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Abstract

We consider the following type of question: Given a partial proper d-edge coloring
of the d-dimensional hypercube Qd, and lists of allowed colors for the non-colored edges
of Qd, can we extend the partial coloring to a proper d-edge coloring using only colors
from the lists? We prove that this question has a positive answer in the case when both
the partial coloring and the color lists satisfy certain sparsity conditions.

1 Introduction

The chromatic index χ′(G) of a (simple) graph G is far simpler in terms of its possible values
than the chromatic number; Vizing’s theorem [Viz64] tells us that in order to properly color
the edges of G we need either ∆(G) or ∆(G) + 1 colors, where ∆(G) denotes the maximum
degree of G, and by König’s edge coloring theorem, χ′(G) = ∆(G) if G is bipartite [Kön16].
This simplicity quickly disappears in many of the natural variations on the basic edge coloring
problem, e.g. the precoloring extension problem, where some of the edges of a graph have
been (properly) colored and we want to determine if this partial coloring can be extended
to a proper edge coloring of the full graph using no extra colors; indeed this problem is
NP-complete already for 3-regular bipartite graphs [Fia03].

One of the earlier references explicitly discussing the problem of extending a partial edge
coloring is [MS90]; there a simple necessary condition for the existence of an extension is
given and the authors find a class of graphs where this condition is also sufficient. More
recently the question of extending a precoloring where the precolored edges form a matching
has gathered interest; in [EGv+14] a number of positive results and conjectures are given. In
particular, it is conjectured that for every graph G, if ϕ is an edge precoloring of a matching
M in G using ∆(G) + 1 colors, and any two edges in M are at distance at least 2 from
each other, then ϕ can be extended to a proper (∆(G) + 1)-edge coloring of G; this was first
conjectured in [AM01], but then with distance 3 instead. By the distance between two edges
e and e′ here we mean the number of edges in a shortest path between an endpoint of e and
an endpoint of e′; a distance-t matching is a matching where any two edges are at distance
at least t from each other. The t-neighborhood of an edge e is the graph induced by all edges
of distance at most t from e.
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Note that the conjecture in [EGv+14] on distance-2 matchings is sharp both with respect
to the distance between precolored edges, and in the sense that ∆(G) + 1 can in general not
be replaced by ∆(G), even if any two precolored edges are at arbitrarily large distance from
each other [EGv+14]. In [EGv+14], it is proved that this conjecture hold for e.g. bipartite
multigraphs and subcubic multigraphs, and in [GK16] it is proved that a version of the
conjecture with the distance increased to 9 holds for general graphs.

However, for one specific family of graphs, the balanced complete bipartite graphs Kn,n,
the edge precoloring extension problem was studied far earlier than in the above-mentioned
references. Here the extension problem corresponds to asking whether a partial latin square
can be completed to a latin square. In this form the problem appeared already in 1960, when
Evans [Eva60] stated his now classic conjecture that for every positive integer n, if n − 1
edges in Kn,n have been (properly) colored, then this partial coloring can be extended to a
proper n-edge-coloring of Kn,n. This conjecture was solved for large n by Häggkvist [Häg78]
and later for all n by Smetaniuk [Sme81], and independently by Andersen and Hilton [AH83].
Generalizing this problem, Daykin and Häggkvist [DH84] proved several results on extending
partial edge colorings of Kn,n, and they also conjectured that much denser partial colorings
can be extended, as long as the colored edges are spread out in a specific sense: a partial
n-edge coloring of Kn,n is ε-dense if there are at most εn colored edges from {1, . . . , n} at any
vertex and each color in {1, . . . , n} is used at most εn times in the partial coloring. Daykin
and Häggkvist [DH84] conjectured that for every positive integer n, every 1

4
-dense partial

proper n-edge coloring can be extended to a proper n-edge coloring of Kn,n, and proved a
version of the conjecture for ε = o(1) (as n → ∞) and n divisible by 16. Bartlett [Bar13]
proved that this conjecture holds for a fixed positive ε, and recently a different proof which
improves the value of ε was given in [BKL+16].

For general edge colorings of balanced complete bipartite graphs, Dinitz conjectured, and
Galvin proved [Gal95], that if each edge of Kn,n is given a list of n colors, then there is a
proper edge coloring of Kn,n with support in the lists. Indeed, Galvin’s result was a complete
solution of the well-known List Coloring Conjecture for the case of bipartite multigraphs (see
e.g. [HC92] for more background on this conjecture and its relation to the Dinitz’ conjecture).

Motivated by the Dinitz’ problem, Häggkvist [Häg89] introduced the notion of βn-arrays,
which correspond to list assignments L of forbidden colors for E(Kn,n), such that each edge
e of Kn,n is assigned a list L(e) of at most βn forbidden colors from {1, . . . , n}, and at
every vertex v each color is forbidden on at most βn edges adjacent to v; we call such a list
assignment for Kn,n β-sparse. If L is a list assignment for E(Kn,n), then a proper n-edge
coloring ϕ of Kn,n avoids the list assignment L if ϕ(e) /∈ L(e) for every edge e of Kn,n; if such
a coloring exists, then L is avoidable. Häggkvist conjectured that there exists a fixed β > 0,
in fact also that β = 1

3
, such that for every positive integer n, every β-sparse list assignment

for Kn,n is avoidable. That such a β > 0 exists was proved for even n by Andrén in her PhD
thesis [And10], and later for all n in [ACÖ13].

Combining the notions of extending a sparse precoloring and avoiding a sparse list as-
signment, Andrén et al. [ACM16] proved that there are constants α > 0 and β > 0, such
that for every positive integer n, every α-dense partial edge coloring of Kn,n can be extended
to a proper n-edge-coloring avoiding any given β-sparse list assignment L, provided that no
edge e is precolored by a color that appears in L(e). In contrast to this, it was proved in
[EGv+14] that there are bipartite graphs G with a precolored matching of size 2, which is not
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extendable to a proper ∆(G)-edge coloring. These examples have edge densities converging
to some constant 0 < c ≤ 1

2
, and many of the proof methods used in the papers mentioned

above rely on the high edge density of the complete bipartite graph. It is thus natural to ask
if the good behaviour seen for Kn,n will hold for well-structured graphs of lower densities.

The aim of this paper is to show that some generalizations of this type are possible.
We will demonstrate that results similar to those from [ACM16] hold for the family of d-
dimensional hypercubes Qd; these graphs have a degree which is logarithmic in the number
of vertices, rather than linear, so we are now looking at a family of graphs with vanishing
asymptotic density. Instead of bounding the global density of precolored edges, as in the case
of complete bipartite graphs, for hypercubes we shall bound the number of precolored edges
appearing in neighborhoods of given size. Our results are stated in terms of 27-neighborhoods;
this size of neighborhoods is solely due to proof technical reasons.

