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ON HAAR DIGRAPHICAL REPRESENTATIONS OF GROUPS

JIA-LI DU, YAN-QUAN FENG, AND PABLO SPIGA

Abstract. In this paper we extend the notion of digraphical regular representations in the context
of Haar digraphs. Given a group G, a Haar digraph Γ over G is a bipartite digraph having a
bipartition {X, Y } such that G is a group of automorphisms of Γ acting regularly on X and on Y .
We say that G admits a Haar digraphical representation (HDR for short), if there exists a Haar
digraph over G such that its automorphism group is isomorphic to G. In this paper, we classify
finite groups admitting a HDR.
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1. Introduction

By a digraph Γ, we mean an ordered pair (V,A) where the vertex set V is a non-empty set and
the arc set A ⊆ V × V is a binary relation on V . The elements of V and A are called vertices and
arcs of Γ, respectively. For simplicity, we write V (Γ) := V and A(Γ) := A. An automorphism of Γ
is a permutation σ of V fixing A setwise, that is, (xσ, yσ) ∈ A for every (x, y) ∈ A. The digraph Γ
is a graph if the binary relation A is symmetric.

A digraph is called regular if each vertex has the same out-valency and the same in-valency.
Throughout this paper, all groups and digraphs are finite, and all digraphs are regular.

Let G be a group and let S be a subset of G. The Cayley digraph Γ := Cay(G,R) is the digraph
with V (Γ) := G and with A(Γ) := {(g, rg) | g ∈ G, r ∈ R}. The right regular representation of G
gives rise to an embedding of G into Aut(Γ) and we identify G with its image under this permutation
representation. We say that a group admits a (di)graphical regular representation (resp. GRR or
DRR for short) if there exists a Cayley (di)graph Γ over G such that Aut(Γ) = G. Babai [2] proved
that, except for Q8, Z

2
2, Z

3
2, Z

4
2 and Z2

3, every finite group admits a DRR. It is clear that, if a group
G admits a GRR, then G admits a DRR, however the converse is not true. Indeed, despite the
natural argument used by Babai for the classification of groups admitting a DRR, the classification
of groups admitting a GRR has required considerable more work. For some of the most influential
papers along the way we refer to [15, 16, 20, 21]. Watkins [25] observed that there are two infinite
families of graphs admitting no GRR: generalised dicyclic groups, and abelian groups of exponent
greater than two. Then, Hetzel [12] has proved that besides these two infinite families, among
soluble groups, there are only 13 more groups admitting no GRR. Finally, Godsil [11] has put the
last piece into the puzzle and has shown that every non-solvable group admits a GRR, and so
completed the classification of groups admitting a GRR.

Once the classification of DRRs and GRRs was completed, researchers proposed and investigated
various natural generalisations. For instance, Babai and Imrich [3] have classified finite groups
admitting a tournament regular representation, TRR for short. Morris and Spiga [18, 19, 22],
answering a question of Babai [2], have classified the finite groups admitting an oriented regular
representation, ORR for short. For more results, generalising the classical DRR and GRR classifi-
cation in various direction, we refer to [5, 7, 6, 17, 23, 24, 26].

We now describe the generalisation we intend to investigate in this paper. Let G be a permutation
group on a set Ω and let ω ∈ Ω. Denote by Gω the stabilizer of ω in G, that is, the subgroup of
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G fixing ω. We say that G is semiregular on Ω if Gω = 1 for every ω ∈ Ω, and regular if it is
semiregular and transitive. An m-Cayley (di)graph Γ over a group G is defined as a (di)graph
which has a semiregular group of automorphisms isomorphic to G with m orbits on its vertex set.
When m = 1, 1-Cayley (di)graphs are the usual Cayley (di)graphs. We say that a group G admits a
(di)graphical m-semiregular representation (DmSR and GmSR, for short), if there exists a regular
m-Cayley (di)graph Γ over G such that Aut(Γ) ∼= G. In particular, D1SRs and G1SRs are the
usual GRRs and DRRs. For each m ∈ N, we have classified in [6] the finite groups admitting a
DmSR and the finite groups admitting a GmSR. In this paper we propose a natural variant of this
problem.

