles,

each of which is connected by a colored dotted hexagon. For example, the purple
dotted hexagon indicates that π(1) = 6, π(6) = 13, and π(13) = 1. The permutation
also has 9 as its only fixed point.

s 6= M + 1. We know by the previous paragraph that s 6∈ {1, . . . ,M}, so M + 1 < s < k. The
previous paragraph also tells us that the point (π−1(M + 1),M + 1) lies above the line y = x, so
π−1(M + 1) < M + 1 < s. This implies that the entries k,M + 1, s form a 312 pattern in π, which
is impossible. This proves the claim. Similarly, there is at most one point in the plot of π of the
form (t, t) with t > k. If such a point exists, it must be (n −M,n −M) because otherwise, the
entries n, t, π(n−M) would form a 312 pattern in π. Thus, π has at most 2 fixed points.

We claim that each of the sets {π(i) : 1 ≤ i ≤ M} and {π−1(i) : n−M + 1 ≤ i ≤ n} is a set of
consecutive integers. We will prove this claim for the first set, the proof of the claim for the second
set is similar. Our proof is by induction on n. If π(M +1) = M +1, then removing the entry M +1
from π and “normalizing” (that is, decrementing each entry that is greater than M + 1 by 1) yields

a permutation π̃ ∈ Ω
{1,3}
n−1 (312). By induction, the set {π̃(i) : 1 ≤ i ≤M} = {π(i)− 1 : 1 ≤ i ≤M}

is a set of consecutive integers, and this proves the claim in this case. A similar inductive argument
proves the claim in the case in which π(n −M) = n −M . We saw above that M + 1 and n −M
are the only possible fixed points of π, so we may now assume π has no fixed points. It follows that
every entry of π is in a 3-cycle and that n = 3M . Furthermore, π(n+ 1− i) = i for all 1 ≤ i ≤M ,
and every 3-cycle of π contains a unique entry in {1, . . . ,M}. If 1 ≤ i ≤M and π(i) ≥ n−M + 1,
then π2(i) ∈ {1, . . . ,M}, so i and π2(i) are two elements of {1, . . . ,M} in the same 3-cycle. This
is a contradiction, so we must have M + 1 ≤ π(i) ≤ n −M = 2M for all 1 ≤ i ≤ M . Hence,
{π(i) : 1 ≤ i ≤M} = {M + 1, . . . , 2M} is a set of consecutive integers, as desired.

Using the claim from the preceding paragraph, we see that if we remove the fixed points from π
and normalize the resulting permutation, then we obtain a permutation of the form (rot(µ)⊕µ)	δM ,
where µ ∈ AvM (312, 213). Thus, specifying π amounts to specifying µ along with which of the two
possible fixed points actually appear in π. It is well known (see [15]) that |AvM (312, 213)| = 2M−1,
so there are 2M−1 possible choices for µ. In total,

B(x) = x+
∑
M≥1

2M−1(x3M + 2x3M+1 + x3M+2) = x+ (1 + x)2
∑
M≥1

2M−1x3M = x+
x3(1 + x)2

1− 2x3
,

as desired. �
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5. Strong Pattern Avoidance Enumeration

The purpose of this section is to prove the enumerative results stated in Theorems 1.3 and 1.4.

Proof of Theorem 1.3. The first equality in Theorem 1.3 follows from the discussion in Section 2
because 231 and 4312 are the reverse complements of 132 and 3421, respectively. Thus, we wish
to show that | SAvn(132, 3421)| = 2n2 − 7n + 8 for all n ≥ 2. One can easily check that this
is true when n = 2 or n = 3, so we may assume n ≥ 4. Let us write SAvn(132, 3421) as the

disjoint union
⋃n
i=1X

(i), where X(i) = {π ∈ SAvn(132, 3421) : π(i) = n}. There is a bijection

X(n) → SAvn−1(132, 3421) obtained by simply removing the entry n from each permutation in

X(n). Consequently,

(10)
∣∣X(n)

∣∣ = | SAvn−1(132, 3421)|.

Suppose π ∈ X(i) for some i ∈ {2, . . . , n − 2}. Using the fact that π avoids 132 and 3421, we
find that π = σ 	 idn−i for some σ ∈ Avi(132, 231) with σ(i) = i. Note that π2(i+ 1) = π(1) and
π2(i+ 2) = π(2). Furthermore, π(1) and π(2) are both larger than the entry π2(i) = π(n) = n− i.
The entries π2(i), π2(i+1), π2(i+2) cannot form a 132 pattern in π2, so we must have π(1) < π(2).
Because σ avoids 132 and 231, this forces σ = idi. Therefore, π = idi	 idn−i. This permutation
is indeed in X(i) because its square is either idn or is the skew sum of two identity permutations.
Therefore,

(11)
∣∣X(i)

∣∣ = 1 for all i ∈ {2, . . . , n− 2}.

