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SOME NEW POSITIVE OBSERVATIONS

ALEXANDER BERKOVICH

Dedicated to the memory of Dora Bitman

Abstract. We revisit Bressoud’s generalized Borwein conjecture. Making use of the new positivity-
preserving transformations for q-binomial coefficients we establish the truth of infinitely many cases of
the Bressoud conjecture. In addition, we prove new bounded versions of Lebesgue’s identity and of
Euler’s Pentagonal Number Theorem. Finally, we discuss new companions to Andrews-Gordon mod 21
and Bressoud mod 20 identities.

1. Introduction

Bressoud [10] considered the following polynomials

(1.1) G(N,M,α, β,K, q) =

∞
∑

j=−∞

(−1)jqKj
(α+β)j+(α−β)

2

[

N +M

N −Kj

]

q

,

where

(1.2)

[

m+ n

m

]

q

:=

{

(q)m+n

(q)m(q)n
, for m,n ∈ N,

0, otherwise,

and

(q)m =
m
∏

j=1

(1− qj), for m ∈ N,

where N denotes the set of nonnegative integers. More generally, for m ∈ N we define

(a)m = (a; q)m =

m−1
∏

j=0

(1− aqj),

(a1, a2, . . . , ak; q)m = (a1; q)m(a2; q)m . . . (ak; q)m.(1.3)

Here and throughout we assume that |q| < 1. We note that (a)0 = 1.

In 1996, Bressoud [10] conjectured that

Conjecture 1.1. Let K ∈ Z>1, N,M,αK, βK ∈ Z≥0 such that

1 ≤ α+ β ≤ 2K − 1,

β −K ≤ N −M ≤ K − α,(1.4)

(strict inequality when K = 2). Then G(N,M,α, β,K, q) ≥ 0.
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2 ALEXANDER BERKOVICH

Here, and everywhere, P (q) ≥ 0 means that P (q) is a polynomial in q with nonnegative coefficients.
We remark that

[

m+ n

m

]

q

≥ 0.

The famous conjecture of Peter Borwein (Theorem since 2019 [14]) can be stated as

An(q) = G(n, n,
5

3
,
4

3
, 3, q) ≥ 0,

Bn(q) = G(n− 1, n+ 1,
7

3
,
2

3
, 3, q) ≥ 0,

Cn(q) = G(n− 1, n+ 1,
8

3
,
1

3
, 3, q) ≥ 0,(1.5)

and

(1.6)

n
∏

k=1

(1− q3k−1)(1 − q3k−2) = An(q
3)− qBn(q

3)− q2Cn(q
3).

When α, β ∈ Z, G(N,M,α, β,K, q) is a generating function for the so-called partitions with prescribed
hook differences [4]. Bressoud’s conjecture is nontrivial when α, β assume fractional values.
Many cases of Bressoud’s conjecture were settled in the literature [9], [12], [15], [16], [7], [14].
In the next section, we will show how to settle new infinite family of cases.

Theorem 1.2. For L ∈ N, ν ∈ Z>0, s = 0, 1, 2, . . . , ν − 1

(1.7) G(L,L+ 1 + 2s, (ν + 1)(1 +
1 + 2s

2ν + 1
), (ν + 1)(1−

1 + 2s

2ν + 1
), 2ν + 1, q) ≥ 0.

Also, in Section 2, we discuss new bounded versions of Lebesgue’s identity and of Euler’s Pentagonal
Number Theorem. In Section 3, we establish and prove some additional isolated positivity results and
introduce new companions to Andrews-Gordon mod 21 and Bressoud mod 20 identities.
We conclude this section with a list of seven useful formulas, which can be found in [2]:

lim
L→∞

[

L

m

]

q

=
1

(q)m
,(1.8)

lim
L,M→∞

[

L+M

L

]

q

=
1

(q)∞
,(1.9)

(1.10)

[

n+m

n

]

q−1

= q−nm

[

n+m

n

]

q

,

(1.11)