To state our main theorem, we need some terminology: a dimensional matching M of Qd

is a perfect matching of Qd such that Qd−M is isomorphic to two copies of Qd−1; evidently
there are precisely d dimensional matchings in Qd. An edge precoloring of Qd with colors
1, . . . , d is called α-dense if

(i) there are at most αd precolored edges at each vertex;

(ii) for every 27-neighborhood W of an edge e of Qd, there are at most αd precolored edges
with color i in W , i = 1, . . . , d;

(iii) for every 27-neighborhood W , and every dimensional matching M , at most αd edges
of M are precolored in W .

Here, and in the following, all t-neighborhoods are taken with respect to edges. A list
assignment L for E(Qd) is β-sparse if the list of each edge is a (possibly empty) subset of
{1, . . . , d}, and

(i) |L(e)| ≤ βd for each edge e ∈ E(Qd);

(ii) for every vertex v ∈ V (Qd), each color in {1, . . . , d} occurs in at most βd lists of edges
incident to v;

(iii) for every 27-neighborhood W , and every dimensional matching M , any color appears
at most βd times in lists of edges of M contained in W .

Our main result is the following.

Theorem 1.1. There are constants α > 0 and β > 0 such that for every positive integer
d, if ϕ is an α-dense d-edge precoloring of Qd, L a β-sparse list assignment for Qd, and
ϕ(e) /∈ L(e) for every edge e ∈ E(Qd), then there is a proper d-edge coloring of Qd which
agrees with ϕ on any precolored edge and which avoids L.

As a corollary of our main theorem we note that a version of the conjecture on precolored
distance-2 matchings from [EGv+14], with ∆(G) in place of ∆(G) + 1, but with a weaker
distance requirement, holds for the family of hypercubes.
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Corollary 1.2. There is a constant β > 0 such that if L is a β-sparse list assignment L for
Qd and ϕ is a d-edge precoloring of a distance-t matching in Qd, where t > 55, then ϕ can
be extended to a proper d-edge-coloring of Qd which avoids L.

This follows from the fact that a precolored distance-t matching is an α-dense precoloring
if t > 55. A precolored matching has a much more restricted structure than a general α-
dense d-edge precoloring, so this corollary is most likely far from optimal in terms of the
lower bound on t; it would be interesting to see how far this can be improved.

If we place both the precolored edges and those with a list of forbidden colors on them
on a matching, then our proof method in fact trivially yields the following.

Theorem 1.3. Let ϕ be a d-edge precoloring and L a list assignment for the edges of Qd. If
every edge e which is either precolored or satisfies L(e) 6= ∅ belongs to a distance-3 matching
M in Qd, then there is a d-edge coloring which agrees with ϕ on any precolored edge, and
which avoids L.

This proves that a slightly stronger version, with d rather than d+ 1 colors, of the earlier
mentioned conjecture from [AM01] holds for the family of hypercubes.

The rest of the paper is organized as follows. In Section 2 we introduce some terminology
and notation and also outline the proof of Theorem 1.1. Section 3 contains the proof of
a slightly reformulated version of Theorem 1.1; we also indicate how Theorem 1.3 can be
deduced from the proof of Theorem 1.1. In Section 4 we give some concluding remarks; in
particular, we give an example indicating what numerical values of α and β in Theorem 1.1
might be best possible. At the beginning of Section 3 we shall present numerical values of α
and β for which our main theorem holds, provided that n is large enough. Finally, throughout
the paper, the base of the natural logarithm is denoted by e.

2 Terminology, notation and proof outline

Given an edge precoloring ϕ (or just precoloring, or partial edge coloring) of a graph G with
∆(G) colors, an extension of ϕ is a proper ∆(G)-edge coloring of G which agrees with ϕ on
every precolored edge; if such a coloring of G exists, then ϕ is extendable.

For a vertex u ∈ Qd, we denote by Eu the set of edges with one endpoint being u, and
for a (partial) edge coloring f of Qd, let f(u) denote the set of colors on edges in Eu under
f . If two edges xy and zt of Qd are in a cycle of length 4 in Qd, and all the vertices x, y, z, t
are distinct, then the edges xy and zt are parallel.

As noted above, Qd decomposes into precisely d dimensional matchings. Note that a
dimensional matching in Qd contains precisely 2d−1 edges. For a d-edge coloring f of Qd, a
dimensional matching M is called a dimensional matching of color c (under f) if there are
more edges of M colored c than by any other color.

For the proof of Theorem 1.1, we shall use the standard d-edge coloring h of Qd where all
edges of the ith dimensional matching in Qd is colored i, i = 1, . . . , d. A cycle is 2-colored if
its edges are colored by two distinct colors from {1, . . . , d}. The following property is crucial
for our proof of Theorem 1.1.

Property 2.1. In the standard d-edge coloring h, every edge of Qd is in exactly d−1 2-colored
4-cycles.
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Let ϕ be an α-dense precoloring of Qd. Edges of Qd which are colored under ϕ, are called
prescribed (with respect to ϕ). For the edge coloring h (or an edge coloring obtained from h),
an edge e of Qd is called requested (under h with respect to ϕ) if h(e) = c and e is adjacent
to an edge e′ such that ϕ(e′) = c.

Consider a β-sparse list assignment L for Qd. For the edge coloring h (or an edge coloring
obtained from h), an edge e of Qd is called a conflict edge (of h with respect to L) if h(e) ∈
L(e). An allowed cycle (under h with respect to L) of Qd is a 4-cycle C = uvztu in Qd that
is 2-colored under h, and such that interchanging colors on C yields a proper d-edge coloring
h1 of Qd where none of uv, vz, zt, tu is a conflict edge. We call such an interchange a swap
in h.

Instead of proving Theorem 1.1 we shall in fact prove the following theorem, which is
easily seen so imply Theorem 1.1.

Theorem 2.2. There are constants α > 0, β > 0 and d0, such that for every positive integer
d ≥ d0, if ϕ is an α-dense precoloring of Qd and L a β-sparse list assignment for Qd, and
ϕ(e) /∈ L(e) for every edge e ∈ E(Qd), then there is an extension of ϕ which avoids L.

Below we outline the proof of Theorem 2.2. Let h be the standard proper d-edge coloring
of Qd defined above, ϕ an α-dense precoloring of Qd, and L a β-sparse list assignment for
E(Qd).

Step I. Given the standard d-edge coloring h of Qd, find a permutation ρ of the elements of the
set {1, . . . , d} such that in the proper d-edge-coloring h′ obtained by applying ρ to the
colors used in h, locally, each dimensional matching in Qd contains “sufficiently few”
conflict edges with L, as well as “sufficiently few” requested edges with respect to ϕ.
Moreover, we require that each vertex u of Qd satisfies that Eu contains “sufficiently
few” conflict and requested edges, and that each edge of Qd belongs to “many” allowed
cycles under h′. These conditions shall be more precisely articulated below.

Step II. From the precoloring ϕ of Qd, define a new edge precoloring ϕ′ such that an edge e of
Qd is colored under ϕ′ if and only if e is colored under ϕ or e is a conflict edge of h′

with respect to L. We shall also require that locally, each of the colors in {1, . . . , d} is
used a bounded number of times under ϕ′.