A bipartite 2-Cayley (di)graph (over a group G, where the two parts of the bipartition are the
two orbits of G) is known as Haar (di)graph in the literature. We say that a finite group G admits
a Haar (di)graphical representation (resp. HDR or HGR for short), if there exists a Haar (di)graph
over G such that its automorphism group isomorphic to G.

Theorem 1.1. With the only exceptions of Z1, Z2, Z3, Z2
2 and Z3

2, every finite group admits a
HDR.

Du et al [8, Lemma 2.6(i)] have shown that Haar graphs over abelian groups are Cayley graphs.
Hence, abelian groups do not admit HGRs. Estélyi [9, Proposition 11] has proved that the dihedral
group of order 2n admits a HGR if and only if n ≥ 8. To end this section, we propose the following
problem.

Problem 1.2. Classify finite groups admitting a HGR.

We are not sure what the answer to this problem might be, but besides the finite abelian groups
we are aware of no infinite family of groups admitting no HGR. For instance, every generalised
quaternion group of order 4n with 4 ≤ n ≤ 100 admits a HGR.

2. Preliminaries and notation

In what follows, we describe some preliminary results which will be used later. We start by
recalling Babai’s classification of DRRs.

Theorem 2.1. [2, Theorem 2.1] A finite group G admits a DRR if and only if G is not isomorphic
to one of the following five groups Q8, Z

2
2, Z

3
2, Z

4
2 or Z2

3.

We recall that a tournament is a digraph Γ such that, for every two distinct vertices x, y ∈
V (Γ), exactly one of (x, y) and (y, x) is in A(Γ). Observe that the Cayley digraph Cay(G,R) is a
tournament if and only if R ∩R−1 = ∅ and R ∪R−1 = G \ {1}. In particular, finite groups of even
order have no TRR.

Theorem 2.2. [3, Theorem 1.5] A finite group of odd order admits a TRR if and only if it is not
isomorphic to Z2

3.

Let G be a group. Consistently throughout the whole paper, for not making our notation too
cumbersome to use, we denote the element (g, i) of the Cartesian product G× {0, 1} simply by gi.
In particular, we write G0 = G× {0} = {g0 | g ∈ G} and G0 = G× {1} = {g1 | g ∈ G}.

Let S and T be subsets of G. We define

Haar(G,S, T )

to be the digraph having vertex set G × {0, 1} = G0 ∪ G1 and having arc set the union of
{(g0, (sg)1) | g ∈ G, s ∈ S} and {(g1, (tg)0) | g ∈ G, t ∈ T}. Now, G induces a subgroup of
Aut(Haar(G,S, T )) by defining:

(hi)
g = (hg)i, for every g, h ∈ G and i ∈ {0, 1}.
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For not making the notation too cumbersome, we identifyG with this subgroup of Aut(Haar(G,S, T )).
Clearly, G acts semiregularly with two orbits G0 and G1 on V (Haar(G,S, T )). In particular,
Haar(G,S, T ) is a Haar digraph over G. It is not hard to see that every Haar digraph over G
is isomophic to Haar(G,S, T ), for some suitable subsets S and T of G.

For every automorphism α of G and for every x, y ∈ G, we define two permutations δα,x and σα,y
of G0 ∪G1 by setting

δα,x :

{

g0 7→ (gα)0, ∀g ∈ G,

g1 7→ (xgα)1, ∀g ∈ G,

σα,y :

{

g0 7→ (gα)1, ∀g ∈ G,

g1 7→ (ygα)0, ∀g ∈ G.
(2.1)

The permutation δα,x will play little role in this paper, but σα,y will be rather important. Then, we
define

X := {δα,x | Sα = x−1S and Tα = Tx},

Y := {σα,y | Sα = y−1T and Tα = Sy}.