[

n

m

]

q

=

[

n− 1

m− 1

]

q

+ qm
[

n− 1

m

]

q

=

[

n− 1

m

]

q

+ qn−m

[

n− 1

m− 1

]

q

,

(1.12)
∑

n≥0

q(
n

2)zn
[

L

n

]

q

= (−z; q)L,

(1.13)

∞
∑

j=−∞

(−1)jzjqj
2

=
(

q2,
q

z
, zq; q2

)

∞
,

(1.14)

∞
∑

j=−∞

(−1)jqj
2

zj
[

L+M

L− j

]

q2

=
(q

z
; q2

)

M

(

zq; q2
)

L
,

with L,M,m, n ∈ N.
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2. Positivity-preserving Transformations

We start with the following summation formula

Theorem 2.1. For L ∈ N, a ∈ Z

(2.1)
∑

k≥0

CL,k(q)

[

k

⌊k−a
2 ⌋

]

q

= qT (a)

[

2L+ 1

L− a

]

q

,

where

T (j) :=

(

j + 1

2

)

and

(2.2) CL,k(q) =

L
∑

m=0

qT (m)+T (m+k)

[

L

m, k

]

q

,

with

(2.3)

[

L

m, k

]

q

=

[

L

m

]

q

[

L−m

k

]

q

=

[

L

k

]

q

[

L− k

m

]

q

≥ 0.

Observe that CL,k(q) ≥ 0. Using transformation (2.1) it is easy to check that identity of the form

(2.4) F (L, q) =

∞
∑

j=−∞

α(j, q)

[

L

⌊L−j
2 ⌋

]

q

,

implies that the following identity holds

(2.5)
∑

k≥0

CL,k(q)F (k, q) =
∞
∑

j=−∞

α(j, q)
∑

k≥0

CL,k(q)

[

k

⌊k−j

2 ⌋

]

q

=
∞
∑

j=−∞

α(j, q)qT (j)

[

2L+ 1

L− j

]

q

.

Hence, if F (L, q) ≥ 0 then

(2.6)
∞
∑

j=−∞

α(j, q)qT (j)

[

2L+ 1

L− j

]

q

≥ 0.

For that reason, we say that (2.1) is positivity-preserving.
Transformation (2.1) is an easy corollary of the theorem proven in [6].

Theorem 2.2 (Berkovich–Uncu).

(2.7)
∑

k≥0

qT (k)

[

L

k

]

q

{

T−1

(

k

a
; q

)

+ T−1

(

k

a+ 1
; q

)}

= qT (a)

[

2L+ 1

L− a

]

q

.

The Andrews-Baxter q-trinomial coefficients [3] can be defined as

(2.8) T−1

(

k

a
; q

)

=
∑

m≥0,
m≡k+a(mod2)

qT (m)

[

k

m

]

q

[

k −m
k−m−a

2

]

q

.

It is easy to check that

(2.9) T−1

(

k

a
; q

)

+ T−1

(

k

a+ 1
; q

)

=
∑

m≥0

qT (m)

[

k

m

]

q

[

k −m

⌊k−m−a
2 ⌋

]

q

.

Substituting (2.9) into left hand side of (2.7) and changing k → k +m we complete the proof of (2.1).

It is instructive to compare (2.1) with the Corollary (2.6) in [16].
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Theorem 2.3 (Warnaar). For L ∈ N, a ∈ Z

(2.10)
∑

k≥0

WL,k(q)

[

2k

k − a

]

q

= q2a
2

[

2L

L− 2a

]

q

,

where

(2.11) WL,k(q) =

L
∑

m=0

q(m+k)2+k2

[

L

m, 2k

]

q

≥ 0.

Observe that unlike (2.10), transformation (2.1) can not be iterated. Interestingly enough, there exists
an odd companion to Theorem 2.3.