Step III. From h′, construct a proper d-edge coloring h′′ of Qd such that under h′′, no edge in
Qd is both requested and prescribed (with respect to ϕ′); this is done by swapping on
a set of disjoint allowed 4-cycles. We also require that each requested edge e of h′′ is
adjacent to at most one edge e′ such that h′′(e) = ϕ′(e′).

Step IV. For each edge e of Qd that is prescribed with respect to ϕ′, construct a subset Te ⊆
E(Qd), such that performing a series of swaps in h′′ on allowed cycles, all edges of
which are in Te, yields a coloring h′′1 where h′′1(e) = ϕ′(e). Moreover, if e and e′ are
prescribed edges of Qd, then the sets Te′ and Te will be disjoint. Thus, performing the
series of swaps on all the sets Te associated with prescribed edges e yields a proper
d-edge coloring ĥ which is an extension of ϕ′ (and thus ϕ), and which avoids L.
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3 Proofs

In this section we prove Theorem 2.2. In the proof we shall verify that it is possible to perform
Steps I-IV described above to obtain a proper d-edge-coloring of Qd that is an extension of
ϕ and which avoids L. This is done by proving a lemma in each step.

We will not specify the value of d0 in the proof but rather assume that d is large enough
whenever necessary. Since the proof will contain a finite number of inequalities that are valid
if d is large enough, this suffices for proving Theorem 2.2.

The proof of Theorem 2.2 involves a number of functions and parameters:

α, β, γ, κ, ε, ε0, τ,

and a number of inequalities that they must satisfy. For the reader’s convenience, explicit
choices for which the proof holds are presented here:

α = 10−622, β = 2 · 10−622, γ = 2−11, κ = 9/211

ε = 2−3, ε0 = 2−8, τ = 2−7.

We remark that since the numerical values of α and β are not anywhere near what
we expect to be optimal, we have not put an effort into choosing optimal values for these
parameters. Finally, for simplicity of notation, we shall omit floor and ceiling signs whenever
these are not crucial.

Proof of Theorem 2.2. Let ϕ be an α-dense precoloring of Qd, and let L be a β-sparse list
assignment for Qd. Moreover, let h be the standard d-edge coloring defined above.

Step I: We use the following lemma for constructing a required d-edge-coloring h′ from h.

Lemma 3.1. Let γ, τ < 1 be constants such that 0 < α, β ≤ γ, 2
1
γ
+1eα <

γ

3
, 2

1
γ eβ <

γ

3
and

2
2

τ−2β
+1eβ < τ − 2β. There is a permutation ρ of {1, . . . , d}, such that applying ρ to the set

of colors {1, . . . , d} used in h, we obtain a d-edge coloring h′ of Qd satisfying the following:

(a) For every 26-neighborhood W , and every dimensional matching M , at most γd edges
of M ∩ E(W ) are requested.

(b) For every 27-neighborhood W , and every dimensional matching M , at most γd edges
of M ∩ E(W ) are conflict.

(c) No vertex u in Qd satisfies that Eu contains more than γd requested edges.

(d) No vertex u in Qd satisfies that Eu contains more than γd conflict edges.

(e) Each edge in Qd belongs to at least (1− τ)d allowed cycles.

Proof. Let A, B, C, D and E be the number of permutations which do not fulfill the condi-
tions (a), (b), (c), (d) and (e), respectively. Let X be the number of permutations satisfying
the five conditions (a), (b), (c), (d) and (e). There are d! ways to permute the colors, so we
have

X ≥ d!− A−B − C −D − E
We will now prove that X is greater than 0.
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• Recall that an edge e is requested if e is adjacent to an edge e′ such that h(e) = ϕ(e′).
Let M ′ be a dimensional matching, and consider a subset M ⊆ M ′ of all edges in
M ′ that are contained in a given 26-neighborhood W1. Then every edge of M and
every edge adjacent to an edge of M is contained in a 27-neighborhood W2 containing
W1. Since all edges in M have the same color in any edge coloring obtained from h
by permuting colors, and there are at most αd precolored edges with color i in W2,
i = 1, . . . , d, the maximum number of requested edges in M is αd. In other words, no
subset of a dimensional matching contained in a 26-neighborhood contains more than
αd requested edges. Since γ ≥ α, this means that all permutations satisfy condition
(a) or A = 0.

• Since all edges that are in the same dimensional matching have the same color under
h and for every 27-neighborhood W , and every dimensional matching M , any color
appears at most βd times in lists of edges of M contained in W , we have that the max-
imum number of conflict edges in a subset of a given dimensional matching contained
in a 27-neighborhood is βd. Since γ ≥ β, this means that all permutations satisfy
condition (b) or B = 0.

• To estimate C, let u be a fixed vertex of Qd, and let S be a set of size γd of edges of Eu.
There are

(
d
γd

)
ways to choose S. For a vertex v adjacent to u, if uv is a requested edge,

then the colors used in h should be permuted in such a way that in the resulting coloring
h′, uv is colored by some color in the set {(ϕ(u) ∪ ϕ(v)) \ ϕ(uv)}. Since |ϕ(u)| ≤ αd
and |ϕ(v)| ≤ αd, there are at most (2αd)γd ways to choose which colors from 1, 2, . . . , d
to assign to the edges in S so that all edges in S are requested. The rest of the colors
can be arranged in any of the (d− γd)! possible ways. In total this gives at most(

d

γd

)
(2αd)γd(d− γd)! =

d!(2αd)γd

(γd)!

permutations that do not satisfy condition (c) on vertex u.

There are 2d vertices in Qd, so we have

C ≤ 2d
d!(2αd)γd

(γd)!

• To estimate D, let u be a fixed vertex of Qd, and let S be a set of size γd (|S| = γd)
of edges from Eu. For a vertex v adjacent to u, if uv is a conflict edge, then the colors
used in h should be permuted in such a way that in the resulting coloring h′, the color
of uv is in L(uv). Since |L(uv)| ≤ βd, there are at most (βd)γd ways to choose which
colors from {1, 2, . . . , d} to assign to the edges in S so that all edges in S are conflict.
The rest of the colors can be arranged in any of the (d − γd)! possible ways. In total
this gives at most (

d

γd

)
(βd)γd(d− γd)! =

d!(βd)γd

(γd)!

permutations that do not satisfy condition (d) on vertex u. There are 2d vertices in
Qd, so we have

D ≤ 2d
d!(βd)γd

(γd)!
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• To estimate E, let uv be a fixed edge of Qd. Each cycle C = uvztu containing uv is
uniquely defined by an edge zt which is parallel with uv. Moreover, a permutation ς is
in E if and only if there are more than τd choices for zt so that C is not allowed. We
shall count the number of ways ς could be constructed for this to happen. First, note
that for each choice of color c1 from {1, . . . , d}, for the dimensional matching which
contains uv, there are up to 2βd cycles that are not allowed because of this choice.
This follows from the fact that there are at most βd choices for t (or z) such that L(ut)
(or L(vz)) contains c1. So for a permutation ς to belong to E, ς must satisfy that at
least (τ − 2β)d cycles containing uv are forbidden because of the color assigned to the
dimensional matching containing ut and vz.