We conclude this section by reporting a result describing the normaliser in Aut(Haar(G,S, T ))
of G.

Proposition 2.3. ([1, Theorem 1] and [13, Lemma 2.1]) Let G be a finite group and let S and T
be subsets of G, then

NAut(Haar(G,S,T ))(G) = GL = {gℓ | g ∈ G, ℓ ∈ L},

where L = X ∪ Y and L ∩G = 1.

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1.

Lemma 3.1. Let G be a finite group and let S be a subset of G. The Haar digraph Haar(G,S, S)
is vertex transitive and hence Haar(G,S, S) is not a HDR.

Proof. Let Γ := Haar(G,S, S) and let φ be the permutation of V (Γ) = G0 ∪ G1 with g0 7→ g1 and
g1 7→ g0, for each g ∈ G.

For every g ∈ G and s ∈ S, (g0, (sg)1)
φ = (g1, (sg)0) and (g1, (sg)0)

φ = (g0, (sg)1) are arcs of Γ
and hence φ is an automorphism of Γ interchanging G0 and G1. As G is transitive on G0 and G1,
we deduce that 〈G,φ〉 is transitive on V (Γ). Hence Γ is vertex transitive and Γ is not a HDR. �

Notation 3.1. Let G be a finite group and let φ ∈ Sym(G) be a permutation of G. We let φ′ be
the permutation of G0 ∪G1 defined by

(gi)
φ′

= (gφ)i, for each g ∈ G and for each i ∈ {0, 1}.

Lemma 3.2. Let G be a finite group and let φ ∈ Sym(G). Then, φ′ ∈ Aut(Haar(G,S, T )) if and
only if φ ∈ Aut(Cay(G,S)) ∩Aut(Cay(G,T )).

Proof. Let Σ1 := Cay(G,S), Σ2 := Cay(G,T ) and Γ := Haar(G,S, T ). The permutation φ lies in
Aut(Cay(G,S)) ∩Aut(Cay(G,T )) if and only if

(g, sg)φ = (gφ, (sg)φ) ∈ A(Σ1) and (g, tg)φ = (gφ, (tg)φ) ∈ A(Σ2),

for each g ∈ G, s ∈ S and t ∈ T . This happens if and only if, for each s ∈ S and t ∈ T , there exist
s′ ∈ S and t′ ∈ T with

(sg)φ = s′gφ and (tg)φ = t′gφ.
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In turn, this happens if and only if (g0, (sg)1)
φ′

= ((gφ)0, ((sg)
φ)1) = ((gφ)0, (s

′gφ)1) ∈ A(Γ) and

(g1, (tg)0)
φ′

= ((gφ)1, ((tg)
φ)0) = ((gφ)1, (t

′gφ)0) ∈ A(Γ), that is, φ′ ∈ Aut(Γ). �

Lemma 3.3. Let G be a finite group admitting no DRR. Then G admits a HDR except when G is
isomorphic to either Z2

2 or Z3
2.

Proof. By Theorem 2.1, G is isomorphic to one of the following groups: Q8, Z
2
3, Z

2
2, Z

3
2 or Z4

2. It
can be verified with the computer algebra system Magma [4] that Z2

2 and Z3
2 admit no HDR.

When G = 〈a〉 × 〈b〉 × 〈c〉 × 〈d〉 ∼= Z4
2, it can be verified with Magma that

Haar(G, {1, a, b, c, d, ab}, {1, a, c, bd, abc, bcd})

is a HDR. Similarly, when G = 〈a, b | a4 = b4 = 1, b2 = a2, ab = a−1〉 ∼= Q8,

Haar(G, {1, a, b}, {a2 , b3, ab})

is a HDR and, when G = 〈a〉 × 〈b〉 ∼= Z2
3,

Haar(G, {1, a, b}, {a, b2 , ab})

is a HDR. �

Notation 3.2. Let Γ be a digraph and let v be a vertex of Γ. We denote by Γ+(v) and by Γ−(v)
the out-neighbourhood and the in-neighbourhood of v in Γ.