Theorem 2.4. For L ∈ N, a ∈ Z

(2.12)
∑

k≥0

OL,k(q)

[

2k + 1

k − a

]

q

= q4T (a)

[

2L

L− 2a− 1

]

q

,

where

(2.13) OL,k(q) =

L
∑

m=0

q2T (m+k)+2T (k)

[

L

m, 2k + 1

]

q

≥ 0.

We remark that while Theorem 2.4 is not explicitly stated in [16], it is a special case of an identity on
page 222 there.

Schur’s bounded version of Euler’s Pentagonal Number Theory states

(2.14) 1 =

∞
∑

j=−∞

(−1)jq
3j+1

2 j

[

L

⌊L−3j
2 ⌋

]

q

.

With the aid of (2.5) we can convert (2.14) into

(2.15) 0 ≤

L
∑

k=0

CL,k(q) =

∞
∑

j=−∞

(−1)jq2j(3j+1)

[

2L+ 1

L− 3j

]

q

.

Hence,

G(L,L+ 1,
8

3
,
4

3
, 3, q) ≥ 0.

Making use of (1.12), it is easy to check that

(2.16)

L
∑

k=0

CL,k(q) =

L
∑

k=0

qT (k)

[

L

k

]

q

(−q)k.

And so identity (2.15) can be rewritten as

(2.17)

L
∑

k=0

qT (k)

[

L

k

]

q

(−q)k =

∞
∑

j=−∞

(−1)jq2j(3j+1)

[

2L+ 1

L− 3j

]

q

.

Letting L → ∞ and using the Jacobi triple product identity (1.13) yields a special case of the Lebesgue
identity [13]

(2.18)
∑

m≥0

qT (m)

(q)m
(−q)m =

(q4; q4)∞
(q)∞

,

and so, (2.17) is a new bounded version of the Lebesgue identity. Perform q → 1
q
in (2.17) and use (1.10)

together with

(2.19) (−q−1; q−1)n = (−q)nq
−T (n), n ∈ N
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to obtain after simplification a new polynomial version of Euler’s Pentagonal Number Theorem

(2.20)

L
∑

k=0

(−q)L−kq
(L+1)k

[

L

k

]

q

=

∞
∑

j=−∞

(−1)jq3j
2+j

[

2L+ 1

L− 3j

]

q

.

It proves that

(2.21) G(L,L+ 1,
4

3
,
2

3
, 3, q) ≥ 0.

We now move on to prove Theorem 1.2. We start with the finite analogue of the Andrews-Gordon
identity due to Foda-Quano [11].

For L ∈ N, ν ∈ Z>0, s = 0, 1, . . . , ν − 1

∑

n2,...,nν≥0

qN
2
2+...+N2

ν+Nν+1−s+...+Nν

ν
∏

i=2

[

ni + L− 2
∑i

j=2 Nj − Eν
i,s

ni

]

q

=

∞
∑

j=−∞

(−1)jq
(2ν+1)j2+j(1+2s)

2

[

L

⌊L−(2ν+1)j−s

2 ⌋

]

q

.(2.22)

Here, Nj = nj + nj+1 + . . . + nν , j = 2, . . . , ν and Eν
i,s = max(i + s − ν, 0). Observe that (2.14) is the

case ν = 1 of (2.22).

With the aid of (2.5) we obtain

0 ≤
∑

k,n2,...,nν≥0

CL,k(q)q
N2

2+...+N2
ν+Nν+1−s+...+Nν

ν
∏

i=2

[

ni + k − 2
∑i

j=2 Nj − Eν
i,s

ni

]

q

=

qT (s)
∞
∑

j=−∞

(−1)jq(ν+1)(2ν+1)j2+(ν+1)(2s+1)j

[

2L+ 1

L− s− (2ν + 1)j

]

q

.(2.23)

Hence,

G(L,L+ 1 + 2s, (ν + 1)(1 +
1 + 2s

2ν + 1
), (ν + 1)(1−

1 + 2s

2ν + 1
), 2ν + 1, q) ≥ 0,

for all L ∈ N, ν ∈ Z>0, s = 0, 1, 2, . . . , ν − 1. This completes the proof of Theorem 1.2.