Let S be a set of edges, |S| = (τ − 2β)d, such that for every edge zt ∈ S, the cycle C =
uvztu is not allowed because of colors assigned to ut and vz. There are

(
d−1

(τ−2β)d

)
ways

to choose S. Furthermore, L(uv) and L(zt) contain at most βd colors each, so there are
at most 2βd choices for a color for the dimensional matching containing ut and vz that
would make C disallowed because of the color assigned to this dimensional matching.
The remaining colors can be permuted in (d − 1 − (τ − 2β)d)! = ((1 − τ + 2β)d − 1)!
ways.

Hence, the total number of permutations σ with not enough allowed cycles for a given
edge is bounded from above by

d

(
d− 1

(τ − 2β)d

)
(2βd)(τ−2β)d((1− τ + 2β)d− 1)! =

d!(2βd)(τ−2β)d

((τ − 2β)d)!

and the total number of permutation σ that have too few allowed cycles for at least
one edge is bounded from above by

2d−1d
d!(2βd)(τ−2β)d

((τ − 2β)d)!

Hence,

X ≥ d!− 2d
d!(2αd)γd

(γd)!
− 2d

d!(βd)γd

(γd)!
− 2d−1d

d!(2βd)(τ−2β)d

((τ − 2β)d)!

Using Stirling’s approximation, n! ≥ nne−n and 2d−1d <
22d

3
, we have

X ≥ d!
(

1− 2d
eγd(2αd)γd

(γd)γd
− 2d

eγd(βd)γd

(γd)γd
− 22d e

(τ−2β)d(2βd)(τ−2β)d

3((τ − 2β)d)(τ−2β)d

)

X > d!
(

1−
(2

1
γ
+1eα

γ

)γd − (2
1
γ eβ

γ

)γd − 1

3

(2
2

τ−2β
+1eβ

τ − 2β

)τ−2βd)
Using the conditions

2
1
γ
+1eα

γ
<

1

3
,

2
1
γ eβ

γ
<

1

3
, and

2
2

τ−2β
+1eβ

τ − 2β
< 1, we have

(2
1
γ
+1eα

γ

)γd
<

1

3
and

(2
1
γ eβ

γ

)γd
<

1

3
and

1

3

(2
2

τ−2β
+1eβ

τ − 2β

)τ−2βd
<

1

3
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This implies X > 0.

Step II: Let h′ be the proper d-edge coloring satisfying conditions (a)-(e) of Lemma 3.1
obtained in the previous step.

We use the following lemma for extending ϕ to a proper d-edge precoloring ϕ′ of Qd, such
that an edge e of Qd is colored under ϕ′ if and only if e is precolored under ϕ or e is a conflict
edge of h′ with L.

Lemma 3.2. Let α′, ε0, γ, κ be constants such that α′ = max(α + γ, α + ε0), κ ≥ max(α +
γ, α + ε0, γ + ε0) and

d− βd− 2αd− 2γd− 4γ

ε0
d− α

ε0
d ≥ 1.

There is a proper d-edge precoloring ϕ′ of Qd satisfying the following:

(a) ϕ′(uv) = ϕ(uv) for any edge uv of Qd that is precolored under ϕ.

(b) For every conflict edge uv of h′, uv is colored under ϕ′ and ϕ′(uv) /∈ L(uv).

(c) There are at most α′d precolored edges at each vertex of Qd under ϕ′.

(d) For every 12-neighborhood W in Qd, there are at most α′d precolored edges with color
i in W , i = 1, . . . , d, under ϕ′.

(e) For every 12-neighborhood W in Qd, and every dimensional matching M , at most α′d
edges of M are precolored under ϕ′ in W .

Furthermore, the edge coloring h′ of Qd and the precoloring ϕ′ of Qd satisfy that

(f) For every 11-neighborhood W in Qd, and every dimensional matching M , at most κd
edges of M ∩ E(W ) are requested.

(g) No vertex x in Qd satisfies that Ex contains more than κd requested edges.

Proof. Consider the edge coloring h′ and the precoloring ϕ; for each 26-neighborhood W , no
dimensional matching in Qd contains more than γd requested edges that are in W , so the
total number of requested edges in W is not greater than γd2. Similarly, the total number
of conflict edges in each 27-neighborhood W is not greater than γd2.

We shall construct the coloring ϕ′ by assigning a color to every conflict edge; this is done
by iteratively constructing a d-edge precoloring φ of the conflict edges of Qd; in each step we
color a hitherto uncolored conflict edge, thereby transforming a conflict edge to a prescribed
edge. At each step of transforming a conflict edge uv into prescribed edge, the number of
requested edges will increase by 2. Hence, after constructing the proper d-edge precoloring ϕ′,
the total number of requested edges of each 26-neighborhood is at most γd2 + 2γd2 = 3γd2.

Suppose now that we have constructed the precoloring ϕ′. A vertex u in Qd is ϕ′-

overloaded if Eu contains at least ε0d requested edges; note that no more than
3γd2

ε0d
=

3γ

ε0
d

vertices of each 25-neighborhood are ϕ′-overloaded.
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A color c is ϕ′-overloaded in a t-neighborhood W if c appears on at least ε0d edges in W
under ϕ′; note that at most

γd2

ε0d
+
αd2

ε0d
=
γ + α

ε0
d

colors are ϕ′-overloaded in each 25-neighborhood W . These upper bounds hold for any choice
of the precoloring ϕ′ obtained from ϕ by coloring the conflict edges of Qd.

Let G be the subgraph of the hypercube Qd induced by all conflict edges of Qd. Let us
now construct the d-edge coloring φ of G. We color the edges of G by steps, and in each step
we define a list L(e) of allowed colors for a hitherto uncolored edge e = uv of G by for every
color c ∈ {1, . . . , d} including c in L(e) if

• c /∈ L(uv),

• c does not appear in ϕ(u) or ϕ(v), or on any previously colored edge of G that is
adjacent to e.

• c is distinct from the color of the edge uu′ (or vv′) under h′ if u′ (or v′) is ϕ′-overloaded.

• c is not ϕ′-overloaded in the 25-neighborhood of e.

Our goal is then to pick a color φ(e) from L(e) for e. Given that this is possible for each
edge of G, this procedure clearly produces a d-edge-coloring φ of G, so that φ and ϕ taken
together form a proper d-edge precoloring of Qd.

Using the estimates above and the facts that G has maximum degree γd, and |ϕ(v)| ≤ αd
for any vertex v of Qd, we have

L(e) ≥ d− βd− 2αd− 2γd− 3γ

ε0
d− γ + α

ε0
d,

for every edge e of G in the process of constructing φ, and by assumption L(e) ≥ 1. Thus,
we conclude that we can choose an allowed color for each conflict edge so that the coloring φ
satisfies the above conditions. This implies that taking φ and ϕ together we obtain a proper
d-precoloring ϕ′ of the edges of Qd. Let us now prove that the precoloring ϕ′ satisfy the
conditions in the lemma.