Now assume π ∈ X(n−1) so that π(n − 1) = n. Since π avoids 132, we can write π = σ 	 1,
where σ ∈ Avn−1(132, 231) is such that σ(n− 1) = n− 1. Because σ avoids 132 and 231, we must
have either π(n − 2) = n − 1 or π(1) = n − 1. Suppose first that π(n − 2) = n − 1. We have
π2(n− 2) = π(n− 1) = n and π2(n) = π(1). Note that π2(n− 1) = π(n) 6= π(2), so π(2) appears
to the left of n in π2. The entries π(2), n, π(1) cannot form an occurrence of the pattern 132 in π2,
so π(1) < π(2). Because σ avoids 132 and 231, this forces π to be the permutation idn−1	1, which

is indeed an element of X(n−1) because its square is idn−2	12. Next, assume π(1) = n− 1. In this
case, π = ((1	µ)⊕ 1)	 1 and π2 = 1	 ((µ2	 1)⊕ 1) for some µ ∈ Sn−3. The permutation µ must
be in SAvn−3(132, 231), and any element of this set could be µ. Hence,

(12)
∣∣X(n−1)∣∣ = 1 + |SAvn−3(132, 231)|.

We now want to determine
∣∣X(1)

∣∣. For 2 ≤ r ≤ n, let X(1)(r) = {π ∈ X(1) : π(r) = 1}. If

π ∈ X(1)(n), then π = 1	 σ 	 1 for some σ ∈ SAvn−2(132, 231). The permutation σ could be any
element of SAvn−2(132, 231), so ∣∣X(1)(n)

∣∣ = |SAvn−2(132, 231)|.

Now suppose π ∈ X(1)(n − 1). Since π2(n − 1) = n and π2 avoids 132, we must have π2(n) = 1.
This means that π(n) = n−1. Consequently, π = 1	((µ	1)⊕1) for some µ ∈ Sn−3. Furthermore,
π2 = ((1 	 µ2) ⊕ 1)) 	 1, so µ ∈ SAvn−3(132, 231). The permutation µ could be any element of
SAvn−3(132, 231), so ∣∣X(1)(n− 1)

∣∣ = |SAvn−3(132, 231)|.
We easily check that X(1)(2) = {n123 · · · (n−1)}, so

∣∣X(1)(2)
∣∣ = 1. We will show that X(1)(3), . . . ,

X(1)(n− 2) are empty, which will imply that

(13) |X(1)| = 1 + |SAvn−3(132, 231)|+ |SAvn−2(132, 231)|.
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Suppose by way of contradiction that π ∈ X(1)(r) for some r ∈ {3, . . . , n − 2}. Note that
π2(r) = n. Using the fact that π2 avoids 132 and 3421, one can show that π2(r + j) = j for all
j ∈ {1, . . . , n− r}. In particular, π2(r+ 1) = 1 = π(r), so π(r+ 1) = r. We also have π(n) ≤ n− 1
because π(1) = n. Observe that r = π(r + 1) < π(r + 2) < · · · < π(n) ≤ n − 1 because π avoids
132 and π(r) = 1. This means that π(r + j) = r + j − 1 for each j ∈ {1, . . . , n − r}. We deduce
that 2 = π2(r + 2) = π(r + 1) = r, which is our desired contradiction.

Combining (10), (11), (12), and (13), we find that

(14) | SAvn(132, 3421)| = |SAvn−1(132, 3421)|+ |SAvn−2(132, 231)|+2|SAvn−3(132, 231)|+n−1

when n ≥ 4.

We still need to determine |SAvn(132, 231)|. Suppose n ≥ 4, and let Z(i) = {π ∈ SAvn(132, 231) :
π(i) = n}. Every permutation that avoids 132 and 231 must either start or end in its largest entry,

so Z(i) is empty whenever 2 ≤ i ≤ n − 1. Removing the largest entries from the elements of Z(n)

yields a bijection between Z(n) and SAvn−1(132, 231), so

(15) |Z(n)| = |SAvn−1(132, 231)|.