3. Further Observations

We replace q2 by q in (1.14) and then set M = L,L+ 1, z = q
1
2 to find that for L ∈ N

(3.1)
∞
∑

j=−∞

(−1)jqT (j)

[

2L

L− j

]

q

= δL,0

and

(3.2)

∞
∑

j=−∞

(−1)jqT (j)

[

2L+ 1

L− j

]

q

= 0,

where δL,0 = 1 if L = 0 and δL,0 = 0 if L > 0. The formulas (3.1) and (3.2) can be combined into

(3.3)

∞
∑

j=−∞

(−1)jqT (j)

[

L

⌊L−2j
2 ⌋

]

q

= δL,0.

Applying Theorem 2.3 to (3.1) yields

(3.4) WL,0(q) =
∑

n≥0

qn
2

[

L

n

]

q

=
∞
∑

j=−∞

(−1)jq
5j+1

2 j

[

2L

L− 2j

]

q

,
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which is Bressoud’s bounded version of the first Rogers-Ramanujan identity [9]. Analogously, applying
(2.5) to (3.3) yields

(3.5) CL,0(q) =
∑

n≥0

qn
2+n

[

L

n

]

q

=

∞
∑

j=−∞

(−1)jq
5j2+3j

2

[

2L+ 1

L− 2j

]

q

,

which can be recognized as Warnaar’s bounded version of the second Rogers-Ramanujan identity [15].
Next, we perform the change of summation variables below

∞
∑

j=−∞

(−1)jq5T (j)

[

2L

L− 2j − 1

]

q

=

−
∞
∑

j=−∞

(−1)jq5T (−1−j)

[

2L

L+ 2j + 1

]

q

=(3.6)

−
∞
∑

j=−∞

(−1)jq5T (j)

[

2L

L− 2j − 1

]

q

to conclude that

(3.7) qL+1
∞
∑

j=−∞

(−1)jq5T (j)

[

2L

L− 2j − 1

]

q

= 0.

Adding (3.4) and (3.7) and employing recursion relation (1.11) we obtain

(3.8)
∑

n≥0

qn
2

[

L

n

]

q

=

∞
∑

j=−∞

(−1)jq
5j2+j

2

[

2L+ 1

L− 2j

]

q

.

Observe that (3.4) and (3.8) imply that for k ∈ N

(3.9)
∑

n≥0

qn
2

[

⌊k
2⌋

n

]

q

=

∞
∑

j=−∞

(−1)jq
5j2+j

2

[

k

⌊k−4j
2 ⌋

]

q

.

Apply Theorem 2.1 to (3.9) to obtain

(3.10)
∑

k,n≥0

CL,kq
n2

[

⌊k
2 ⌋

n

]

q

=
∞
∑

j=−∞

(−1)jq
21j2+5j

2

[

2L+ 1

L− 4j

]

q

,

which proves that

G(L,L+ 1,
13

4
, 2, 4, q) ≥ 0.

In the limit as L → ∞ (3.10) becomes

(3.11)
∑

m,k,n≥0

qT (m)+T (m+k)+n2[⌊ k
2 ⌋
n

]

q

(q)m(q)k
=

(q21, q8, q13; q21)n
(q)∞

.