Let α′ = max(α + γ, α + ε0). Then ϕ′ satisfies the following:

• If uv is precolored under ϕ, then ϕ′(uv) = ϕ(uv). For every conflict edge uv, there is
a precolor ϕ′(uv) such that ϕ′(uv) /∈ L(uv).

• There are at most α′d precolored edges at each vertex.

Let us next prove that the precoloring ϕ′ satisfies conditions (d) and (e) of the lemma.
Suppose that some 12-neighborhood W in Qd contains more than α′d precolored edges with
color i, for some i ∈ {1, . . . , d}. Consider an edge e in W with φ(e) = i. By the construction
of φ, in the 25-neighborhood W ′ of e no color is ϕ′-overloaded. Note further that every 12-
neighborhood in Qd that e lies in is contained in W ′; thus W is contained in W ′, so the color
i is ϕ′-overloaded in W ′, a contradiction. We conclude that condition (d) holds. A similar
argument shows that condition (e) holds as well.
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Let us now turn to conditions (f) and (g). There are at most α′d precolored edges
with color i, i = 1, . . . , d, in every 12-neighborhood in Qd, and all edges that are in the
same dimensional mathing have the same color under h′. This implies that for each 11-
neighborhood W and every dimensional matching M , the maximum number of requested
edges in M that are in W is α′d. Since

κ ≥ max{α + γ, α + ε0, γ + ε0},

condition (f) holds. Similarly, at each step of transforming a conflict edge into a prescribed
edge under φ, we create 2 new requested edges, 1 at each vertex which is incident with the
conflict edge. Since the maximum degree in G is γd, and no vertex is ϕ′-overloaded, no vertex
x in Qd satisfies that Ex contains more than ε0d + γd requested edges. Thus every vertex x
in Qd satisfies that Ex contains at most κd requested edges.

Step III: Let ϕ′ be the proper d-precoloring of Qd obtained in the previous step and h′ the
d-edge coloring of Qd obtained in Step I. By a clash edge (of h′) in Qd we mean an edge which
is both prescribed and requested (under ϕ′). We use the following lemma for constructing,
from h′, a proper d-edge coloring h′′ of Qd with no clash edge. The coloring h′′ will also have
the property that every requested edge e of h′′ is adjacent to at most one prescribed edge e′

such that h′′(e) = ϕ′(e′).

Lemma 3.3. Let κ, ε, µ, τ, α′ = max(α+ γ, α+ ε0) be constants such that µ = 3κ+ ε+ 1 and

d− τd− 9κd− 3α′d− 3εd− 12κ

ε
d− 3 > 0.

By performing a sequence of swaps on disjoint allowed 2-colored 4-cycles in h′, we obtain a
proper d-edge coloring h′′ of Qd satisfying the following:

(a) There is no clash edge in h′′.

(b) For each requested edge e of h′′, e is adjacent to at most one edge e′ satisfying that
h′′(e) = ϕ′(e′).

(c) For each vertex u ∈ V (Qd), at most 2κd+ εd+1 edges incident with u appears in swaps
for constructing h′′ from h′.

(d) For every 3-neighborhood W of Qd, and every dimensional matching M , at most 2κd+
εd+ 1 edges of E(W ) ∩M appears in swaps for constructing h′′ from h′.

(e) For every 3-neighborhood W in Qd, and every dimensional matching M , there are at
most µd requested edges in M ∩ E(W ).

(f) No vertex in Qd is incident with more than µd requested edges.
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Proof. An unexpected edge of h′ is a clash edge or a requested edge e of h′ that is adjacent
to more than one edge e′ satisfying that h′(e) = ϕ′(e′). For constructing h′′ from h′, we will
perform a number of swaps on 2-colored 4-cycles, and we shall refer to this procedure as
S-swap. In more detail, we are going to construct a set S of disjoint allowed 4-cycles, each
such cycle containing exactly one unexpected edge in h′. An edge that belongs to a cycle in
S is called used in S-swap.

Let us first deduce some properties that our set S, which is yet to be constructed, will
satisfy.

By Lemma 3.2, for every 11-neighborhood W in Qd, and every dimensional matching M ,
the number of unexpected edges in E(W ) ∩ M is not greater than κd. Suppose we have
included a 4-cycle C in S. Every edge in C is at distance at most 1 from the unexpected
edge contained in C; this implies that for every 10-neighborhood W in Qd, the total number
of edges in W that are used in S-swap is at most 4κd2.

A vertex u in Qd is S-overloaded if Eu contains at least εd edges that are used in S-swap;

note that no more than
4κd2

εd
=

4κ

ε
d vertices of each 9-neighborhood are S-overloaded. A

dimensional matching M in Qd is S-overloaded in a t-neighborhood W if M ∩E(W ) contains
at least εd edges that are used in S-swap; note that for each 10-neighborhood W , no more

than
4κ

ε
d dimensional matchings of Qd are S-overloaded in W .

Using these facts, let us now construct our set S by steps; at each step we consider an
unexpected edge e and include an allowed 2-colored 4-cycle containing e in S. Initially, the
set S is empty. Next, for each unexpected edge e = uv in Qd, there are at least d − τd
allowed cycles containing e. We choose an allowed cycle uvztu which contains e and satisfies
the following:

(1) z and t and the dimensional matching that contains vz and ut are not S-overloaded in

the 9-neighborhood We of e; this eliminates at most
12κ

ε
d choices.

Note that with this strategy for including 4-cycles in S, after completing the construc-
tion of S, every vertex is incident with at most 2κd + εd + 1 edges that are used in
S-swap; that is, condition (c) holds.

Furthermore, after we have constructed the set S, no dimensional matching is S-
overloaded in a 3-neighborhood ofQd; this follows from the fact that every 3-neighborhood
W ′ in Qd that ut, vz or zt belongs to is contained in We. Moreover, this implies that
condition (d) holds.

(2) None of the edges vz, zt, ut are prescribed, or requested, or used before in S-swap.

All possible choices for these edges are in the 3-neighborhood We of e in Qd. By Lemma
3.2, no vertex in We, or subset of a dimensional matching that is in We, contains
more than κd requested edges or α′d prescribed edges. Moreover, S-swap uses at most
2κd+εd+1 edges at each vertex and in each subset of a dimensional matching contained
in We. Hence, these restrictions eliminate at most 3(κd + α′d) + 3(2κd + εd + 1) or
9κd+ 3α′d+ 3εd+ 3 choices.
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It follows that we have at least

d− τd− 9κd− 3α′d− 3εd− 12κ

ε
d− 3

choices for an allowed cycle uvztu which contains uv. By assumption, this expression is
greater than zero, so we conclude that there is a cycle satisfying these conditions, and thus
we may construct the set S by iteratively adding disjoint allowed 2-colored 4-cycles such that
each cycle contains a unexpected edge.