For 2 ≤ r ≤ n, let Z(1)(r) = {π ∈ Z(1) : π(r) = 1}. Observe that Z(1)(r) ⊆ X(1)(r), where X(1)(r)

is as above. In particular, Z(1)(3), . . . , Z(1)(n − 2) are empty. We also have Z(1)(2) ⊆ X(1)(2) =

{n123 · · · (n− 1)}. The square of n123 · · · (n− 1) contains the pattern 231, so Z(1)(2) is empty. It

is straightforward to check that Z(1)(n) = {δn}, so |Z(1)(n)| = 1. Finally, suppose π ∈ Z(1)(n− 1).

We know that π ∈ X(1)(n− 1), so it follows from our discussion above that π(n) = n− 1. Since π
avoids 132 and 231, we must have π = n(n − 2)(n − 3) · · · 321(n − 1). However, this forces π2 to

contain 231. This is a contradiction, so Z(1)(n− 1) is empty.

Putting this all together, we find that

|SAvn(132, 231)| = |SAvn−1(132, 231)|+ 1

when n ≥ 4. It is easy to check that | SAvj(132, 231)| = j when j ∈ {1, 2, 3}. Thus, |SAvn(132, 231)|
= n for all n ≥ 1. Invoking (14), we see that

|SAvn(132, 3421)| = |SAvn−1(132, 3421)|+ 4n− 9

for n ≥ 4. An easy induction now proves that

|SAvn(132, 3421)| = 2n2 − 7n+ 8 for all n ≥ 2. �

We record the following corollary, which we demonstrated during the preceding proof.

Corollary 5.1. For every positive integer n, we have

|SAvn(132, 231)| = n.

Proof of Theorem 1.4. Fix n ≥ 4. Observe that since 321 and 3412 are involutions, the set
SAvn(321, 3412) is closed under taking inverses. Let X(i) = {π ∈ SAvn(321, 3412) : π(i) = n}
and Y (i) = {π ∈ SAvn(321, 3412) : π(n) = i}. The elements of X(i) are precisely the in-

verses of the elements of Y (i). Suppose π ∈ X(j) for some j ∈ {1, . . . , n − 3}. Because π
avoids 321, we know that π(j + 1) < π(j + 2) < · · · < π(n). Using the assumption that
π avoids 3412, one can check that π(`) = ` − 1 for every ` ∈ {j + 2, . . . , n}. It follows that
π2(n− 1) = π(n− 2) < π(n− 1) = π2(n) = n− 2. The fact that π2(n− 1) < π2(n) < n− 1 forces

π2 to contain either 321 or 3412, which is a contradiction. We conclude that X(1), . . . , X(n−3) are
empty. It follows that Y (1), . . . , Y (n−3) are also empty.
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Note that X(n) = Y (n). We have

SAvn(321, 3412) = X(n) ∪
⋃

i,j∈{n−2,n−1}

(
X(i) ∩ Y (j)

)
.

Removing the last entries from the elements of X(n) yields a bijection X(n) → SAvn−1(321, 3412).

Similarly, removing the last two entries from the elements of X(n−1) ∩ Y (n−1) yields a bijection
X(n−1) ∩ Y (n−1) → SAvn−2(321, 3412). Thus,

(16)
∣∣X(n)

∣∣ = |SAvn−1(321, 3412)| and
∣∣X(n−1) ∩ Y (n−1)∣∣ = | SAvn−2(321, 3412)|.

Every permutation π ∈ Sn with π(n − 2) = n and π(n) = n − 2 must contain either 321 or

3412. Therefore, X(n−2) ∩ Y (n−2) = ∅. Now suppose π ∈ X(n−1) ∩ Y (n−2). We have π2(n) ≤ n− 1.
Since π2(n − 1) = n − 2, the entry n must appear to the left of n − 2 in π2. Because the entries
n, n − 2, π2(n) cannot form a 321 pattern in π2, we must have π2(n) = n − 1. This means that

π(n− 2) = n− 1. We deduce that removing the last 3 entries from the elements of X(n−1) ∩Y (n−2)

yields a bijection X(n−1) ∩ Y (n−2) → SAvn−3(321, 3412). The elements of X(n−1) ∩ Y (n−2) are

simply the inverses of the elements of X(n−2) ∩ Y (n−1), so

(17)
∣∣X(n−1) ∩ Y (n−2)∣∣ =

∣∣X(n−2) ∩ Y (n−1)∣∣ = | SAvn−3(321, 3412)|.
Combining (16) and (17) yields the equation

| SAvn(321, 3412)| = | SAvn−1(321, 3412)|+ | SAvn−2(321, 3412)|+ 2|SAvn−3(321, 3412)|
for every n ≥ 4. The values of |SAvn(321, 3412)| for n = 1, 2, 3 are 1, 2, 5. It is now routine to
show that

1 +
∑
n≥1
|SAvn(321, 3412)|xn =

1

1− x− x2 − 2x3
. �

6. Powerful Pattern Avoidance

The purpose of this section is to extend our point of view to powerful pattern avoidance as well
as pattern avoidance in subgroups of symmetric groups. We first prove Theorem 1.5.