Lemma 3.4. Let G be a finite group and let R be a subset of G with Cay(G,R) a DRR of G,
1 /∈ R and |R| < |G|/2. Let L be a subset of G \ (R−1 ∪ {1}) with |L| = |R| and let Γ :=
Haar(G,R ∪ {1}, L ∪ {1}). Then

(1) Γ+(gi) ∩ Γ−(gi) = {g1−i}, for every g ∈ G and for every i ∈ {0, 1},
(2) |Aut(Γ) : G| ≤ 2,
(3) Γ is a HDR if and only if Rα 6= L for each α ∈ Aut(G), and
(4) the subgroup of Aut(Γ) fixing G0 and G1 setwise is G.

Proof. From the definition of the arc set of Haar(G,R ∪ {1}, L ∪ {1}), for every g ∈ G, we have

Γ+(g0) = (Rg ∪ {g})1 = {(rg)1 | r ∈ R ∪ {1}},

Γ−(g0) = (L−1g ∪ {g})1 = {(l−1g)1 | l ∈ L ∪ {1}}.

Applying this with g := 1, we obtain

Γ+(10) = {r1 | r ∈ R ∪ {1}} and Γ−(10) = {(l−1)1 | l ∈ L ∪ {1}}.

Since L ⊆ G \ (R−1 ∪ {1}), we have (R ∪ {1}) ∩ (L−1 ∪ {1}) = {1} and hence

Γ+(10) ∩ Γ−(10) = {11}.

With a similar argument, we have Γ+(11) ∩ Γ−(11) = {10}. Now, since G is transitive on G0 and
on G1, we deduce (1). In particular, each automorphism of Γ fixing gi must fix also g1−i.

Let A := Aut(Γ) and let A+ be the subgroup of A fixing G0 and G1 setwise. Clearly, |A : A+| ≤ 2.
Observe that each element ϕ of A+ is uniquely determined by a pair (ϕ0, ϕ1) of permutations of
G, where ϕ0 and ϕ1 are defined by the rules (gϕ0)0 = (g0)

ϕ and (gϕ1)1 = (g1)
ϕ, for each g ∈ G.

From (1), we deduce that, for each ϕ ∈ A+, we have ϕ0 = ϕ1 and hence, using Notation 3.1, every
element of A+ is of the form φ′, for some φ ∈ Sym(G).

Let φ′ ∈ A+, for some φ ∈ Sym(G). By Lemma 3.2, φ induces an automorphism of Cay(G,R∪{1})
and hence φ ∈ Aut(Cay(G,R ∪ {1})) = Aut(Cay(G,R)) = G, because Cay(G,R) is a DRR.
Therefore A+ ≤ G and hence A+ = G. This proves (2) and (4).

Suppose there exists α ∈ Aut(G) with Rα = L. Then the mapping σα,1 defined in (2.1) is an
automorphism of Γ interchanging G0 and G1. Hence A = 〈G,σα,1〉 > G and Γ is not a HDR.
Conversely, suppose Γ is not a HDR. Since A+ = G and |A : A+| ≤ 2, we deduce |A : A+| = 2,

Γ is vertex transitive and G E A. In particular, there exists φ ∈ A with 1φ0 = 11. From (1), we
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deduce 1φ1 = 10. As φ ∈ A = NA(G), by Proposition 2.3, there exist y ∈ G and α ∈ Aut(G) with

φ = σα,y. Now, 10 = 1φ1 = 1
σα,y

1 = y0 and hence y = 1. Furthermore, the definition of σα,y in (2.1)
gives (R ∪ {1})α = y−1(L ∪ {1}) = L ∪ {1} and hence Rα = L. Now, (3) is also proven. �

Lemma 3.5. Let G be a finite group of order at least 4 admitting a DRR. Then G has a subset R
with Cay(G,R) a DRR, 1 /∈ R and |R| < (|G| − 1)/2.