After this process terminates we have a set S of disjoint allowed cycles; we swap on all
the cycles in S to obtain the coloring h′′. Note that for the cycle uvztu constructed above,
since none of the edges vz, zt, ut are prescribed or requested, {ϕ′(z)∪ϕ′(t)} does not contain
the color h′(uv); so after swapping colors on the cycle uvztu, none of the edges edges uv, vz,
zt, ut are unexpected edges in the obtained coloring; that is, condition (a) and (b) hold.

Let us finally verify that conditions (e) and (f) hold. As noted above, for every dimensional
matching M and every 3-neighborhood W , S-swap uses at most 2κd+εd+1 from E(W )∩M .
Moreover, by Lemma 3.2, E(W ) ∩M contains at most κd requested edges under h′ with
respect to ϕ′. Thus the proper coloring h′′ satisfies that for every dimensional matching
M and for every 3-neighborhood W in Qd, at most µd requested edges are contained in
E(W ) ∩M . Similarly, no vertex x in Qd satisfies that Ex contains more than µd requested
edges.

Step IV: Let h′′ be the proper d-edge coloring of Qd obtained in the previous step and let
ϕ′ be the precoloring of Qd obtained in Step II. Then h′′ and ϕ′ satisfies (a)-(f) of Lemma
3.3, and also the following:

• each vertex of Qd is incident with at most α′d edges that are precolored under ϕ′;

• for every 12-neighborhood W and every dimensional matching M in Qd, at most α′d
edges of M are precolored under ϕ′ in W ;

• for every 12-neighborhood W , there are at most α′d edges that are precolored i under
ϕ′ in W , i = 1, . . . , d.

As in the proof of Lemma 3.3, we say that an edge e in Qd with h′(e) 6= h′′(e) is used in
S-swap. Note that since in every 12-neighborhood, the number of edges that are precolored
i (i ∈ {1, . . . , d}) is at most α′d, and since the number of precolored edges in a subset of a
dimensional matching of Qd that is contained in a 12-neighborhood is also bounded, there
is a bounded number of edges colored i under h′′ that have been used in S-swap in each
3-neighborhood. Moreover, since S-swap uses a bounded number of edges at each vertex,
and in the intersection of every dimensional matching and 3-neighborhood (by condition (c)
and (d) in Lemma 3.3), most edges in Qd are in a large number of allowed 2-colored 4-cycles
under h′′. Those two properties are central for completing the proof of Theorem 2.2 in Step
IV; this is done by proving the following lemma.

Lemma 3.4. Let κ, ε, τ, µ = 3κ+ ε+ 1, α′ = (α + γ, α + ε0) be constants such that

d− 64µd− 64α′d− 32κd− 32εd− 10βd− 3τd− 266α′

ε
d− 86 > 0.

There is a proper d-edge coloring of Qd that is an extension of ϕ′ and which avoids L.
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Figure 1: An example of a configuration Te.

Proof. If h′′(e) = ϕ′(e) for all precolored edges e then we do nothing; h′′ is the required proper
edge coloring. Else, we construct a set T ⊆ E(Qd), such that performing a sequence of swaps
on allowed 2-colored 4-cycles of the subgraph of Qd induced by T , we obtain the required
extension of ϕ′. We refer to this construction as T -swap. For each ϕ′-precolored edge e, the
set T will contain a subset Te of edges associated with e; if e and e′ are distinct ϕ′-precolored
edges of Qd, then we will have Te ∩ Te′ = ∅. An example of a subset Te can be seen in Figure
1, where v2v3 is a prescribed edge, and v1v2 and v3v4 are requested. Since distinct sets Te
and Te′ are disjoint, every requested edge is in at most one set Te; this property is ensured
by Lemma 3.3 (b).

An edge that belongs to T is called used in T -swap. By Lemma 3.2, for every 12-
neighborhood W in Qd, and every dimensional matching M , at most α′d edges of M ∩E(W )
are precolored under ϕ′. For each configuration Te in T , every edge of Te is at distance at
most 2 from the prescribed edge; this implies that for every 10-neighborhood W in Qd, the
total number of edges in W that are used in T -swap is at most 19α′d2.

A vertex u in Qd is T -overloaded if at least εd edges from Eu are used in T -swap; note

that no more than
19α′d2

εd
=

19α′

ε
d vertices of each 9-neighborhood are T -overloaded. A

dimensional matching M in Qd is T -overloaded in a t-neighborhood W if M ∩E(W ) contains
at least εd edges that are used in T -swap; note that for each 10-neighborhood W no more

than
19α′

ε
d dimensional matchings are T -overloaded in W .

Consider the setup in Figure 1. We now describe how to construct the set Te for the
prescribed edge e = v2v3. Suppose that ϕ′(v2v3) = c2 6= h′′(v2v3) = c1. Since every vertex in
Qd has degree d we initially have at least d− 3 choices for a subgraph as in Figure 1.
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Let v1v2 and v3v4 be the edges adjacent to v2v3 that are colored c2. The set Tv2v3 will
consist of edges incident with 14 vertices v1, . . . , v14. We shall choose the vertices v5, . . . , v14
such that they satisfy a number of properties:

(1) v5, . . . , v14 and the dimensional matchings that contain v1v5, v2v6, v3v7, v4v8 v5v9, v6v10,
v6v11, v7v12, v7v13, v8v14 are not T -overloaded in the 9-neighborhood We of e.

These edges are in at most four dimensional matchings and we select 10 new vertices,

so this eliminates at most
19× 14α′

ε
d or

266α′

ε
d choices.

Moreover, every 2-neighborhood W in Qd that one of these edges lie in is contained
in We, so with this strategy and with the bounds on the number of requested and
prescribed edges under h′′, in the process of choosing the set T , for every dimensional
matching M and every 2-neighborhood W in Qd, E(W ) ∩M contains at most

3µd+ 3α′d+ (εd− 1) + 4 = 3µd+ 3α′d+ εd+ 3

edges that are used in T -swap. Similarly, every vertex is incident with at most

3µd+ 3α′d+ (εd− 1) + 5 = 3µd+ 3α′d+ εd+ 4

edges that are used in T -swap; these upper bounds follow from the facts that the
maximum number of edges of Te incident with one vertex is 5, and the maximum
number of edges from a given dimensional matching in Te is 4.

(2) None of the edges v1v5, v2v6, v3v7, v4v8 are prescribed or requested or used before in
T -swap.

Since all the possible choices for these edges are in the 2-neighborhood We of e in Qd,
and under h′′ no vertex contains more than α′d prescribed edges and µd requested
edges, T -swap uses at most 3µd + 3α′d + εd + 4 edges at each vertex, this condition
eliminates at most

4× (µd+ α′d) + 4× (3µd+ 3α′d+ εd+ 4) = 16µd+ 16α′d+ 4εd+ 16

choices.