Proof of Theorem 1.5. Suppose r ∈ Ξ(idm). This means that there exists a positive integer n and
a permutation π ∈ Sn of order r that powerfully avoids idm. We must have n ≤ m − 1 because
πn = idn. There is an injective homomorphism Sn ↪→ Sm−1, so r is the order of an element of
Sm−1. On the other hand, the order of a permutation in Sm−1 is in Ξ(idm) since that permutation
must powerfully avoid idm.

Next, note that Ξ(231) = Ξ(312) because 312 is the reverse complement of 231. We clearly have
{1, 2} ⊆ Ξ(231) since both elements of S2 powerfully avoid 231. Conversely, suppose r ∈ Ξ(231).
This means that there exists a permutation π of order r that powerfully avoids 231. Because π−1 is
a power of π, the permutation π−1 avoids 231. This implies that π avoids the inverse of 231, which
is 312. It is well known [6, 15] that a permutation avoids 231 and 312 if and only if it is layered,
meaning that it can be written in the form δa1 ⊕ · · · ⊕ δat for some positive integers a1, . . . , at.
Furthermore, every layered permutation is an involution. This means that π is an involution, so
r ∈ {1, 2}.

Next, suppose τ ∈ Sm is not idm and is not the skew sum of two identity permutations. Choose
a positive integer r, and consider the permutation 234 · · · r1. This permutation has order r, and it
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powerfully avoids τ because all of its non-identity powers can be written as the skew sum of two
identity permutations. It follows that Ξ(τ) = N in this case.

We are left to show that if τ = idi	 idj for integers i, j ≥ 2, then Ξ(τ) = N. Every such
permutation τ contains the pattern 3412, so it suffices to show that Ξ(3412) = N. Fix n ∈ N, and
let m = bn/2c. Let π ∈ Sn be the cyclic permutation

π = (m+ 1)1 2 · · · (m− 1)(m+ 2)(m+ 3) · · ·nm.

For k ∈ [m], it is straightforward to see that the kth power of π is the permutation

(m+k)(m+k−1) · · · (m+1)1 2 · · · (m−k)(m+k+1)(m+k+2) · · · (n−k+1)m(m−1) · · · (m−k+1)

and that this permutation avoids 3412. This shows that π, π2, . . . , πm avoid 3412. Since 3412 is an
involution, it follows that π−1, π−2, . . . , π−m also avoid 3412. This shows that π is a permutation
of order n that powerfully avoids 3412, so n ∈ Ξ(3412). �

We are ultimately interested in determining the sets G(τ), which we introduced in Definition 1.2,
for various patterns τ . We now prove Corollary 1.1, which makes some headway on this problem.
Recall that a permutation is called sum indecomposable if it cannot be written as σ ⊕ µ for two
nonempty permutations σ and µ. Also, recall that an elementary abelian 2-group is a group that
is isomorphic to a direct product of finitely many copies of the cyclic group Z/2Z.

Proof of Corollary 1.1. Our first observation in that if τ is sum indecomposable, then G(τ) is closed
under taking direct products. To see this, suppose G1 and G2 are in G(τ). This means that there
are positive integers n1, n2 and injective homomorphisms ϕi : Gi ↪→ Sni for i ∈ {1, 2} such that the
elements of ϕ1(G1) and the elements of ϕ2(G2) avoid τ . Consider the map ϕ1 ⊕ ϕ2 : G1 × G2 →
Sn1+n2 defined by (ϕ1 ⊕ ϕ2)(x1, x2) = ϕ1(x1)⊕ ϕ2(x2). It is straightforward to check that ϕ1 ⊕ ϕ2

is an injective homomorphism. For any x1 ∈ G1 and x2 ∈ G2, the permutation (ϕ1 ⊕ ϕ2)(x1, x2)
avoids τ . This is because τ is sum indecomposable and because ϕ1(x1) and ϕ2(x2) both avoid τ .

If G is a group and ϕ : G ↪→ Sn is an injective homomorphism such that ϕ(G) ⊆ Avn(231),
then the map ψ : G→ Sn given by ψ(x) = δnϕ(x)δ−1n is an injective homomorphism with ψ(G) ⊆
Avn(312). This shows that G(231) ⊆ G(312); the proof of the reverse containment is similar. We
want to show that G(231) is the set of elementary abelian 2-groups. The group Z/2Z is clearly
in G(231). Since 231 is sum indecomposable, it follows from the preceding paragraph that every
elementary abelian 2-group is in G(231). On the other hand, suppose G ∈ G(231). It follows from
Theorem 1.5 that every element of G is an involution. It is well known that every finite group
whose elements are all involutions is an elementary abelian 2-group.