Proof. Let R be a subset of G of cardinality as small as possible with Cay(G,R) a DRR. Since

Aut(Cay(G,R ∪ {1})) = Aut(Cay(G,R)) = G,

we have 1 /∈ R. Similarly, since

Aut(Cay(G,G \ (R ∪ {1}))) = Aut(Cay(G,R)) = G,

we have |R| ≤ |G \ (R ∪ {1})|, that is, 1 ≤ |R| < |G|/2. If |G| is even, then |R| < (|G| − 1)/2.
Therefore, we may assume |G| is odd and |G| ≥ 5. In particular, G is solvable by the Odd Order
Theorem [10].

If G is cyclic (generated by a say), then Cay(G, {a}) is a directed cycle. Thus Cay(G, {a}) a
DRR over G and 1 = |{a}| < (|G| − 1)/2.

Suppose G is not cyclic. Let M be a maximal normal subgroup of G. As G is solvable, G/M is
cyclic of order p, for some odd prime p. Let g ∈ G \M and observe that

G = 〈M,g〉.

Assume M ∼= Z2
3. Then G = 〈a, b, g〉 with o(a) = o(b) = 3, ab = ba and p dividing o(g). From [2,

Lemma 3.4] and from the proof of [2, Lemma 3.1], G has a subset R with Cay(G,R) a DRR, 1 /∈ R
and |R| = 9. Clearly, |R| = 9 < (|G| − 1)/2, because |G| = 9p ≥ 27.

Assume M ≇ Z2
3. By Proposition 2.2, M has a subset S such that Cay(M,S) is a TRR. In

particular, |S| = (|M | − 1)/2 and S ∩ S−1 = ∅. Let R := S ∪ {g}, let Σ := Cay(G,R) and let
B := Aut(Σ). For every s ∈ S, neither (g, s) nor (s, g) is an arc of Σ and, for every s1, s2 ∈ S,
exactly one of (s1, s2) and (s2, s1) is an arc of Σ. Therefore, g is the unique isolated vertex in the
neighbourhood of 1 in Σ. Then, the vertex stabiliser B1 fixes g and fixes S setwise. Therefore, B1

fixes M = S ∪ S−1 ∪ {1} setwise and hence B1 induces a group of automorphisms on Σ[M ] (the
subgraph induced by Σ on M). Since Σ[M ] = Cay(M,S) is a TRR, we deduce B1 = 1 and hence
Σ is a DRR over G with |R| = (|M | − 1)/2 + 1 < (|G| − 1)/2. �

Proof of Theorem 1.1. We divide the proof in various cases.

Case 1: G has no DRR.

By Lemma 3.3, G has a HDR except when G is isomorphic to Z2
2 or Z3

2. �

For the rest of the proof, we may suppose that G admits a DRR.

Case 2: G is a elementary abelian 2-group, that is, G ∼= Zm
2 , for some m ≥ 0.

By Proposition 2.1, m ∈ {0, 1} or m ≥ 5. A direct inspection shows that Z0
2 = Z1 and Z1

2 = Z2

admit no HDR. In particular, we may suppose that G = 〈a1, . . . , am〉 with m ≥ 5.
When m = 5, a computation with Magma shows that

Haar(G, {1, a1, a2, a3, a4, a1a2, a5}, {1, a1, a3, a2a4, a1a2a3, a2a3a4, a5})

is a HDR. Suppose then m ≥ 6 and let

R := {a1, a2, . . . , am} ∪ {a1a2, a2a3, . . . , am−1am} ∪ {a1a2am−2am−1, a1a2am−1am}.