(3) v1v5, v2v6, v3v7, v4v8 are not used before in S-swap.

Note that this condition ensures that h′′(v1v5) = h′′(v2v6) = h′′(v3v7) = h′′(v4v8) = c3,
where c3 is the most common color of the dimensional matching that contains v1v5.
This eliminates at most 8κd + 4εd + 4 choices based on the conditions (c) and (d) of
Lemma 3.3.

(4) The three cycles v1v2v6v5v1, v2v3v7v6v2, v3v4v8v7v3 are allowed before S-swap.

Each of the edges v1v2, v2v3, v3v4 belongs to at most τd non-allowed cycles, so this
eliminates at most 3τd choices.

(5) c2 /∈ {L(v1v5) ∪ L(v4v8)}.
Color c2 appears at most βd times in lists of the set of edges incident to v1 (or v4), so
this eliminates at most 2βd choices.
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(6) c1 /∈ {L(v2v6) ∪ L(v3v7)}.
Similarly, this eliminates at most 2βd choices.

(7) If v1v2 is in a dimensional matching of color c2 of h′′, then we choose v5, v6 such that
v5v6 is not used in S-swap or T -swap, and v5v6 is not prescribed or requested. Note
that the conditions imply that h′′(v5v6) = c2; in this case we choose v9, v10 arbitrarily.
Based on the restriction of edges used in each dimensional matching and v5v6 6= v1v2,
these restrictions eliminate at most

(2κd+ εd+ 1) + (3µd+ 3α′d+ εd+ 4) + 1 = 2κd+ 3α′d+ 2εd+ 3µd+ 6

choices.

Else, we choose v5, v6, v9, v10 such that

(a) v5v6 is not used in S-swap (and also v5v6 6= v1v2); this eliminates at most 2κd +
εd+ 1 choices. We can assume that v5v6 is in a dimensional matching of color c4.

(b) v5v6 is in an allowed cycle v5v6v10v9v5 with color c2 (which means h′′(v5v9) =
h′′(v6v10) = c2, h

′′(v9v10) = h′′(v5v6) = c4), c4 /∈ {L(v5v9) ∪ L(v6v10)} and c2 /∈
{L(v5v6) ∪ L(v9v10)}.
In the 3-neighborhood W of e in Qd, S-swap uses at most 2κd + εd + 1 edges in
the dimensional matching of color c2, so this eliminates at most 4κd + 2εd + 2
choices for v5v9 and v6v10. We also require that v9v10 6= v5v6 and that v9v10 is not
used in S-swap to make sure h′′(v9v10) = h′′(v5v6) = c4; this eliminates at most
2κd+ εd+ 2 choices.

Since c2 occurs βd times in the subset of the dimensional matching of color c4
contained in the 27-neighborhood W of e in Qd, and c4 occurs βd times in the
subset of the dimensional matching of color c2 contained in W , the two conditions
c4 /∈ {L(v5v9) ∪ L(v6v10)} and c2 /∈ {L(v5v6) ∪ L(v9v10)} eliminate at most 2βd
choices.

(c) v5v6, v5v9, v9v10, v6v10 are not prescribed or requested or used before in T -swap.

Since all the possible choices for these edges are in the 2-neighborhood W of e in
Qd, this eliminates at most 4× (µd+ α′d) + 4× (3µd+ 3α′d+ εd+ 4) choices.

So in both cases, the choosing process eliminates at most

16µd+ 16α′d+ 8κd+ 8εd+ 2βd+ 21

choices.

(8) v7, v8, v14, v13 is chosen with same strategy as v5, v6, v9, v10.

Similarly, this eliminates at most 16µd+ 16α′d+ 8κd+ 8εd+ 2βd+ 21 choices.

(9) v6, v7, v11, v12 is chosen with same strategy with v5, v6, v9, v10 but the color c2 is replaced
by c1.

Again, this eliminates at most 16µd+ 16α′d+ 8κd+ 8εd+ 2βd+ 21 choices.
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Summing up, we conclude that in total, there are at most

64µd+ 64α′d+ 32κd+ 32εd+ 10βd+ 3τd+
266α′

ε
d+ 83

forbidden choices for the configuration Te.
This implies that we have

d− 3− 64µd− 64α′d− 32κd− 32εd− 10βd− 3τd− 266α′

ε
d− 83

or

Z = d− 64µd− 64α′d− 32κd− 32εd− 10βd− 3τd− 266α′

ε
d− 86

choices for a configuration Te′ in the process of constructing T , whenever e′ is a prescribed
edge.

By assumption, Z > 0, so there is a set Tv2v3 that satisfies all the above conditions. We
add this set to T and apply this procedure for all prescribed edgess uv with h′′(uv) 6= ϕ′(uv).
Since the resulting subsets of T are disjoint, we can do the following transformation for each
subset Tv2v3 as above.

• If h′′(v5v6) 6= c2, then interchange colors of the cycle v5v6v10v9v5.

• If h′′(v6v7) 6= c1, then interchange colors of the cycle v6v7v12v11v6.

• If h′′(v7v8) 6= c2, then interchange colors of the cycle v7v8v14v13v7.

• Next, interchange colors of the cycles v1v2v6v5v1 and v3v4v8v7v3.

• Finally, interchange colors of the cycle v2v3v7v6v2.

In the resulting edge coloring obtained from h′′, v2v3 is colored c2. Moreover, it follows from
conditions (3), (4), (5), (7) that we do not create any new conflict edges by performing these
swaps. We thus conclude that by repeating this swapping procedure for every prescribed
edge, we obtain a new proper d-edge coloring which agrees with the precoloring ϕ′.

We have proved that it is possible to complete all the steps I-IV outlined in Section 2,
thereby obtaining an extension of ϕ that avoids L; this completes the proof of Theorem
2.2.

Let us now turn to the proof of Theorem 1.3. As we shall see, Property 2.1 of the standard
edge coloring h of Qd trivially yields the result.

Proof of Theorem 1.3 (sketch). Let ϕ be a d-edge precoloring of Qd, and L a β-sparse list
assignment for the non-precolored edges of Qd, such that any edge e which is either precolored
or satisfies L(e) 6= ∅ belongs to a distance-3 matching M in Qd. Let h be the standard d-edge
coloring of Qd defined above.

Now, by arbitrarily picking a color from the set {1, . . . , d}\L(e′) for each conflict edge e′,
we can construct a precoloring ϕ′ from ϕ such that an edge e of Qd is precolored under ϕ′ if
and only if e is precolored under ϕ or e is a conflict of h with L. Furthermore, any 2-colored
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4-cycle C with colors c1 and c2 under h, and satisfying that there is an edge e ∈ E(C) with
ϕ′(e) = c1 and h(e) = c2 is allowed. Moreover, since edges that are precolored under ϕ′ are
at distance at least 3 from each other, two 4-cycles containing distinct precolored edges are
disjoint. Now, by Property 2.1, every edge in Qd is contained in d − 1 2-colored 4-cycles
under h; thus, we may complete the proof by simply swapping on a suitable set of disjoint
2-colored 4-cycles.