This is to be contrasted with Andrews-Gordon identity mod 21 [1]

(3.12)
∑

n1,n2,...,n9≥0

qN
2
1+N2

2+...+N2
9+N8+N9

(q)n1(q)n2 . . . (q)n9

=
(q21, q8, q13; q21)∞

(q)∞
,

with Ni = ni + . . . + n9, i = 1, . . . , 9. On the left of (3.11) one has 3-fold sum, while on the left side
of (3.12) one has 9-fold sum. Analogously, applying Theorem 2.3 to (3.4) and Theorem 2.4 to (3.5) and



SOME NEW POSITIVE OBSERVATIONS 7

(3.8), we prove that

G(L,L,
11

4
,
5

2
, 4, q) ≥ 0,

G(L − 1, L+ 1, 4,
5

4
, 4, q) ≥ 0,

G(L − 1, L+ 1,
15

4
,
3

2
, 4, q) ≥ 0,

and obtain, as L → ∞

(3.13)
∑

m,k,n≥0

qk
2+(m+k)2+n2

(q)m(q)2k

[

k

n

]

q

=
(q21, q10, q11; q21)∞

(q)∞
,

(3.14)
∑

m,k,n≥0

q2T (k)+2T (m+n)+2T (n)

(q)m(q)2k+1

[

k

n

]

q

=
(q21, q5, q16; q21)∞

(q)∞
,

and

(3.15)
∑

m,k,n≥0

q2T (k)+2T (m+n)+n2

(q)m(q)2k+1

[

k

n

]

q

=
(q21, q6, q15; q21)∞

(q)∞
,

respectively.

In [7, p. 2332] the following identity was derived

(3.16)

∞
∑

j=−∞

(−1)jq2j
2

[

2L

L− 2j

]

q

= (−q; q2)L.

We now follow a well-trodden path and check that

(3.17) qL+1
∑

(−1)jq2j
2+2j

[

2L

L− 2j − 1

]

q

= 0.

Adding (3.16) and (3.17) we derive, with the aid of (1.11), that

(3.18)

∞
∑

j=−∞

(−1)jq2j
2

[

2L+ 1

L− 2j

]

q

= (−q; q2)L.

Equations (3.16) and (3.18) imply that for k ∈ N

(3.19)
∞
∑

j=−∞

(−1)jq2j
2

[

k

⌊k−4j
2 ⌋

]

q

= (−q; q2)⌊ k
2 ⌋
.

Applying Theorem 2.1 to (3.19) and letting L → ∞ we obtain

(3.20)
∑

m,k≥0

qT (m)+T (m+k)(−q; q2)⌊ k
2 ⌋

(q)m(q)k
=

(q20, q8, q12; q20)∞
(q)∞

.

Compare it with the Bressoud formula in [8]

(3.21)
∑

n1,...,n9≥0

qN
2
1+...+N2

9+N8+N9

(q)n1 . . . (q)n8(q
2; q2)n9

=
(q20, q8, q12; q20)∞

(q)∞
,

where Ni = ni + . . .+ n9, i = 1, . . . , 9.

Analogously, applying Theorem 2.3 to (3.16) and Theorem 2.4 to (3.18) we get as L → ∞

(3.22)
∑

m,k≥0

qk
2+(m+k)2

(q)m(q)2k
(−q; q2)k =

(q20, q10, q10; q20)∞
(q)∞
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and

(3.23)
∑

m,k≥0

q2T (k)+2T (m+k)

(q)m(q)2k+1
(−q; q2)k =

(q20, q6, q14; q20)∞
(q)∞

,

respectively.
For our final example, we employ Dyson’s identity [5], [7, p. 2330]

(3.24)

∞
∑

j=−∞

(−1)jqT (3j)

[

2L+ 1

L− 3j

]

q

=
(q3; q3)L
(q)L

.

Applying Theorem 2.4 to (3.24) yields

(3.25)

∞
∑

j=−∞

(−1)jq5T (3j)

[

2L

L− 1− 6j

]

q

=
∑

k≥0

OL,k

(q3; q3)k
(q)k

≥ 0.

This proves that

(3.26) G(L− 1, L+ 1, 5,
5

2
, 6, q) ≥ 0.

Letting L → ∞ in (3.25) and using (1.13) we arrive at a new elegant result

(3.27)
∑

m,k≥0

q2T (k)+2T (m+k)

(q)m(q)2k+1

(q3; q3)k
(q)k

=
(q15; q15)∞

(q)∞
.
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