By [14], the Cayley graph Cay(G,R) is a GRR over G with |R| = m+ (m− 1) + 2 = 2m+ 1. Let
H := 〈a2, . . . , am〉 and observe that

|H \R| = 2m−1 − (2m− 2) > 2m+ 1,
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because m ≥ 6. Therefore, there exists a subset L ⊆ H \(R∪{1}) ⊆ G\(R∪{1}) = G\(R−1∪{1})
with |L| = |R|.

Let Γ := Haar(G,R ∪ {1}, L ∪ {1}). Since 〈L〉 6= G and 〈R〉 = G, we have Rα 6= L for each
α ∈ Aut(G). In particular, Lemma 3.4 gives that Γ is a HDR. �

In what follows, we assume G is not an elementary abelian 2-group and hence G has an element
of order at least 3.

Case 3: G is cyclic of order 3.

An easy inspection shows that G admits no HDR. �

For the remaining cases, from Lemma 3.5, we see that G admits a DRR Cay(G,R) with 1 /∈ R
and 1 ≤ |R| < (|G| − 1)/2. We partition the set R into two subsets. We let J := {x ∈ R | x−1 /∈ R}
and K := R \ J . Observe that R \ J = K is inverse-closed, that is, K−1 = {x−1 | x ∈ K} = K.
Summing up,

R = J ∪K, R ∩R−1 = K = K−1 and J ∩ J−1 = J ∩K = ∅.

Case 4: There exists a subset L of G \ (R−1 ∪ {1}) with |L| = |R| and with Rα 6= L, for every
α ∈ Aut(G).

By Lemma 3.4, Haar(G,R ∪ {1}, L ∪ {1}) is a HDR. �

For the rest of the proof, we may suppose that, for every subset L of G \ (R−1 ∪ {1}) with
|L| = |R|, there exists α ∈ Aut(G) with Rα = L.

Let
H := G \ ({1} ∪R ∪R−1).

Observe that G = {1} ∪ (R ∪R−1) ∪H is a partition of G and

|H| = |G| − 1− |R ∪R−1| = |G| − 1− (|R|+ |R−1| − |R ∩R−1|) = |G| − 1− (2|R| − |K|).

Since 2|R| < |G| − 1, we deduce |H| > |K|.

Case 5: There exists x ∈ H with o(x) ≥ 3.

Let U be any subset of H with x ∈ U and x−1 /∈ U (observe that this is possible because |H| > |K|)
and let L := J ∪ U . Then |L| = |R| and L ⊆ G \ (R−1 ∪ {1}). Since

|{y ∈ R | y−1 /∈ R}| = |J |,

|{y ∈ L | y−1 /∈ L}| ≥ |J ∪ {x}| > |J |,

there is no automorphism α of G with Rα = L, which is a contradiction. �

Case 6: No element in H as order at least 3, that is, each element in H has order 2.

Suppose that K contains an element x having order at least 3. Let U be any subset of H with
|U | = |K| and let L := J ∪U . Then |L| = |R| and L ⊆ G \ (R−1 ∪ {1}). No element in J has order
2 and hence

|{y ∈ R | o(y) = 2}| = |{y ∈ K | o(y) = 2}| ≤ |K \ {x}| = |K| − 1.

On the other hand, {y ∈ L | o(y) = 2} = U and hence |{y ∈ L | o(y) = 2}| = |U | = |K|. Therefore,
there is no automorphism α of G with Rα = L, which is a contradiction.

Suppose that every element in K has order 2. Since G is not an elementary abelian 2-group and

G = (R ∪R−1) ∪H ∪ {1} = J ∪ J−1 ∪K ∪H ∪ {1},

we have J 6= ∅. Let x ∈ J , let U be any subset of H with |U | = |K|+1 (observe that this is possible
because |H| > |K|) and let L := U ∪ (J \ {x}). Then |L| = |R| and L ⊆ G \ (R−1 ∪ {1}). However,
since L has more involutions than R, there is no automorphism α of G with Rα = L, which is our
final contradiction. �
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