4 Upper bounds and further problems

We have proved that there are constants α and β such that every α-dense d-edge precoloring
of Qd can be extended to a proper d-edge coloring avoiding any given β-sparse list assignment
for Qd. The values we have found for α and β are quite small, to a large extent due to the
calculations in Lemma 3.1.

Let us briefly compare our results obtained in this paper with corresponding results for
complete bipartite graphs. Recall that a list assignment L for Kn,n is β-sparse if each edge
e of Kn,n is assigned a list L(e) of at most βn forbidden colors from {1, . . . , n}, and at every
vertex v each color appears in lists of at most βn edges adjacent to v; similarly an n-edge
precoloring of Kn,n is α-dense if every color is used at most αn times in the precoloring
and at every vertex v at most αn edges incident to v are precolored. For Kn,n Daykin and
Häggkvist [DH84] conjectured that α = 1/4 is the optimal value, and Häggkvist conjectured
that β = 1/3 is optimal. The currently best value is α = 1/25, as proven in [BKL+16]. The
best known value for β is given in [ACÖ13] is far smaller, due to probabilistic tools. That
one can simultaneously take α and β to be positive was proven in [ACM16].

For the hypercube Qd, the following general proposition yields an upper bound on the
values of α and β in Theorem 1.1.

Proposition 4.1. Let G be a d-regular d-edge-colorable graph.

(i) If every d-edge precoloring of G, satisfying that each vertex of G is incident to at most
αd precolored edges, is extendable, then α < 1

2
.

(ii) If every list assignment L, such that |L(e)| ≤ βd for each edge e ∈ E(G), and for each
vertex v each color appears in at most βd lists of edges incident with v, is avoidable,
then β < 1

2
.

(iii) If every precoloring as in (i) is extendable to a coloring avoiding any list assignment as
in (ii), then α + β < 1

2
.

Proof. (i) Let u1u2 be an edge of G. We define an edge precoloring ϕ of G by coloring
dd/2e edges incident with u1 and distinct from u1u2 by colors 1, . . . , dd/2e; next, color
dd/2e edges incident to u2 and distinct from u1u2 by colors dd/2e+1, . . . , d. This yields
an edge d-precoloring which is not extendable to a proper d-edge coloring, so necessarily
α < 1/2.

(ii) Let u1u2 be an edge of G. Next, to dd/2e edges incident with u1, but not u2, assign
identical color lists containing all the colors 1, . . . , dd/2e. Similarly assign to dd/2e edges
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incident with u2, but not u1, identical color lists containing all the colors dd/2e+1, . . . , d.
Now, since apart from u1u2, there are at most dd/2e − 1 edges incident with u1, where
colors 1, . . . , dd/2e are not forbidden, we must have that u1u2 is colored with a color from
1, . . . , dd/2e in any proper d-edge coloring of G avoiding the list assignment; similarly
by the restrictions at u2, u1u2 must be colored with a color from dd/2e + 1, . . . , d in
any coloring of G avoiding the list assignments at u2. This is clearly not possible, so
the list assignment is unavoidable, and thus β < 1/2.

(iii) The precoloring and list-assignments defined above can be combined in the following
way (we assume that 1/2 > β > α and that αd and βd are integers):

Let u1u2 be an edge as above, let H1 be the star induced by u1 and its neighbors except
for u2, and H2 the corresponding star for u2.

We now consider the assignment where in H1 there are αd precolored edges incident
with u1 using colors d−αd+1, . . . , d; moreover, exactly βd edges in H1 incident with u1,
distinct from the precolored ones, are assigned identical lists with colors 1, . . . , βd. Sim-
ilarly, in H2 there are αd precolored edges incident with u2 using colors 1, . . . , αd; more-
over, there are precisely βd edges in H2 incident with u2, distinct from the precolored
edges, all of which are assigned identical color lists containing colors d− βd+ 1, . . . , d.

Now, for any proper d-edge coloring f of G which is an extension of the precoloring
and which avoids the the list assignment, the colors 1, . . . , βd must appear on edges
incident with u1 which are neither precolored nor are assigned a non-empty list of
forbidden colors. By a similar argument for H2, we must have that for any coloring
f which is an extension of the precoloring and also avoids the list assignment, colors
d − βd + 1, . . . , d must appear on edges incident with u2 which are neither precolored
nor are assigned a non-empty list of forbidden colors. Note that both u1 and u2 are
incident with exactly d − βd − αd edges which are neither precolored nor contain a
non-empty list of forbidden colors. Thus if d−αd− βd ≤ βd, then the edge u1u2 must
receive a color both from the set {1, . . . , βd} and from the set {d−βd+1, . . . , d} under
f . Moreover, if βd ≤ d− βd+ 1, then these sets are disjoint, implying that there is no
extension of the precoloring which avoids the given list assignment. Here, by choosing
β close to 1/2 and α small, we can make the sum α + β arbitrarily close to 1/2.

Returning to the setup of Theorem 1.1, we have attempted to find constructions which
yield better upper bounds for α and β for the hypercubes, but have not been able to do so.
Moreover, the conditions (ii) and (iii) for a precoloring of Qd to be α-dense are not probably
not best possible in terms of size of the neighborhoods. Those conditions are required in
our proof, but might be far stronger than what is actually needed in order for a compatible
edge coloring to exist. Nonetheless it would be interesting to see how far Theorem 1.1 can
be improved in its current form (possibly with decreased size of the neighborhoods).

Problem 4.2. What are the optimal values for α and β in Theorem 1.1?

Our focus here has been the family of hypercubes but of course the type of problem we
have considered is interesting for more general graphs as well. The examples in [EGv+14]
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show that in order to get results similar to those for Kn,n, and those given in this paper, one
must impose some structural conditions on the considered family of graphs. Both Kn,n, and
Qd are well connected bipartite graphs and it would be interesting to see how far Proposition
4.1 can be improved for this general class of graphs.

Problem 4.3. Given a precoloring and a list assignment as in Proposition 4.1, what are the
optimal values for α and β for the family of d-regular, d-edge connected, bipartite graphs?

Here the cases closest to our results are of course those where d is a function of the number
of vertices in the graph.

Finally, as mentioned in the introduction, our proof method easily give us Theorem 1.3
where the edges which are precolored or have non-empty lists of forbidden colors on them
are forced to lie in a distance-3 matching. Here it is natural to ask if this result holds for
distance-2 matchings as well.
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[Fia03] Jǐŕı Fiala, Np completeness of the edge precoloring extension problem on bipartite
graphs, Journal of Graph Theory 43 (2003), no. 2, 156–160.

[Gal95] Fred Galvin, The list chromatic index of a bipartite multigraph, J. Combin. Theory
Ser. B 63 (1995), no. 1, 153–158. MR 1309363

[GK16] A. Girão and R. J. Kang, Precolouring extension of Vizing’s theorem, ArXiv e-
prints (2016).
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