Finally, suppose m ≥ 2 and τ ∈ Sm \ {m123 · · · (m − 1), 234 · · ·m1} is sum indecomposable.
Theorem 1.5 tells us that G(τ) contains every finite cyclic group. Because G(τ) is closed under
taking direct products, it follows from the Fundamental Theorem of Finitely Generated Abelian
Groups that G(τ) contains all finite abelian groups. �

7. Concluding Remarks and Open Problems

In Section 3, we proved Theorem 1.1 by constructing several permutations in SAvk3(idk+1)
for every positive integer k. It would be interesting to gain more structural and enumerative
information about the permutations in these sets. The elements we constructed all have order 4
when k ≥ 2, but there are also elements of Sk3(idk+1) of order 3. For example, let ζk,j denote the
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word (k2 − j)(2k2 − j)(3k2 − j) · · · (k3 − j), and consider the concatenation ζk = ζk,0ζk,1 · · · ζk,k2−1
forming a permutation in Avk3(idk+1). It is straightforward to verify that ζ2k is the permutation
ηk = ηk,k−1 · · · ηk,0 ∈ Avk3(idk+1), where ηk,j denotes the word

(k3 − j)(k3 − j − k)(k3 − j − 2k) · · · (k3 − j − (k2 − 1)k),

and furthermore that ζk◦ηk = idk3 . Hence ζk and ηk are both permutations of order 3 in Sk3(idk+1).
There are also elements of SAv8(123) of order 12; one such permutation is 53827614. We are led
naturally to the following question.

Question 7.1. Does there exist a permutation π ∈ SAvk3(idk+1) of order greater than 4 for every
k ≥ 2? More generally, what are the orders of the elements of SAvk3(idk+1)?

In light of Theorem 1.2, it seems natural to investigate the sets ΩT
n (τ) for other patterns τ and

other sets T ⊆ N. There is also still much to be done in terms of enumerating sets of permutations
that strongly avoid certain patterns. For instance, we have the following conjecture arising from
numerical data. Let Fn be the nth Fibonacci number, where we use the initial conditions F1 =
F2 = 1.

Conjecture 7.1. For every positive integer n, we have | SAvn(321, 1342)| = 2Fn+2 − n− 2.

We have only scratched the surface in the study of powerful pattern avoidance and pattern
avoidance in subgroups of symmetric groups. For example, Theorem 1.5 classifies the permutations
that powerfully avoid 231 (alternatively, 312). We would like to understand the sizes of the sets
PAvn(132) and PAvn(321). Numerical evidence suggests the following conjecture.1

Conjecture 7.2. We have∣∣Ω{1,2,3}n (132)
∣∣ ∼ |PAvn(132)| ∼ |SAvn−1(132)|.

The previous conjecture relates to some remarks at the end of the article by Bóna and Smith
[8], who observed that | SAvn(132)| ≥ |PAvn(132)| ≥ 2n(1+o(1)). They also indicated that the

equality |SAvn(132)| = 2n(1+o(1)) might hold. Furthermore, they showed that | SAvn(321)| ≥
|PAvn(321)| ≥ 2.3247n(1+o(1)). It is not clear what the correct asymptotics for |SAvn(321)| and
|PAvn(321)| are.

Theorem 1.5 naturally leads us to ask the following question.

Question 7.2. What is Ξ(2341)?

We also have the following conjecture. Note that the conjecture is trivial when t = 1 and that it
follows from Theorem 1.5 when t = 2.

Conjecture 7.3. For every positive integer t, the set Ξ(idt	1) is finite.

Determining Ξ(τ) is equivalent to finding the set of cyclic groups in G(τ). Ideally, we would
like to know what the sets G(τ) are in general. However, if this turns out to be too difficult, it
would still be very interesting to answer the following question. Note that Corollary 1.1 answers
this question for some patterns τ .

Question 7.3. Given a permutation pattern τ , what is the set of all abelian groups in G(τ)?

1None of the three asymptotic equivalences implied by this conjecture are known, so it would be interesting to
prove any one of them if not all of them.
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We saw in the proof of Corollary 1.1 that if τ is sum indecomposable, then G(τ) is closed under
taking direct products. Can we find other ways of constructing groups in G(τ)?
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